1
|
Lin J, Xu T, Yang X, Yang Q, Zhu Y, Wan M, Xiao X, Zhang S, Ouyang Z, Fan X, Sun W, Yang F, Yuan L, Bei Y, Wang J, Guo J, Tang B, Shen L, Jiao B. A detection model of cognitive impairment via the integrated gait and eye movement analysis from a large Chinese community cohort. Alzheimers Dement 2024; 20:1089-1101. [PMID: 37876113 PMCID: PMC10916936 DOI: 10.1002/alz.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Whether the integration of eye-tracking, gait, and corresponding dual-task analysis can distinguish cognitive impairment (CI) patients from controls remains unclear. METHODS One thousand four hundred eighty-one participants, including 724 CI and 757 controls, were enrolled in this study. Eye movement and gait, combined with dual-task patterns, were measured. The LightGBM machine learning models were constructed. RESULTS A total of 105 gait and eye-tracking features were extracted. Forty-six parameters, including 32 gait and 14 eye-tracking features, showed significant differences between two groups (P < 0.05). Of these, the Gait_3Back-TurnTime and Dual-task cost-TurnTime patterns were significantly correlated with plasma phosphorylated tau 181 (p-tau181) level. A model based on dual-task gait, dual-task smooth pursuit, prosaccade, and anti-saccade achieved the best area under the receiver operating characteristics curve (AUC) of 0.987 for CI detection, while combined with p-tau181, the model discriminated mild cognitive impairment from controls with an AUC of 0.824. DISCUSSION Combining dual-task gait and dual-task eye-tracking analysis is feasible for the detection of CI. HIGHLIGHTS This is the first study to report the efficiency of integrated parameters of dual-task gait and eye-tracking for cognitive impairment (CI) detection in a large cohort. We identified 46 gait and eye-tracking features associated with CI, and two were correlated to plasma phosphorylated tau 181. We constructed the model based on dual-task gait, smooth pursuit, prosaccade, and anti-saccade, achieving the best area under the curve of 0.987 for CI detection.
Collapse
Affiliation(s)
- Jingyi Lin
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Tianyan Xu
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xuan Yang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Qijie Yang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Yuan Zhu
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Meidan Wan
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xuewen Xiao
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
| | - Sizhe Zhang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Ziyu Ouyang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiangmin Fan
- Institute of SoftwareChinese Academy of SciencesBeijingChina
| | - Wei Sun
- Institute of SoftwareChinese Academy of SciencesBeijingChina
| | - Fan Yang
- Institute of SoftwareChinese Academy of SciencesBeijingChina
- School of Computer Science and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Li Yuan
- Department of NeurologyLiuyang Jili HospitalChangshaChina
| | - Yuzhang Bei
- Department of NeurologyLiuyang Jili HospitalChangshaChina
| | - Junling Wang
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
| | - Jifeng Guo
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
| | - Beisha Tang
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
| | - Lu Shen
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
| | - Bin Jiao
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
| |
Collapse
|
2
|
Qi H, Zhu X, Ren Y, Zhang X, Tang Q, Zhang C, Lang Q, Wang L. A Study of Assisted Screening for Alzheimer's Disease Based on Handwriting and Gait Analysis. J Alzheimers Dis 2024; 101:75-89. [PMID: 39177597 DOI: 10.3233/jad-240362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease that is not easily detected in the early stage. Handwriting and walking have been shown to be potential indicators of cognitive decline and are often affected by AD. Objective This study proposes an assisted screening framework for AD based on multimodal analysis of handwriting and gait and explores whether using a combination of multiple modalities can improve the accuracy of single modality classification. Methods We recruited 90 participants (38 AD patients and 52 healthy controls). The handwriting data was collected under four handwriting tasks using dot-matrix digital pens, and the gait data was collected using an electronic trail. The two kinds of features were fused as inputs for several different machine learning models (Logistic Regression, SVM, XGBoost, Adaboost, LightGBM), and the model performance was compared. Results The accuracy of each model ranged from 71.95% to 96.17%. Among them, the model constructed by LightGBM had the best performance, with an accuracy of 96.17%, sensitivity of 95.32%, specificity of 96.78%, PPV of 95.94%, NPV of 96.74%, and AUC of 0.991. However, the highest accuracy of a single modality was 93.53%, which was achieved by XGBoost in gait features. Conclusions The research results show that the combination of handwriting features and gait features can achieve better classification results than a single modality. In addition, the assisted screening model proposed in this study can achieve effective classification of AD, which has development and application prospects.
