1
|
Felicelli C, Lu X, Coty‐Fattal Z, Feng Y, Yin P, Schipma MJ, Kim JJ, Jennings LJ, Bulun SE, Wei J. Genomic characterization and histologic analysis of uterine leiomyosarcoma arising from leiomyoma with bizarre nuclei. J Pathol 2025; 265:211-225. [PMID: 39691991 PMCID: PMC11717496 DOI: 10.1002/path.6379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Leiomyoma with bizarre nuclei (LM-BN) is a rare variant of leiomyoma with a benign clinical course. In contrast, leiomyosarcoma (LMS) is a high-grade, malignant neoplasm characterized by high recurrence rates and poor survival. While LM-BN and LMS show distinct morphologies, they share similar immunoprofiles and molecular alterations, with both considered 'genomically unstable'. Rare cases of LM-BN associated with LMS have been reported; however, the histogenesis and molecular relationship between these two tumors remains unclear. In this study, we assessed 11 cases of LMS arising in conjunction with LM-BN confirmed by histology and immunohistochemistry (IHC), further analyzed by clinical, histologic, and molecular characteristics of these distinct components. LM-BN and LMS had similar p16 and p53 IHC patterns, but LMS had a higher Ki-67 index and lower estrogen and progesterone eceptor expression. Digital image analysis based on cytologic features revealed spatial relationships between LMS and LM-BN. Genomic copy number alterations (CNAs) demonstrated the same clonal origin of LMS arising from existing LM-BN through conserved CNAs. LMS harbored highly complex CNAs and more frequent losses of the TP53, RB1, and PTEN genomic regions than LM-BN (p = 0.0031), with CDKN2A/B deletion identified in LMS only. Mutational profiling revealed many shared oncogenic alterations in both LM-BN and LMS; however, additional mutations were present within LMS, indicative of tumor progression through progressive genomic instability. Analysis of spatial transcriptomes defined uniquely expressed gene signatures that matched the geographic distribution of LM-BN, LMS, and other cell types. Our findings indicate for the first time that a subset of LMS arises from an existing LM-BN, and highly complex genomic alterations could be potential high risks associated with disease progression in LM-BN. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher Felicelli
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Xinyan Lu
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Zachary Coty‐Fattal
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Yue Feng
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Ping Yin
- Department of Obstetrics and GynecologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Matthew John Schipma
- Lurie Cancer CenterNorthwestern University, Feinberg School of MedicineChicagoILUSA
| | - Julie J Kim
- Department of Obstetrics and GynecologyNorthwestern University Feinberg School of MedicineChicagoILUSA
- Lurie Cancer CenterNorthwestern University, Feinberg School of MedicineChicagoILUSA
| | - Lawrence J Jennings
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Serdar E Bulun
- Department of Obstetrics and GynecologyNorthwestern University Feinberg School of MedicineChicagoILUSA
- Lurie Cancer CenterNorthwestern University, Feinberg School of MedicineChicagoILUSA
| | - Jian‐Jun Wei
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
- Department of Obstetrics and GynecologyNorthwestern University Feinberg School of MedicineChicagoILUSA
- Lurie Cancer CenterNorthwestern University, Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
2
|
Barua B, Chyrmang G, Bora K, Ahmed GN, Kakoti L, Saikia MJ. Classifying tumour infiltrating lymphocytes in oral squamous cell carcinoma histopathology using joint learning framework. Sci Rep 2025; 15:2938. [PMID: 39848989 PMCID: PMC11757777 DOI: 10.1038/s41598-025-86527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC grading. However, current methods for TILs quantification are based on subjective visual assessments, leading to inter-observer variability and inconsistent diagnostic reproducibility. Only a few studies have been conducted in automating TILs quantification for OSCC, existing methods use score-based systems that focus only on tissue-level spatial analysis, overlooking essential cellular-level information and do not provide TILs infiltration subcategories required for determining OSCC grading. To address these limitations, we propose OralTILs-ViT, a novel joint representation learning framework that integrates cellular and tissue-level information. Our model employs two parallel encoders: one extracts cellular features from cellular density maps, while the other processes tissue features from H&E-stained tissue images. This dual-encoder approach enables OralTILs-ViT to capture complex tissue-cellular interactions, classifying TILs infiltration categories consistent with Broders' grading system-"Moderate to Marked", "Slight" and "None to Very Less." This approach reflects pathology practices and increases TILs classification accuracy. To generate cellular density maps, we introduce TILSeg-MobileViT, a multiclass segmentation model trained using a weakly supervised method, minimizing the need for manual annotation of cellular masks and overcoming the limitations of previous TILs assessment techniques. An extensive evaluation of our methodology demonstrates that OralTILs-ViT with the configuration (Adam, α = 0.001) outperforms existing approaches, achieving 96.37% accuracy, 96.34% precision, 96.37% recall, and a 96.35% F1 score. Furthermore, TOPSIS analysis confirms that our method ranks first across all TILs infiltration categories. In summary, our proposed methodology outperforms single modality-representation learning approaches for accurate and automated TILs classification.
