1
|
Bohlin J, Pettersson JHO. Compression rates of microbial genomes are associated with genome size and base composition. Genomics Inform 2024; 22:16. [PMID: 39390533 PMCID: PMC11468749 DOI: 10.1186/s44342-024-00018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND To what degree a string of symbols can be compressed reveals important details about its complexity. For instance, strings that are not compressible are random and carry a low information potential while the opposite is true for highly compressible strings. We explore to what extent microbial genomes are amenable to compression as they vary considerably both with respect to size and base composition. For instance, microbial genome sizes vary from less than 100,000 base pairs in symbionts to more than 10 million in soil-dwellers. Genomic base composition, often summarized as genomic AT or GC content due to the similar frequencies of adenine and thymine on one hand and cytosine and guanine on the other, also vary substantially; the most extreme microbes can have genomes with AT content below 25% or above 85% AT. Base composition determines the frequency of DNA words, consisting of multiple nucleotides or oligonucleotides, and may therefore also influence compressibility. Using 4,713 RefSeq genomes, we examined the association between compressibility, using both a DNA based- (MBGC) and a general purpose (ZPAQ) compression algorithm, and genome size, AT content as well as genomic oligonucleotide usage variance (OUV) using generalized additive models. RESULTS We find that genome size (p < 0.001) and OUV (p < 0.001) are both strongly associated with genome redundancy for both type of file compressors. The DNA-based MBGC compressor managed to improve compression with approximately 3% on average with respect to ZPAQ. Moreover, MBGC detected a significant (p < 0.001) compression ratio difference between AT poor and AT rich genomes which was not detected with ZPAQ. CONCLUSION As lack of compressibility is equivalent to randomness, our findings suggest that smaller and AT rich genomes may have accumulated more random mutations on average than larger and AT poor genomes which, in turn, were significantly more redundant. Moreover, we find that OUV is a strong proxy for genome compressibility in microbial genomes. The ZPAQ compressor was found to agree with the MBGC compressor, albeit with a poorer performance, except for the compressibility of AT-rich and AT-poor/GC-rich genomes.
Collapse
Affiliation(s)
- Jon Bohlin
- Norwegian Institute of Public Health, Domain for Infection Control, Section for Modeling and Bioinformatics, Oslo, Norway.
| | - John H-O Pettersson
- Zoonosis Science Center, Clinical Microbiology, Department of Medical Sciences, University of Uppsala, 751 85, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, 751 85, Uppsala, Sweden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Silva JM, Almeida JR. Enhancing metagenomic classification with compression-based features. Artif Intell Med 2024; 156:102948. [PMID: 39173422 DOI: 10.1016/j.artmed.2024.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Metagenomics is a rapidly expanding field that uses next-generation sequencing technology to analyze the genetic makeup of environmental samples. However, accurately identifying the organisms in a metagenomic sample can be complex, and traditional reference-based methods may need to be more effective in some instances. In this study, we present a novel approach for metagenomic identification, using data compressors as a feature for taxonomic classification. By evaluating a comprehensive set of compressors, including both general-purpose and genomic-specific, we demonstrate the effectiveness of this method in accurately identifying organisms in metagenomic samples. The results indicate that using features from multiple compressors can help identify taxonomy. An overall accuracy of 95% was achieved using this method using an imbalanced dataset with classes with limited samples. The study also showed that the correlation between compression and classification is insignificant, highlighting the need for a multi-faceted approach to metagenomic identification. This approach offers a significant advancement in the field of metagenomics, providing a reference-less method for taxonomic identification that is both effective and efficient while revealing insights into the statistical and algorithmic nature of genomic data. The code to validate this study is publicly available at https://github.com/ieeta-pt/xgTaxonomy.