Collapse
Affiliation(s)
- Hengnian Qi
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Xiaorong Zhu
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Yinxia Ren
- School of Medicine and Nursing, Huzhou University, Huzhou, China
| | - Xiaoya Zhang
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Qizhe Tang
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Chu Zhang
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Qing Lang
- Library, Huzhou University, Huzhou, China
| | - Lina Wang
- School of Medicine and Nursing, Huzhou University, Huzhou, China
| |
Collapse
|
3
|
Longhurst JK, Rider JV, Cummings JL, John SE, Poston B, Landers MR. Cognitive-motor dual-task interference in Alzheimer's disease, Parkinson's disease, and prodromal neurodegeneration: A scoping review. Gait Posture 2023; 105:58-74. [PMID: 37487365 PMCID: PMC10720398 DOI: 10.1016/j.gaitpost.2023.07.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2022] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Cognitive-motor interference (CMI) is a common deficit in Alzheimer's (AD) disease and Parkinson's disease (PD) and may have utility in identification of prodromal neurodegeneration. There is lack of consensus regarding measurement of CMI resulting from dual task paradigms. RESEARCH QUESTION How are individuals with AD, PD, and prodromal neurodegeneration impacted by CMI as measured by dual-task (DT) performance? METHODS A systematic literature search was performed in six datasets using the PRISMA guidelines. Studies were included if they had samples of participants with AD, PD, or prodromal neurodegeneration and reported at least one measure of cognitive-motor DT performance. RESULTS 4741 articles were screened and 95 included as part of this scoping review. Articles were divided into three non-mutually exclusive groups based on diagnoses, with 26 articles in AD, 56 articles in PD, and 29 articles in prodromal neurodegeneration, and results presented accordingly. SIGNIFICANCE Individuals with AD and PD are both impacted by CMI, though the impact is likely different for each disease. We found a robust body of evidence regarding the utility of measures of DT performance in the detection of subtle deficits in prodromal AD and some signals of utility in prodromal PD. There are several key methodological challenges related to DT paradigms for the measurement of CMI in neurodegeneration. Overall, DT paradigms show good potential as a clinical method to probe specific brain regions, networks, and function; however, task selection and effect measurement should be carefully considered.
Collapse
Affiliation(s)
- Jason K Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline St. Suite, 1011 St. Louis, MO, USA.
| | - John V Rider
- School of Occupational Therapy, Touro University Nevada, Henderson, NV, USA; Department of Physical Therapy, University of Nevada, Las Vegas, NV, USA.
| | | | - Samantha E John
- Department of Brain Health, University of Nevada, Las Vegas, NV, USA.
| | - Brach Poston
- Department of Kinesiology and Nutrition, University of Nevada, Las Vegas, NV, USA.
| | - Merrill R Landers
- Department of Physical Therapy, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
4
|
Guimarães V, Sousa I, de Bruin ED, Pais J, Correia MV. Minding your steps: a cross-sectional pilot study using foot-worn inertial sensors and dual-task gait analysis to assess the cognitive status of older adults with mobility limitations. BMC Geriatr 2023; 23:329. [PMID: 37237278 DOI: 10.1186/s12877-023-04042-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Cognitive impairment is a critical aspect of our aging society. Yet, it receives inadequate intervention due to delayed or missed detection. Dual-task gait analysis is currently considered a solution to improve the early detection of cognitive impairment in clinical settings. Recently, our group proposed a new approach for the gait analysis resorting to inertial sensors placed on the shoes. This pilot study aimed to investigate the potential of this system to capture and differentiate gait performance in the presence of cognitive impairment based on single- and dual-task gait assessments. METHODS We analyzed demographic and medical data, cognitive tests scores, physical tests scores, and gait metrics acquired from 29 older adults with mobility limitations. Gait metrics were extracted using the newly developed gait analysis approach and recorded in single- and dual-task conditions. Participants were stratified into two groups based on their Montreal Cognitive Assessment (MoCA) global cognitive scores. Statistical analysis was performed to assess differences between groups, discrimination ability, and association of gait metrics with cognitive performance. RESULTS The addition of the cognitive task influenced gait performance of both groups, but the effect was higher in the group with cognitive impairment. Multiple dual-task costs, dual-task variability, and dual-task asymmetry metrics presented significant differences between groups. Also, several of these metrics provided acceptable discrimination ability and had a significant association with MoCA scores. The dual-task effect on gait speed explained the highest percentage of the variance in MoCA scores. None of the single-task gait metrics presented significant differences between groups. CONCLUSIONS Our preliminary results show that the newly developed gait analysis solution based on foot-worn inertial sensors is a pertinent tool to evaluate gait metrics affected by the cognitive status of older adults relying on single- and dual-task gait assessments. Further evaluation with a larger and more diverse group is required to establish system feasibility and reliability in clinical practice. TRIAL REGISTRATION ClinicalTrials.gov (identifier: NCT04587895).