Collapse
Affiliation(s)
- Barun Barua
- Department of Computer Science and IT, Cotton University, Guwahati, Assam, 781001, India
| | - Genevieve Chyrmang
- Department of Computer Science and IT, Cotton University, Guwahati, Assam, 781001, India
| | - Kangkana Bora
- Department of Computer Science and IT, Cotton University, Guwahati, Assam, 781001, India.
| | - Gazi N Ahmed
- North East Cancer Hospital and Research Institute, Jorabat, Guwahati, Assam, 781023, India
| | | | - Manob Jyoti Saikia
- Electrical and Computer Engineering Department, University of Memphis, Memphis, TN, 38152, USA.
- Biomedical Sensors and Systems Lab, University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
3
|
López-Pérez M, Morquecho A, Schmidt A, Pérez-Bueno F, Martín-Castro A, Mateos J, Molina R. The CrowdGleason dataset: Learning the Gleason grade from crowds and experts. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108472. [PMID: 39488043 DOI: 10.1016/j.cmpb.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Currently, prostate cancer (PCa) diagnosis relies on the human analysis of prostate biopsy Whole Slide Images (WSIs) using the Gleason score. Since this process is error-prone and time-consuming, recent advances in machine learning have promoted the use of automated systems to assist pathologists. Unfortunately, labeled datasets for training and validation are scarce due to the need for expert pathologists to provide ground-truth labels. METHODS This work introduces a new prostate histopathological dataset named CrowdGleason, which consists of 19,077 patches from 1045 WSIs with various Gleason grades. The dataset was annotated using a crowdsourcing protocol involving seven pathologists-in-training to distribute the labeling effort. To provide a baseline analysis, two crowdsourcing methods based on Gaussian Processes (GPs) were evaluated for Gleason grade prediction: SVGPCR, which learns a model from the CrowdGleason dataset, and SVGPMIX, which combines data from the public dataset SICAPv2 and the CrowdGleason dataset. The performance of these methods was compared with other crowdsourcing and expert label-based methods through comprehensive experiments. RESULTS The results demonstrate that our GP-based crowdsourcing approach outperforms other methods for aggregating crowdsourced labels (κ=0.7048±0.0207) for SVGPCR vs.(κ=0.6576±0.0086) for SVGP with majority voting). SVGPCR trained with crowdsourced labels performs better than GP trained with expert labels from SICAPv2 (κ=0.6583±0.0220) and outperforms most individual pathologists-in-training (mean κ=0.5432). Additionally, SVGPMIX trained with a combination of SICAPv2 and CrowdGleason achieves the highest performance on both datasets (κ=0.7814±0.0083 and κ=0.7276±0.0260). CONCLUSION The experiments show that the CrowdGleason dataset can be successfully used for training and validating supervised and crowdsourcing methods. Furthermore, the crowdsourcing methods trained on this dataset obtain competitive results against those using expert labels. Interestingly, the combination of expert and non-expert labels opens the door to a future of massive labeling by incorporating both expert and non-expert pathologist annotators.