Collapse
|
3
|
Kumar S, Singh MP, Nayak SR, Khan AU, Jain AK, Singh P, Diwakar M, Soujanya T. A new efficient referential genome compression technique for FastQ files. Funct Integr Genomics 2023; 23:333. [PMID: 37950100 DOI: 10.1007/s10142-023-01259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Hospitals and medical laboratories create a tremendous amount of genome sequence data every day for use in research, surgery, and illness diagnosis. To make storage comprehensible, compression is therefore essential for the storage, monitoring, and distribution of all these data. A novel data compression technique is required to reduce the time as well as the cost of storage, transmission, and data processing. General-purpose compression techniques do not perform so well for these data due to their special features: a large number of repeats (tandem and palindrome), small alphabets, and highly similar, and specific file formats. In this study, we provide a method for compressing FastQ files that uses a reference genome as a backup without sacrificing data quality. FastQ files are initially split into three streams (identifier, sequence, and quality score), each of which receives its own compression technique. A novel quick and lightweight mapping mechanism is also presented to effectively compress the sequence stream. As shown by experiments, the suggested methods, both the compression ratio and the compression/decompression duration of NGS data compressed using RBFQC, are superior to those achieved by other state-of-the-art genome compression methods. In comparison to GZIP, RBFQC may achieve a compression ratio of 80-140% for fixed-length datasets and 80-125% for variable-length datasets. Compared to domain-specific FastQ file referential genome compression techniques, RBFQC has a compression and decompression speed (total) improvement of 10-25%.
Collapse
Affiliation(s)
- Sanjeev Kumar
- United University, Prayagraj, Uttar Pradesh, 211012, India
| | - Mukund Pratap Singh
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India
| | - Soumya Ranjan Nayak
- School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| | - Asif Uddin Khan
- School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Anuj Kumar Jain
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Prabhishek Singh
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India
| | - Manoj Diwakar
- Department of Computer Science and Engineering, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
- Graphic Era Hill University, Dehradun, 248002, India
| | - Thota Soujanya
- School of Agricultural Sciences, SR University, Telanga, Warangal, 506371, India
| |
Collapse
|
4
|
Orlov YL, Orlova NG. Bioinformatics tools for the sequence complexity estimates. Biophys Rev 2023; 15:1367-1378. [PMID: 37974990 PMCID: PMC10643780 DOI: 10.1007/s12551-023-01140-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 11/19/2023] Open
Abstract
We review current methods and bioinformatics tools for the text complexity estimates (information and entropy measures). The search DNA regions with extreme statistical characteristics such as low complexity regions are important for biophysical models of chromosome function and gene transcription regulation in genome scale. We discuss the complexity profiling for segmentation and delineation of genome sequences, search for genome repeats and transposable elements, and applications to next-generation sequencing reads. We review the complexity methods and new applications fields: analysis of mutation hotspots loci, analysis of short sequencing reads with quality control, and alignment-free genome comparisons. The algorithms implementing various numerical measures of text complexity estimates including combinatorial and linguistic measures have been developed before genome sequencing era. The series of tools to estimate sequence complexity use compression approaches, mainly by modification of Lempel-Ziv compression. Most of the tools are available online providing large-scale service for whole genome analysis. Novel machine learning applications for classification of complete genome sequences also include sequence compression and complexity algorithms. We present comparison of the complexity methods on the different sequence sets, the applications for gene transcription regulatory regions analysis. Furthermore, we discuss approaches and application of sequence complexity for proteins. The complexity measures for amino acid sequences could be calculated by the same entropy and compression-based algorithms. But the functional and evolutionary roles of low complexity regions in protein have specific features differing from DNA. The tools for protein sequence complexity aimed for protein structural constraints. It was shown that low complexity regions in protein sequences are conservative in evolution and have important biological and structural functions. Finally, we summarize recent findings in large scale genome complexity comparison and applications for coronavirus genome analysis.