Collapse
Affiliation(s)
- Vânia Guimarães
- Fraunhofer Portugal AICOS, Porto, Portugal.
- Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Inês Sousa
- Fraunhofer Portugal AICOS, Porto, Portugal
| | - Eling D de Bruin
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- OST - Eastern Swiss University of Applied Sciences, Department of Health, St. Gallen, Switzerland
| | - Joana Pais
- Neuroinova, Lda., Vila Nova de Gaia, Portugal
- EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Miguel Velhote Correia
- Faculty of Engineering, University of Porto, Porto, Portugal
- INESC TEC (Institute for Systems and Computer Engineering, Technology and Science), Porto, Portugal
| |
Collapse
|
5
|
Abstract
OBJECTIVES Age-related variations in emotional, physical, and cognitive health are poorly understood. This multimethod study extends previous work by investigating mechanistic models by which trait mindfulness, perceived stress, and negative affect (NA) influence health outcomes in adults aged 57-87 years old. METHOD In this cross-sectional study, 119 adults completed clinical interviews, cognitive and gait assessments, the Mindful Attention and Awareness Scale, Positive and Negative Affect Schedule, and Perceived Stress Scale. Gait velocity and executive function (Flanker test of inhibitory control), which are important predictors of global health and functioning in older adults, served as objective health outcome measures. RESULTS Correlational analyses found that trait mindfulness is positively associated with age, gait velocity, and inhibitory control and negatively associated with NA and perceived stress. NA but not perceived stress was associated with slower gait velocity. PROCESS mediation analyses suggested that those higher in trait mindfulness showed lower NA as a result of less perceived stress, while moderation analyses indicated the relationship between gait velocity and age varied by levels of trait mindfulness. CONCLUSION Our findings are consistent with a mindfulness stress-buffering model of health. It is plausible that trait mindfulness, which has both mediating and moderating effects on health, might help to promote more successful aging and provide resilience to age-related declines in physical health.
Collapse
Affiliation(s)
| | - Lily F Brown
- Department of Psychology, University of Maine, Orono, ME, USA
| | - Laura Moore
- Department of Psychology, University of Maine, Orono, ME, USA
| |
Collapse
|
6
|
Herings PMR, Dyer AH, Kennelly SP, Reid S, Killane I, McKenna L, Bourke NM, Woods CP, O'Neill D, Gibney J, Reilly RB. Gait Characteristics and Cognitive Function in Middle-Aged Adults with and without Type 2 Diabetes Mellitus: Data from ENBIND. SENSORS (BASEL, SWITZERLAND) 2022; 22:5710. [PMID: 35957266 PMCID: PMC9370923 DOI: 10.3390/s22155710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Type 2 Diabetes Mellitus (T2DM) in midlife is associated with a greater risk of dementia in later life. Both gait speed and spatiotemporal gait characteristics have been associated with later cognitive decline in community-dwelling older adults. Thus, the assessment of gait characteristics in uncomplicated midlife T2DM may be important in selecting-out those with T2DM at greatest risk of later cognitive decline. We assessed the relationship between Inertial Motion Unit (IMUs)-derived gait characteristics and cognitive function assessed via Montreal Cognitive Assessment (MoCA)/detailed neuropsychological assessment battery (CANTAB) in middle-aged adults with and without uncomplicated T2DM using both multivariate linear regression and a neural network approach. Gait was assessed under (i) normal walking, (ii) fast (maximal) walking and (iii) cognitive dual-task walking (reciting alternate letters of the alphabet) conditions. Overall, 138 individuals were recruited (n = 94 with T2DM; 53% female, 52.8 ± 8.3 years; n = 44 healthy controls, 43% female, 51.9 ± 8.1 years). Midlife T2DM was associated with significantly slower gait velocity on both slow and fast walks (both p < 0.01) in addition to a longer stride time and greater gait complexity during normal walk (both p < 0.05). Findings persisted following covariate adjustment. In analyzing cognitive performance, the strongest association was observed between gait velocity and global cognitive function (MoCA). Significant associations were also observed between immediate/delayed memory performance and gait velocity. Analysis using a neural network approach did not outperform multivariate linear regression in predicting cognitive function (MoCA) from gait velocity. Our study demonstrates the impact of uncomplicated T2DM on gait speed and gait characteristics in midlife, in addition to the striking relationship between gait characteristics and global cognitive function/memory performance in midlife. Further studies are needed to evaluate the longitudinal relationship between midlife gait characteristics and later cognitive decline, which may aid in selecting-out those with T2DM at greatest-risk for preventative interventions.