Collapse
Affiliation(s)
- Miguel López-Pérez
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Spain.
| | - Alba Morquecho
- Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada, Spain.
| | - Arne Schmidt
- Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada, Spain.
| | - Fernando Pérez-Bueno
- Basque Center on Cognition, Brain and Language, Donostia - San Sebastián, Spain.
| | - Aurelio Martín-Castro
- Department of Pathology, Virgen de las Nieves University Hospital, 18014 Granada, Spain.
| | - Javier Mateos
- Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada, Spain.
| | - Rafael Molina
- Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada, Spain.
| |
Collapse
|
4
|
Fiorin A, López Pablo C, Lejeune M, Hamza Siraj A, Della Mea V. Enhancing AI Research for Breast Cancer: A Comprehensive Review of Tumor-Infiltrating Lymphocyte Datasets. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2996-3008. [PMID: 38806950 PMCID: PMC11612116 DOI: 10.1007/s10278-024-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 05/30/2024]
Abstract
The field of immunology is fundamental to our understanding of the intricate dynamics of the tumor microenvironment. In particular, tumor-infiltrating lymphocyte (TIL) assessment emerges as essential aspect in breast cancer cases. To gain comprehensive insights, the quantification of TILs through computer-assisted pathology (CAP) tools has become a prominent approach, employing advanced artificial intelligence models based on deep learning techniques. The successful recognition of TILs requires the models to be trained, a process that demands access to annotated datasets. Unfortunately, this task is hampered not only by the scarcity of such datasets, but also by the time-consuming nature of the annotation phase required to create them. Our review endeavors to examine publicly accessible datasets pertaining to the TIL domain and thereby become a valuable resource for the TIL community. The overall aim of the present review is thus to make it easier to train and validate current and upcoming CAP tools for TIL assessment by inspecting and evaluating existing publicly available online datasets.
Collapse
Affiliation(s)
- Alessio Fiorin
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Carlos López Pablo
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Marylène Lejeune
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Ameer Hamza Siraj
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Vincenzo Della Mea
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| |
Collapse
|
5
|
Gu Z, Wang S, Rong R, Zhao Z, Wu F, Zhou Q, Wen Z, Chi Z, Fang Y, Peng Y, Jia L, Chen M, Yang DM, Hoshida Y, Xie Y, Xiao G. Cell Segmentation With Globally Optimized Boundaries (CSGO): A Deep Learning Pipeline for Whole-Cell Segmentation in Hematoxylin-and-Eosin-Stained Tissues. J Transl Med 2024; 105:102184. [PMID: 39528162 DOI: 10.1016/j.labinv.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Accurate whole-cell segmentation is essential in various biomedical applications, particularly in studying the tumor microenvironment. Despite advancements in machine learning for nuclei segmentation in hematoxylin and eosin (H&E)-stained images, there remains a need for effective whole-cell segmentation methods. This study aimed to develop a deep learning-based pipeline to automatically segment cells in H&E-stained tissues, thereby advancing the capabilities of pathological image analysis. The Cell Segmentation with Globally Optimized boundaries (CSGO) framework integrates nuclei and membrane segmentation algorithms, followed by postprocessing using an energy-based watershed method. Specifically, we used the You Only Look Once (YOLO) object detection algorithm for nuclei segmentation and U-Net for membrane segmentation. The membrane detection model was trained on a data set of 7 hepatocellular carcinomas and 11 normal liver tissue patches. The cell segmentation performance was extensively evaluated on 5 external data sets, including liver, lung, and oral disease cases. CSGO demonstrated superior performance over the state-of-the-art method Cellpose, achieving higher F1 scores ranging from 0.37 to 0.53 at an intersection over union threshold of 0.5 in 4 of the 5 external datasets, compared to that of Cellpose from 0.21 to 0.36. These results underscore the robustness and accuracy of our approach in various tissue types. A web-based application is available at https://ai.swmed.edu/projects/csgo, providing a user-friendly platform for researchers to apply our method to their own data sets. Our method exhibits remarkable versatility in whole-cell segmentation across diverse cancer subtypes, serving as an accurate and reliable tool to facilitate tumor microenvironment studies. The advancements presented in this study have the potential to significantly enhance the precision and efficiency of pathologic image analysis, contributing to better understanding and treatment of cancer.