Collapse
Affiliation(s)
- Yuriy L. Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), Moscow, 119991 Russia
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Nina G. Orlova
- Department of Mathematics, Financial University under the Government of the Russian Federation, Moscow, 125167 Russia
| |
Collapse
|
5
|
Ding Y, Liao Y, He J, Ma J, Wei X, Liu X, Zhang G, Wang J. Enhancing genomic mutation data storage optimization based on the compression of asymmetry of sparsity. Front Genet 2023; 14:1213907. [PMID: 37323665 PMCID: PMC10267386 DOI: 10.3389/fgene.2023.1213907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Background: With the rapid development of high-throughput sequencing technology and the explosive growth of genomic data, storing, transmitting and processing massive amounts of data has become a new challenge. How to achieve fast lossless compression and decompression according to the characteristics of the data to speed up data transmission and processing requires research on relevant compression algorithms. Methods: In this paper, a compression algorithm for sparse asymmetric gene mutations (CA_SAGM) based on the characteristics of sparse genomic mutation data was proposed. The data was first sorted on a row-first basis so that neighboring non-zero elements were as close as possible to each other. The data were then renumbered using the reverse Cuthill-Mckee sorting technique. Finally the data were compressed into sparse row format (CSR) and stored. We had analyzed and compared the results of the CA_SAGM, coordinate format (COO) and compressed sparse column format (CSC) algorithms for sparse asymmetric genomic data. Nine types of single-nucleotide variation (SNV) data and six types of copy number variation (CNV) data from the TCGA database were used as the subjects of this study. Compression and decompression time, compression and decompression rate, compression memory and compression ratio were used as evaluation metrics. The correlation between each metric and the basic characteristics of the original data was further investigated. Results: The experimental results showed that the COO method had the shortest compression time, the fastest compression rate and the largest compression ratio, and had the best compression performance. CSC compression performance was the worst, and CA_SAGM compression performance was between the two. When decompressing the data, CA_SAGM performed the best, with the shortest decompression time and the fastest decompression rate. COO decompression performance was the worst. With increasing sparsity, the COO, CSC and CA_SAGM algorithms all exhibited longer compression and decompression times, lower compression and decompression rates, larger compression memory and lower compression ratios. When the sparsity was large, the compression memory and compression ratio of the three algorithms showed no difference characteristics, but the rest of the indexes were still different. Conclusion: CA_SAGM was an efficient compression algorithm that combines compression and decompression performance for sparse genomic mutation data.
Collapse
Affiliation(s)
- Youde Ding
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Yuan Liao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Ji He
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Ma
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Xu Wei
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Guiying Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Kryukov K, Imanishi T, Nakagawa S. Nanopore Sequencing Data Analysis of 16S rRNA Genes Using the GenomeSync-GSTK System. Methods Mol Biol 2023; 2632:215-226. [PMID: 36781731 DOI: 10.1007/978-1-0716-2996-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
With the development of nanopore sequencing technology, long reads of DNA sequences can now be determined rapidly from various samples. This protocol introduces the GenomeSync-GSTK system for bacterial species identification in a given sample using nanopore sequencing data of 16S rRNA genes as an example. GenomeSync is a collection of genome sequences designed to provide easy access to genomic data of the species as demanded. GSTK (genome search toolkit) is a set of scripts for managing local homology searches using genomes obtained from the GenomeSync database. Based on this protocol, nanopore sequencing data analyses of metagenomes and amplicons could be efficiently performed. We also noted reanalysis in conjunction with future developments in nanopore sequencing technology and the accumulation of genome sequencing data.
