1
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
2
|
Feric Z, Bohm Agostini N, Beene D, Signes-Pastor AJ, Halchenko Y, Watkins D, MacKenzie D, Karagas M, Manjourides J, Alshawabkeh A, Kaeli D. A Secure and Reusable Software Architecture for Supporting Online Data Harmonization. PROCEEDINGS : ... IEEE INTERNATIONAL CONFERENCE ON BIG DATA. IEEE INTERNATIONAL CONFERENCE ON BIG DATA 2021; 2021:2801-2812. [PMID: 35449545 PMCID: PMC9020435 DOI: 10.1109/bigdata52589.2021.9671538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Retrospective data harmonization across multiple research cohorts and studies is frequently done to increase statistical power, provide comparison analysis, and create a richer data source for data mining. However, when combining disparate data sources, harmonization projects face data management and analysis challenges. These include differences in the data dictionaries and variable definitions, privacy concerns surrounding health data representing sensitive populations, and lack of properly defined data models. With the availability of mature open-source web-based database technologies, developing a complete software architecture to overcome the challenges associated with the harmonization process can alleviate many roadblocks. By leveraging state-of-the-art software engineering and database principles, we can ensure data quality and enable cross-center online access and collaboration. This paper outlines a complete software architecture developed and customized using the Django web framework, leveraged to harmonize sensitive data collected from three NIH-support birth cohorts. We describe our framework and show how we successfully overcame challenges faced when harmonizing data from these cohorts. We discuss our efforts in data cleaning, data sharing, data transformation, data visualization, and analytics, while reflecting on what we have learned to date from these harmonized datasets.
Collapse
Affiliation(s)
- Zlatan Feric
- Dept. of Electrical and Computer Engineering, Northeastern University
| | | | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, Health Sciences Center, University of New Mexico
| | | | - Yuliya Halchenko
- Department of Epidemiology, Geisel School of Medicine at Dartmouth
| | - Deborah Watkins
- Environmental Health Sciences, School of Public Health, University of Michigan
| | - Debra MacKenzie
- Community Environmental Health Program, College of Pharmacy, Health Sciences Center, University of New Mexico
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth
| | | | - Akram Alshawabkeh
- Dept. of Civil and Environmental Engineering, Northeastern University
| | - David Kaeli
- Dept. of Electrical and Computer Engineering, Northeastern University
| |
Collapse
|
3
|
José Andrade Viana M, Zerlotini A, de Alvarenga Mudadu M. Plant Co-expression Annotation Resource: a web server for identifying targets for genetically modified crop breeding pipelines. BMC Bioinformatics 2021; 22:46. [PMID: 33546584 PMCID: PMC7863420 DOI: 10.1186/s12859-020-03792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022] Open
Abstract
The development of genetically modified crops (GM) includes the discovery of candidate genes through bioinformatics analysis using genomics data, gene expression, and others. Proteins of unknown function (PUFs) are interesting targets for GM crops breeding pipelines for the novelty associated with such targets and also to avoid copyright protection. One method of inferring the putative function of PUFs is by relating them to factors of interest such as abiotic stresses using orthology and co-expression networks, in a guilt-by-association manner. In this regard, we have downloaded, analyzed, and processed genomics data of 53 angiosperms, totaling 1,862,010 genes and 2,332,974 RNA. Diamond and InterproScan were used to discover 72,266 PUFs for all organisms. RNA-seq datasets related to abiotic stresses were downloaded from NCBI/GEO. The RNA-seq data was used as input to the LSTrAP software to construct co-expression networks. LSTrAP also created clusters of transcripts with correlated expression, whose members are more probably related to the molecular mechanisms associated with abiotic stresses in the plants. Orthologous groups were created (OrhtoMCL) using all 2,332,974 proteins in order to associate PUFs to abiotic stress-related clusters of co-expression and therefore infer their function in a guilt-by-association manner. A freely available web resource named "Plant Co-expression Annotation Resource" ( https://www.machado.cnptia.embrapa.br/plantannot ), Plantannot, was created to provide indexed queries to search for PUF putatively associated with abiotic stresses. The web interface also allows browsing, querying, and retrieving of public genomics data from 53 plants. We hope Plantannot to be useful for researchers trying to obtain novel GM crops resistant to climate change hazards.
Collapse
Affiliation(s)
- Marcos José Andrade Viana
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Embrapa Milho e Sorgo, Sete Lagoas, Minas Gerais, 285, Brazil
| | | | | |
Collapse
|
4
|
Mudadu MDA, Zerlotini A. Machado: Open source genomics data integration framework. Gigascience 2020; 9:giaa097. [PMID: 32930331 PMCID: PMC7490629 DOI: 10.1093/gigascience/giaa097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/13/2020] [Accepted: 08/29/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Genome projects and multiomics experiments generate huge volumes of data that must be stored, mined, and transformed into useful knowledge. All this information is supposed to be accessible and, if possible, browsable afterwards. Computational biologists have been dealing with this scenario for more than a decade and have been implementing software and databases to meet this challenge. The GMOD's (Generic Model Organism Database) biological relational database schema, known as Chado, is one of the few successful open source initiatives; it is widely adopted and many software packages are able to connect to it. FINDINGS We have been developing an open source software package named Machado, a genomics data integration framework implemented in Python, to enable research groups to both store and visualize genomics data. The framework relies on the Chado database schema and, therefore, should be very intuitive for current developers to adopt it or have it running on top of already existing databases. It has several data-loading tools for genomics and transcriptomics data and also for annotation results from tools such as BLAST, InterproScan, OrthoMCL, and LSTrAP. There is an API to connect to JBrowse, and a web visualization tool is implemented using Django Views and Templates. The Haystack library integrated with the ElasticSearch engine was used to implement a Google-like search, i.e., single auto-complete search box that provides fast results and filters. CONCLUSION Machado aims to be a modern object-relational framework that uses the latest Python libraries to produce an effective open source resource for genomics research.
Collapse
Affiliation(s)
| | - Adhemar Zerlotini
- Embrapa Informática Agropecuária, Campinas, São Paulo, Post Code 13083–886, PO Box 6041, Brazil
| |
Collapse
|