Collapse
Affiliation(s)
- Zifan Gu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhuo Zhao
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qin Zhou
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhuoyu Wen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhikai Chi
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Yisheng Fang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Yan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Liwei Jia
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Mingyi Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
6
|
Pan N, Mi X, Li H, Ge X, Sui X, Jiang Y. WSSS-CRAM: precise segmentation of histopathological images via class region activation mapping. Front Microbiol 2024; 15:1483052. [PMID: 39421560 PMCID: PMC11484024 DOI: 10.3389/fmicb.2024.1483052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Fast, accurate, and automatic analysis of histopathological images using digital image processing and deep learning technology is a necessary task. Conventional histopathological image analysis algorithms require the manual design of features, while deep learning methods can achieve fast prediction and accurate analysis, but rely on the drive of a large amount of labeled data. Methods In this work, we introduce WSSS-CRAM a weakly-supervised semantic segmentation that can obtain detailed pixel-level labels from image-level annotated data. Specifically, we use a discriminative activation strategy to generate category-specific image activation maps via class labels. The category-specific activation maps are then post-processed using conditional random fields to obtain reliable regions that are directly used as ground-truth labels for the segmentation branch. Critically, the two steps of the pseudo-label acquisition and training segmentation model are integrated into an end-to-end model for joint training in this method. Results Through quantitative evaluation and visualization results, we demonstrate that the framework can predict pixel-level labels from image-level labels, and also perform well when testing images without image-level annotations. Discussion Future, we consider extending the algorithm to different pathological datasets and types of tissue images to validate its generalization capability.
Collapse
|
7
|
Chou T, Senkow KJ, Nguyen MB, Patel PV, Sandepudi K, Cooper LA, Goldstein JA. Quantitative Modeling to Characterize Maternal Inflammatory Response of Histologic Chorioamnionitis in Placental Membranes. Am J Reprod Immunol 2024; 92:e13944. [PMID: 39412441 PMCID: PMC11486319 DOI: 10.1111/aji.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
PROBLEM The placental membranes are a key barrier to fetal and uterine infection. Inflammation of the membranes, diagnosed as maternal inflammatory response (MIR) or alternatively as acute chorioamnionitis, is associated with adverse maternal-fetal outcomes. MIR is staged 1-3, with higher stages indicating more hazardous inflammation. However, the diagnosis relies upon subjective evaluation and has not been deeply characterized. The goal of this work is to develop a cell classifier for eight placental membrane cells and quantitatively characterize MIR1-2. METHOD OF STUDY Hematoxylin and eosin (H&E)-stained placental membrane slides were digitized. A convolutional neural network was trained on a dataset of hand-annotated and machine learning-identified cells. Overall cell class-level metrics were calculated. The model was applied to 20 control, 20 MIR1, and 23 MIR2 placental membrane cases. MIR cell composition and neutrophil distribution were assessed via density and Ripley's cross K-function. Clinical data were compared to neutrophil density and distribution. RESULTS The classification model achieved a test-set accuracy of 0.845, with high precision and recall for amniocytes, decidual cells, endothelial cells, and trophoblasts. Using this model to classify 53 073 cells from healthy and MIR1-2 placental membranes, we found that (1) MIR1-2 have higher neutrophil density and fewer decidual cells and trophoblasts, (2) Neutrophils colocalize heavily around decidual cells in healthy placental membranes and around trophoblasts in MIR1, (3) Neutrophil density impacts distribution in MIR, and (4) Neutrophil metrics correlate with features of clinical chorioamnionitis. CONCLUSIONS This paper introduces cell classification into the placental membranes and quantifies cell composition and neutrophil spatial distributions in MIR.
Collapse
Affiliation(s)
- Teresa Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karolina J Senkow
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan B Nguyen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Payal V Patel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kirtana Sandepudi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lee A Cooper
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jeffery A Goldstein
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
8
|
Teoh CL, Tan XJ, Ab Rahman KS, Bakrin IH, Goh KM, Siet JJW, Wan Muhamad WZA. A Quantitative Measurement Method for Nuclear-Pleomorphism Scoring in Breast Cancer. Diagnostics (Basel) 2024; 14:2045. [PMID: 39335724 PMCID: PMC11431806 DOI: 10.3390/diagnostics14182045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nuclear pleomorphism, a crucial determinant of breast cancer grading under the Nottingham Histopathology Grading (NHG) system, remains inadequately quantified in the existing literature. Motivated by this gap, our study seeks to investigate and establish correlations among morphological features across various scores of nuclear pleomorphism, as per the NHG system. We aim to quantify nuclear pleomorphism across these scores and validate our proposed measurement method against ground-truth data. METHODS Initially, we deconstruct the descriptions of nuclear pleomorphism into three core elements: size, shape, and appearance. These elements are subsequently mathematically modeled into equations, termed ESize, EShape, and EAppearance. These equations are then integrated into a unified model termed Harmonic Mean (HM). The HM equation yields a value approaching 1 for nuclei demonstrating characteristics of score-3 nuclear pleomorphism and near 0 for those exhibiting features of score-1 nuclear pleomorphism. RESULTS The proposed HM model demonstrates promising performance metrics, including Accuracy, Recall, Specificity, Precision, and F1-score, with values of 0.97, 0.96, 0.97, 0.94, and 0.95, respectively. CONCLUSIONS In summary, this study proposes the HM equation as a novel feature for the precise quantification of nuclear pleomorphism in breast cancer.