Collapse
Affiliation(s)
- Kirill Kryukov
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Tadashi Imanishi
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
7
|
Silva JM, Qi W, Pinho AJ, Pratas D. AlcoR: alignment-free simulation, mapping, and visualization of low-complexity regions in biological data. Gigascience 2022; 12:giad101. [PMID: 38091509 PMCID: PMC10716826 DOI: 10.1093/gigascience/giad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Low-complexity data analysis is the area that addresses the search and quantification of regions in sequences of elements that contain low-complexity or repetitive elements. For example, these can be tandem repeats, inverted repeats, homopolymer tails, GC-biased regions, similar genes, and hairpins, among many others. Identifying these regions is crucial because of their association with regulatory and structural characteristics. Moreover, their identification provides positional and quantity information where standard assembly methodologies face significant difficulties because of substantial higher depth coverage (mountains), ambiguous read mapping, or where sequencing or reconstruction defects may occur. However, the capability to distinguish low-complexity regions (LCRs) in genomic and proteomic sequences is a challenge that depends on the model's ability to find them automatically. Low-complexity patterns can be implicit through specific or combined sources, such as algorithmic or probabilistic, and recurring to different spatial distances-namely, local, medium, or distant associations. FINDINGS This article addresses the challenge of automatically modeling and distinguishing LCRs, providing a new method and tool (AlcoR) for efficient and accurate segmentation and visualization of these regions in genomic and proteomic sequences. The method enables the use of models with different memories, providing the ability to distinguish local from distant low-complexity patterns. The method is reference and alignment free, providing additional methodologies for testing, including a highly flexible simulation method for generating biological sequences (DNA or protein) with different complexity levels, sequence masking, and a visualization tool for automatic computation of the LCR maps into an ideogram style. We provide illustrative demonstrations using synthetic, nearly synthetic, and natural sequences showing the high efficiency and accuracy of AlcoR. As large-scale results, we use AlcoR to unprecedentedly provide a whole-chromosome low-complexity map of a recent complete human genome and the haplotype-resolved chromosome pairs of a heterozygous diploid African cassava cultivar. CONCLUSIONS The AlcoR method provides the ability of fast sequence characterization through data complexity analysis, ideally for scenarios entangling the presence of new or unknown sequences. AlcoR is implemented in C language using multithreading to increase the computational speed, is flexible for multiple applications, and does not contain external dependencies. The tool accepts any sequence in FASTA format. The source code is freely provided at https://github.com/cobilab/alcor.
Collapse
Affiliation(s)
- Jorge M Silva
- IEETA, Institute of Electronics and Informatics Engineering of Aveiro, and LASI, Intelligent Systems Associate Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse, 190, 8057, Zurich, Switzerland
- SIB, Swiss Institute of Bioinformatics, 1202, Geneva, Switzerland
| | - Armando J Pinho
- IEETA, Institute of Electronics and Informatics Engineering of Aveiro, and LASI, Intelligent Systems Associate Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Diogo Pratas
- IEETA, Institute of Electronics and Informatics Engineering of Aveiro, and LASI, Intelligent Systems Associate Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
- Department of Virology, University of Helsinki, Haartmaninkatu, 3, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Delehelle F, Roest Crollius H. FUSTA: leveraging FUSE for manipulation of multiFASTA files at scale. BIOINFORMATICS ADVANCES 2022; 2:vbac091. [PMID: 36713287 PMCID: PMC9875552 DOI: 10.1093/bioadv/vbac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Motivation FASTA files are the de facto standard for sharing, manipulating and storing biological sequences, while concatenated in multiFASTA they tend to be unwieldy for two main reasons: (i) they can become big enough that their manipulation with standard text-editing tools is unpractical, either due to slowness or memory consumption; (ii) by mixing metadata (headers) and data (sequences), bulk operations using standard text streaming tools (such as sed or awk) are impossible without including a parsing step, which may be error-prone and introduce friction in the development process. Results Here, we present FUSTA (FUse for faSTA), a software utility which makes use of the FUSE technology to expose a multiFASTA file as a hierarchy of virtual files, letting users operate directly on the sequences as independent virtual files through classical file manipulation methods. Availability and implementation FUSTA is freely available under the CeCILL-C (LGPLv3-compatible) license at https://github.com/delehef/fusta. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | - Hugues Roest Crollius