Collapse
Affiliation(s)
- Pieter M R Herings
- School of Engineering, Trinity College Dublin, D08 XW7X Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Adam H Dyer
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Department of Age-Related Healthcare, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Sean P Kennelly
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Department of Age-Related Healthcare, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Sean Reid
- School of Engineering, Trinity College Dublin, D08 XW7X Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Isabelle Killane
- Department of Engineering, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Louise McKenna
- Department of Age-Related Healthcare, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Nollaig M Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Conor P Woods
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Desmond O'Neill
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Department of Age-Related Healthcare, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - James Gibney
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Richard B Reilly
- School of Engineering, Trinity College Dublin, D08 XW7X Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
7
|
Sui SX, Hendy AM, Teo WP, Moran JT, Nuzum ND, Pasco JA. A Review of the Measurement of the Neurology of Gait in Cognitive Dysfunction or Dementia, Focusing on the Application of fNIRS during Dual-Task Gait Assessment. Brain Sci 2022; 12:brainsci12080968. [PMID: 35892409 PMCID: PMC9331540 DOI: 10.3390/brainsci12080968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/07/2022] Open
Abstract
Poor motor function or physical performance is a predictor of cognitive decline. Additionally, slow gait speed is associated with poor cognitive performance, with gait disturbances being a risk factor for dementia. Parallel declines in muscular and cognitive performance (resulting in cognitive frailty) might be driven primarily by muscle deterioration, but bidirectional pathways involving muscle–brain crosstalk through the central and peripheral nervous systems are likely to exist. Following screening, early-stage parallel declines may be manageable and modifiable through simple interventions. Gait–brain relationships in dementia and the underlying mechanisms are not fully understood; therefore, the current authors critically reviewed the literature on the gait–brain relationship and the underlying mechanisms and the feasibility/accuracy of assessment tools in order to identify research gaps. The authors suggest that dual-task gait is involved in concurrent cognitive and motor activities, reflecting how the brain allocates resources when gait is challenged by an additional task and that poor performance on dual-task gait is a predictor of dementia onset. Thus, tools or protocols that allow the identification of subtle disease- or disorder-related changes in gait are highly desirable to improve diagnosis. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, cost-effective, safe, simple, portable, and non-motion-sensitive neuroimaging technique, widely used in studies of clinical populations such as people suffering from Alzheimer’s disease, depression, and other chronic neurological disorders. If fNIRS can help researchers to better understand gait disturbance, then fNIRS could form the basis of a cost-effective means of identifying people at risk of cognitive dysfunction and dementia. The major research gap identified in this review relates to the role of the central/peripheral nervous system when performing dual tasks.
Collapse
Affiliation(s)
- Sophia X. Sui
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
- Correspondence: ; Tel.: +61-3-4215-3306-53306; Fax: +61-3-4215-3491
| | - Ashlee M. Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3216, Australia; (A.M.H.); (N.D.N.)
| | - Wei-Peng Teo
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 308232, Singapore;
| | - Joshua T. Moran
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
| | - Nathan D. Nuzum
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3216, Australia; (A.M.H.); (N.D.N.)
| | - Julie A. Pasco
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
- Department of Medicine—Western Campus, The University of Melbourne, St Albans, VIC 3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
| |
Collapse
|
8
|
Campos-Magdaleno M, Pereiro A, Navarro-Pardo E, Juncos-Rabadán O, Facal D. Dual-task performance in old adults: cognitive, functional, psychosocial and socio-demographic variables. Aging Clin Exp Res 2022; 34:827-835. [PMID: 34648173 PMCID: PMC9076699 DOI: 10.1007/s40520-021-02002-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
Background Dual tasking, or the ability to executing two tasks simultaneously, has been used in recent research to predict cognitive impairments, physical frailty, and has been linked with cognitive frailty in old adults. Aim This study aimed to determine age-related variables can predict dual-task (DT) performance in the older population. Methods A total of 258 healthy community-dwelling participants + 60 years were assessed in relation to their functional capacity, health, well-being, social support and years of education. Performance of a cognitive (Fluency) task and a cognitive–motor (Tracking) task was recorded under single and DT conditions. Multiple linear regression analysis was carried out for each dependent variable, in separate models including cognitive, functional and psychosocial variables. Results Performance in Fluency in DT conditions was predicted by cognitive variables, whereas performance in Tracking DT conditions was predicted by positive interaction, health status, age and motor variables. Discussion The findings suggest that a wide range of cognitive, psychological, social, physical and functional variables influence cognitive and motor performance in aging. Conclusion DT methodology is sensitive to different age-related changes and could be related to frailty conditions in aging.