Collapse
Affiliation(s)
- Chai Ling Teoh
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
| | - Xiao Jian Tan
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
- Biomedical and Bioinformatics Engineering (BBE) Research Group, Centre for Multimodal Signal Processing, Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Khairul Shakir Ab Rahman
- Department of Pathology, Hospital Tuanku Fauziah, Jalan Tun Abdul Razak, Kangar 01000, Perlis, Malaysia
| | - Ikmal Hisyam Bakrin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM) Serdang, Serdang 43400, Selangor, Malaysia
| | - Kam Meng Goh
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
- Biomedical and Bioinformatics Engineering (BBE) Research Group, Centre for Multimodal Signal Processing, Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
| | - Joseph Jiun Wen Siet
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
| | - Wan Zuki Azman Wan Muhamad
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Institute of Engineering Mathematics, Universiti Malaysia Perlis (UniMAP), Kampus Pauh Putra, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Advanced Computing (ADVCOMP), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| |
Collapse
|
9
|
Mi H, Sivagnanam S, Ho WJ, Zhang S, Bergman D, Deshpande A, Baras AS, Jaffee EM, Coussens LM, Fertig EJ, Popel AS. Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology. Brief Bioinform 2024; 25:bbae421. [PMID: 39179248 PMCID: PMC11343572 DOI: 10.1093/bib/bbae421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.
Collapse
Affiliation(s)
- Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shamilene Sivagnanam
- The Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR 97201, United States
| | - Won Jin Ho
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Daniel Bergman
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Atul Deshpande
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Alexander S Baras
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Pathology, Johns Hopkins University School of Medicine, MD 21205, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Lisa M Coussens
- The Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR 97201, United States
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR 97201, United States
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
| |
Collapse
|
10
|
Liu S, Amgad M, More D, Rathore MA, Salgado R, Cooper LAD. A panoptic segmentation dataset and deep-learning approach for explainable scoring of tumor-infiltrating lymphocytes. NPJ Breast Cancer 2024; 10:52. [PMID: 38942745 PMCID: PMC11213912 DOI: 10.1038/s41523-024-00663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Tumor-Infiltrating Lymphocytes (TILs) have strong prognostic and predictive value in breast cancer, but their visual assessment is subjective. To improve reproducibility, the International Immuno-oncology Working Group recently released recommendations for the computational assessment of TILs that build on visual scoring guidelines. However, existing resources do not adequately address these recommendations due to the lack of annotation datasets that enable joint, panoptic segmentation of tissue regions and cells. Moreover, existing deep-learning methods focus entirely on either tissue segmentation or cell nuclei detection, which complicates the process of TILs assessment by necessitating the use of multiple models and reconciling inconsistent predictions. We introduce PanopTILs, a region and cell-level annotation dataset containing 814,886 nuclei from 151 patients, openly accessible at: sites.google.com/view/panoptils . Using PanopTILs we developed MuTILs, a neural network optimized for assessing TILs in accordance with clinical recommendations. MuTILs is a concept bottleneck model designed to be interpretable and to encourage sensible predictions at multiple resolutions. Using a rigorous internal-external cross-validation procedure, MuTILs achieves an AUROC of 0.93 for lymphocyte detection and a DICE coefficient of 0.81 for tumor-associated stroma segmentation. Our computational score closely matched visual scores from 2 pathologists (Spearman R = 0.58-0.61, p < 0.001). Moreover, computational TILs scores had a higher prognostic value than visual scores, independent of TNM stage and patient age. In conclusion, we introduce a comprehensive open data resource and a modeling approach for detailed mapping of the breast tumor microenvironment.