- Département de biologie, Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Paris 75005, France
| |
Collapse
|
9
|
Kryukov K, Jin L, Nakagawa S. Efficient compression of SARS-CoV-2 genome data using Nucleotide Archival Format. PATTERNS (NEW YORK, N.Y.) 2022; 3:100562. [PMID: 35818472 PMCID: PMC9259476 DOI: 10.1016/j.patter.2022.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome data are essential for epidemiology, vaccine development, and tracking emerging variants. Millions of SARS-CoV-2 genomes have been sequenced during the pandemic. However, downloading SARS-CoV-2 genomes from databases is slow and unreliable, largely due to suboptimal choice of compression method. We evaluated the available compressors and found that Nucleotide Archival Format (NAF) would provide a drastic improvement compared with current methods. For Global Initiative on Sharing Avian Flu Data's (GISAID) pre-compressed datasets, NAF would increase efficiency 52.2 times for gzip-compressed data and 3.7 times for xz-compressed data. For DNA DataBank of Japan (DDBJ), NAF would improve throughput 40 times for gzip-compressed data. For GenBank and European Nucleotide Archive (ENA), NAF would accelerate data distribution by a factor of 29.3 times compared with uncompressed FASTA. This article provides a tutorial for installing and using NAF. Offering a NAF download option in sequence databases would provide a significant saving of time, bandwidth, and disk space and accelerate biological and medical research worldwide.
Collapse
Affiliation(s)
- Kirill Kryukov
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Lihua Jin
- Genomus Co., Ltd., Sagamihara, Kanagawa 252-0226, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
10
|
Silva JM, Pratas D, Caetano T, Matos S. The complexity landscape of viral genomes. Gigascience 2022; 11:6661051. [PMID: 35950839 PMCID: PMC9366995 DOI: 10.1093/gigascience/giac079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Viruses are among the shortest yet highly abundant species that harbor minimal instructions to infect cells, adapt, multiply, and exist. However, with the current substantial availability of viral genome sequences, the scientific repertory lacks a complexity landscape that automatically enlights viral genomes' organization, relation, and fundamental characteristics. RESULTS This work provides a comprehensive landscape of the viral genome's complexity (or quantity of information), identifying the most redundant and complex groups regarding their genome sequence while providing their distribution and characteristics at a large and local scale. Moreover, we identify and quantify inverted repeats abundance in viral genomes. For this purpose, we measure the sequence complexity of each available viral genome using data compression, demonstrating that adequate data compressors can efficiently quantify the complexity of viral genome sequences, including subsequences better represented by algorithmic sources (e.g., inverted repeats). Using a state-of-the-art genomic compressor on an extensive viral genomes database, we show that double-stranded DNA viruses are, on average, the most redundant viruses while single-stranded DNA viruses are the least. Contrarily, double-stranded RNA viruses show a lower redundancy relative to single-stranded RNA. Furthermore, we extend the ability of data compressors to quantify local complexity (or information content) in viral genomes using complexity profiles, unprecedently providing a direct complexity analysis of human herpesviruses. We also conceive a features-based classification methodology that can accurately distinguish viral genomes at different taxonomic levels without direct comparisons between sequences. This methodology combines data compression with simple measures such as GC-content percentage and sequence length, followed by machine learning classifiers. CONCLUSIONS This article presents methodologies and findings that are highly relevant for understanding the patterns of similarity and singularity between viral groups, opening new frontiers for studying viral genomes' organization while depicting the complexity trends and classification components of these genomes at different taxonomic levels. The whole study is supported by an extensive website (https://asilab.github.io/canvas/) for comprehending the viral genome characterization using dynamic and interactive approaches.