Collapse
Affiliation(s)
- María Campos-Magdaleno
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago, Spain
| | - Arturo Pereiro
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago, Spain
| | | | - Onésimo Juncos-Rabadán
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago, Spain
| | - David Facal
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago, Spain.
- Facultade de Psicoloxía, Rúa Xosé María Suárez Núñez, s/n. Campus Vida, 15782, Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
9
|
MacAulay RK, Boeve A, D'Errico L, Halpin A, Szeles DM, Wagner MT. Slower gait speed increases risk of falling in older adults with depression and cognitive complaints. PSYCHOL HEALTH MED 2021; 27:1576-1581. [PMID: 33779435 DOI: 10.1080/13548506.2021.1903056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Slowed gait is one of the strongest predictors of fall risk in older adults. The present study investigated whether gait speed mediated the relationship between depression and fall history in 147 older adults presenting to a memory clinic for cognitive complaints. Depression, cognitive status, gait speed, and number of falls within the last year were the primary measures. Results revealed fallers, relative to non-fallers, had slower gait speed and higher depression scores. As hypothesized, analyses using the PROCESS macro found that gait mediated the relationship between depression and fall history. Additionally, the combination of depression and mild cognitive impairments (MCI) associated with a significantly greater likelihood of falling. Our findings indicate that combined depression and MCI have additive effects on fall risk, likely through the destabilizing effect of slowed gait on balance. Better understanding the underlying pathophysiology involved in MCI and depression-related gait disturbances may lead to improved intervention targets for fall risk prevention.
Collapse
Affiliation(s)
- Rebecca K MacAulay
- Department of Psychology, University of Maine 301 Little Hall, Orono, ME, USA
| | - Angelica Boeve
- Department of Psychology, University of Maine 301 Little Hall, Orono, ME, USA
| | - Lisa D'Errico
- Department of Psychology, University of Maine 301 Little Hall, Orono, ME, USA
| | - Amy Halpin
- Department of Psychology, University of Maine 301 Little Hall, Orono, ME, USA
| | - Dana M Szeles
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark T Wagner
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
10
|
Anderson ND. State of the Science on Mild Cognitive Impairment. J Gerontol B Psychol Sci Soc Sci 2021; 75:1359-1360. [PMID: 32789478 DOI: 10.1093/geronb/gbaa040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nicole D Anderson
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada.,Department of Psychology, University of Toronto, Canada.,Department of Psychiatry, University of Toronto, Canada
| |
Collapse
|
11
|
Brain volumes and dual-task performance correlates among individuals with cognitive impairment: a retrospective analysis. J Neural Transm (Vienna) 2020; 127:1057-1071. [PMID: 32350624 PMCID: PMC7293667 DOI: 10.1007/s00702-020-02199-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/21/2020] [Indexed: 10/26/2022]
Abstract
Cognitive impairment (CI) is a prevalent condition characterized by loss of brain volume and changes in cognition, motor function, and dual-tasking ability. To examine associations between brain volumes, dual-task performance, and gait and balance in those with CI to elucidate the mechanisms underlying loss of function. We performed a retrospective analysis of medical records of patients with CI and compared brain volumes, dual-task performance, and measures of gait and balance. Greater cognitive and combined dual-task effects (DTE) are associated with smaller brain volumes. In contrast, motor DTE is not associated with distinct pattern of brain volumes. As brain volumes decrease, dual-task performance becomes more motor prioritized. Cognitive DTE is more strongly associated with decreased performance on measures of gait and balance than motor DTE. Decreased gait and balance performance are also associated with increased motor task prioritization. Cognitive DTE appears to be more strongly associated with decreased automaticity and gait and balance ability than motor DTE and should be utilized as a clinical and research outcome measure in this population. The increased motor task prioritization associated with decreased brain volume and function indicates a potential for accommodative strategies to maximize function in those with CI. Counterintuitive correlations between motor brain volumes and motor DTE in our study suggest a complicated interaction between brain pathology and function.
Collapse
|