Collapse
Affiliation(s)
- Jorge Miguel Silva
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diogo Pratas
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.,Department of Virology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Tânia Caetano
- Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio Matos
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Fast Phylogeny of SARS-CoV-2 by Compression. ENTROPY 2022; 24:e24040439. [PMID: 35455102 PMCID: PMC9030035 DOI: 10.3390/e24040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022]
Abstract
The compression method to assess similarity, in the sense of having a small normalized compression distance (NCD), was developed based on algorithmic information theory to quantify the similarity in files ranging from words and languages to genomes and music pieces. It has been validated on objects from different domains always using essentially the same software. We analyze the whole-genome phylogeny and taxonomy of the SARS-CoV-2 virus, which is responsible for causing the COVID-19 disease, using the alignment-free compression method to assess similarity. We compare the SARS-CoV-2 virus with a database of over 6500 viruses. The results suggest that the SARS-CoV-2 virus is closest in that database to the RaTG13 virus and rather close to the bat SARS-like coronaviruses bat-SL-CoVZXC21 and bat-SL-CoVZC45. Over 6500 viruses are identified (given by their registration code) with larger NCDs. The NCDs are compared with the NCDs between the mtDNA of familiar species. We address the question of whether pangolins are involved in the SARS-CoV-2 virus. The compression method is simpler and possibly faster than any other whole-genome method, which makes it the ideal tool to explore phylogeny. Here, we use it for the complex case of determining this similarity between the COVID-19 virus, SARS-CoV-2 and many other viruses. The resulting phylogeny and taxonomy closely resemble earlier results from by alignment-based methods and a machine-learning method, providing the most compelling evidence to date for the compression method, showing that one can achieve equivalent results both simply and quickly.
Collapse
|
12
|
Grabowski S, Kowalski TM. MBGC: Multiple Bacteria Genome Compressor. Gigascience 2022; 11:6515740. [PMID: 35084032 PMCID: PMC8848312 DOI: 10.1093/gigascience/giab099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genomes within the same species reveal large similarity, exploited by specialized multiple genome compressors. The existing algorithms and tools are however targeted at large, e.g., mammalian, genomes, and their performance on bacteria strains is rather moderate. RESULTS In this work, we propose MBGC, a specialized genome compressor making use of specific redundancy of bacterial genomes. Its characteristic features are finding both direct and reverse-complemented LZ-matches, as well as a careful management of a reference buffer in a multi-threaded implementation. Our tool is not only compression efficient but also fast. On a collection of 168,311 bacterial genomes, totalling 587 GB, we achieve a compression ratio of approximately a factor of 1,265 and compression (respectively decompression) speed of ∼1,580 MB/s (respectively 780 MB/s) using 8 hardware threads, on a computer with a 14-core/28-thread CPU and a fast SSD, being almost 3 times more succinct and >6 times faster in the compression than the next best competitor.
Collapse
Affiliation(s)
- Szymon Grabowski
- Institute of Applied Computer Science, Lodz University of Technology, ul. Stefanowskiego 18, 90-537 Lodz, Poland
| | - Tomasz M Kowalski
- Institute of Applied Computer Science, Lodz University of Technology, ul. Stefanowskiego 18, 90-537 Lodz, Poland
| |
Collapse
|
13
|
Kryukov K, Ueda MT, Nakagawa S, Imanishi T. Sequence Compression Benchmark (SCB) database-A comprehensive evaluation of reference-free compressors for FASTA-formatted sequences. Gigascience 2021; 9:5867695. [PMID: 32627830 PMCID: PMC7336184 DOI: 10.1093/gigascience/giaa072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 01/22/2023] Open
Abstract
Background Nearly all molecular sequence databases currently use gzip for data compression. Ongoing rapid accumulation of stored data calls for a more efficient compression tool. Although numerous compressors exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive analysis of their comparative advantages for sequence compression was available. Findings We systematically benchmarked 430 settings of 48 compressors (including 29 specialized sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted datasets of DNA, RNA, and protein sequences. Each compressor was evaluated on 17 performance measures, including compression strength, as well as time and memory required for compression and decompression. We used 27 test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database, http://kirr.dyndns.org/sequence-compression-benchmark/), which allows custom visualizations to be built for selected subsets of benchmark results. Conclusion We found that modern compressors offer a large improvement in compactness and speed compared to gzip. Our benchmark allows compressors and their settings to be compared using a variety of performance measures, offering the opportunity to select the optimal compressor on the basis of the data type and usage scenario specific to a particular application.
Collapse
Affiliation(s)
- Kirill Kryukov
- Correspondence address. Kirill Kryukov, Department of Genomics and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan. E-mail:
| | - Mahoko Takahashi Ueda
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259–1193, Japan
- Current address: Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259–1193, Japan
| | - Tadashi Imanishi
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259–1193, Japan
| |
Collapse
|
14
|
Chong LC, Lim WL, Ban KHK, Khan AM. An Alignment-Independent Approach for the Study of Viral Sequence Diversity at Any Given Rank of Taxonomy Lineage. BIOLOGY 2021; 10:biology10090853. [PMID: 34571730 PMCID: PMC8466476 DOI: 10.3390/biology10090853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
The study of viral diversity is imperative in understanding sequence change and its implications for intervention strategies. The widely used alignment-dependent approaches to study viral diversity are limited in their utility as sequence dissimilarity increases, particularly when expanded to the genus or higher ranks of viral species lineage. Herein, we present an alignment-independent algorithm, implemented as a tool, UNIQmin, to determine the effective viral sequence diversity at any rank of the viral taxonomy lineage. This is done by performing an exhaustive search to generate the minimal set of sequences for a given viral non-redundant sequence dataset. The minimal set is comprised of the smallest possible number of unique sequences required to capture the diversity inherent in the complete set of overlapping k-mers encoded by all the unique sequences in the given dataset. Such dataset compression is possible through the removal of unique sequences, whose entire repertoire of overlapping k-mers can be represented by other sequences, thus rendering them redundant to the collective pool of sequence diversity. A significant reduction, namely ~44%, ~45%, and ~53%, was observed for all reported unique sequences of species Dengue virus, genus Flavivirus, and family Flaviviridae, respectively, while still capturing the entire repertoire of nonamer (9-mer) viral peptidome diversity present in the initial input dataset. The algorithm is scalable for big data as it was applied to ~2.2 million non-redundant sequences of all reported viruses. UNIQmin is open source and publicly available on GitHub. The concept of a minimal set is generic and, thus, potentially applicable to other pathogenic microorganisms of non-viral origin, such as bacteria.
Collapse
Affiliation(s)
- Li Chuin Chong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Kuala Lumpur 50490, Malaysia;
| | - Wei Lun Lim
- Faculty of Computing and Informatics, Multimedia University, Cyberjaya 63100, Malaysia;
| | - Kenneth Hon Kim Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
| | - Asif M. Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Kuala Lumpur 50490, Malaysia;
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, 34820 Istanbul, Turkey
- Correspondence: or
| |
Collapse
|
15
|
AC2: An Efficient Protein Sequence Compression Tool Using Artificial Neural Networks and Cache-Hash Models. ENTROPY 2021; 23:e23050530. [PMID: 33925812 PMCID: PMC8146440 DOI: 10.3390/e23050530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Recently, the scientific community has witnessed a substantial increase in the generation of protein sequence data, triggering emergent challenges of increasing importance, namely efficient storage and improved data analysis. For both applications, data compression is a straightforward solution. However, in the literature, the number of specific protein sequence compressors is relatively low. Moreover, these specialized compressors marginally improve the compression ratio over the best general-purpose compressors. In this paper, we present AC2, a new lossless data compressor for protein (or amino acid) sequences. AC2 uses a neural network to mix experts with a stacked generalization approach and individual cache-hash memory models to the highest-context orders. Compared to the previous compressor (AC), we show gains of 2–9% and 6–7% in reference-free and reference-based modes, respectively. These gains come at the cost of three times slower computations. AC2 also improves memory usage against AC, with requirements about seven times lower, without being affected by the sequences’ input size. As an analysis application, we use AC2 to measure the similarity between each SARS-CoV-2 protein sequence with each viral protein sequence from the whole UniProt database. The results consistently show higher similarity to the pangolin coronavirus, followed by the bat and human coronaviruses, contributing with critical results to a current controversial subject. AC2 is available for free download under GPLv3 license.
Collapse
|
16
|
Břinda K, Baym M, Kucherov G. Simplitigs as an efficient and scalable representation of de Bruijn graphs. Genome Biol 2021; 22:96. [PMID: 33823902 PMCID: PMC8025321 DOI: 10.1186/s13059-021-02297-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022] Open
Abstract
de Bruijn graphs play an essential role in bioinformatics, yet they lack a universal scalable representation. Here, we introduce simplitigs as a compact, efficient, and scalable representation, and ProphAsm, a fast algorithm for their computation. For the example of assemblies of model organisms and two bacterial pan-genomes, we compare simplitigs to unitigs, the best existing representation, and demonstrate that simplitigs provide a substantial improvement in the cumulative sequence length and their number. When combined with the commonly used Burrows-Wheeler Transform index, simplitigs reduce memory, and index loading and query times, as demonstrated with large-scale examples of GenBank bacterial pan-genomes.
Collapse
Affiliation(s)
- Karel Břinda
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA and Broad Institute of MIT and Harvard, Cambridge, USA.
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA and Broad Institute of MIT and Harvard, Cambridge, USA
| | - Gregory Kucherov
- CNRS/LIGM Univ Gustave Eiffel, Marne-la-Vallée, France
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
17
|
Silva M, Pratas D, Pinho AJ. Efficient DNA sequence compression with neural networks. Gigascience 2020; 9:giaa119. [PMID: 33179040 PMCID: PMC7657843 DOI: 10.1093/gigascience/giaa119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/19/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The increasing production of genomic data has led to an intensified need for models that can cope efficiently with the lossless compression of DNA sequences. Important applications include long-term storage and compression-based data analysis. In the literature, only a few recent articles propose the use of neural networks for DNA sequence compression. However, they fall short when compared with specific DNA compression tools, such as GeCo2. This limitation is due to the absence of models specifically designed for DNA sequences. In this work, we combine the power of neural networks with specific DNA models. For this purpose, we created GeCo3, a new genomic sequence compressor that uses neural networks for mixing multiple context and substitution-tolerant context models. FINDINGS We benchmark GeCo3 as a reference-free DNA compressor in 5 datasets, including a balanced and comprehensive dataset of DNA sequences, the Y-chromosome and human mitogenome, 2 compilations of archaeal and virus genomes, 4 whole genomes, and 2 collections of FASTQ data of a human virome and ancient DNA. GeCo3 achieves a solid improvement in compression over the previous version (GeCo2) of $2.4\%$, $7.1\%$, $6.1\%$, $5.8\%$, and $6.0\%$, respectively. To test its performance as a reference-based DNA compressor, we benchmark GeCo3 in 4 datasets constituted by the pairwise compression of the chromosomes of the genomes of several primates. GeCo3 improves the compression in $12.4\%$, $11.7\%$, $10.8\%$, and $10.1\%$ over the state of the art. The cost of this compression improvement is some additional computational time (1.7-3 times slower than GeCo2). The RAM use is constant, and the tool scales efficiently, independently of the sequence size. Overall, these values outperform the state of the art. CONCLUSIONS GeCo3 is a genomic sequence compressor with a neural network mixing approach that provides additional gains over top specific genomic compressors. The proposed mixing method is portable, requiring only the probabilities of the models as inputs, providing easy adaptation to other data compressors or compression-based data analysis tools. GeCo3 is released under GPLv3 and is available for free download at https://github.com/cobilab/geco3.
Collapse
Affiliation(s)
- Milton Silva
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diogo Pratas
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Virology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Armando J Pinho
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|