Collapse
Affiliation(s)
- Shangke Liu
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Mohamed Amgad
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Deeptej More
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | | | - Roberto Salgado
- Department of Pathology, GZA-ZNA Ziekenhuizen, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lee A D Cooper
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
Zeng Y, Zhang X, Wang J, Usui A, Ichiji K, Bukovsky I, Chou S, Funayama M, Homma N. Inconsistency between Human Observation and Deep Learning Models: Assessing Validity of Postmortem Computed Tomography Diagnosis of Drowning. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1-10. [PMID: 38336949 PMCID: PMC11169324 DOI: 10.1007/s10278-024-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024]
Abstract
Drowning diagnosis is a complicated process in the autopsy, even with the assistance of autopsy imaging and the on-site information from where the body was found. Previous studies have developed well-performed deep learning (DL) models for drowning diagnosis. However, the validity of the DL models was not assessed, raising doubts about whether the learned features accurately represented the medical findings observed by human experts. In this paper, we assessed the medical validity of DL models that had achieved high classification performance for drowning diagnosis. This retrospective study included autopsy cases aged 8-91 years who underwent postmortem computed tomography between 2012 and 2021 (153 drowning and 160 non-drowning cases). We first trained three deep learning models from a previous work and generated saliency maps that highlight important features in the input. To assess the validity of models, pixel-level annotations were created by four radiological technologists and further quantitatively compared with the saliency maps. All the three models demonstrated high classification performance with areas under the receiver operating characteristic curves of 0.94, 0.97, and 0.98, respectively. On the other hand, the assessment results revealed unexpected inconsistency between annotations and models' saliency maps. In fact, each model had, respectively, around 30%, 40%, and 80% of irrelevant areas in the saliency maps, suggesting the predictions of the DL models might be unreliable. The result alerts us in the careful assessment of DL tools, even those with high classification performance.
Collapse
Affiliation(s)
- Yuwen Zeng
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Xiaoyong Zhang
- National Institute of Technology, Sendai College, Sendai, Japan
| | - Jiaoyang Wang
- Department of Intelligent Biomedical System Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Akihito Usui
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Ichiji
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ivo Bukovsky
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
- Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Shuoyan Chou
- Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Masato Funayama
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyasu Homma
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Nakhli R, Rich K, Zhang A, Darbandsari A, Shenasa E, Hadjifaradji A, Thiessen S, Milne K, Jones SJM, McAlpine JN, Nelson BH, Gilks CB, Farahani H, Bashashati A. VOLTA: an enVironment-aware cOntrastive ceLl represenTation leArning for histopathology. Nat Commun 2024; 15:3942. [PMID: 38729933 PMCID: PMC11087497 DOI: 10.1038/s41467-024-48062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
In clinical oncology, many diagnostic tasks rely on the identification of cells in histopathology images. While supervised machine learning techniques necessitate the need for labels, providing manual cell annotations is time-consuming. In this paper, we propose a self-supervised framework (enVironment-aware cOntrastive cell represenTation learning: VOLTA) for cell representation learning in histopathology images using a technique that accounts for the cell's mutual relationship with its environment. We subject our model to extensive experiments on data collected from multiple institutions comprising over 800,000 cells and six cancer types. To showcase the potential of our proposed framework, we apply VOLTA to ovarian and endometrial cancers and demonstrate that our cell representations can be utilized to identify the known histotypes of ovarian cancer and provide insights that link histopathology and molecular subtypes of endometrial cancer. Unlike supervised models, we provide a framework that can empower discoveries without any annotation data, even in situations where sample sizes are limited.
Collapse
Affiliation(s)
- Ramin Nakhli
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Katherine Rich
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, Canada
| | - Allen Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amirali Darbandsari
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Elahe Shenasa
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amir Hadjifaradji
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Sidney Thiessen
- Deeley Research Centre, BC Cancer Agency, Victoria, BC, Canada
| | - Katy Milne
- Deeley Research Centre, BC Cancer Agency, Victoria, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jessica N McAlpine
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer Agency, Victoria, BC, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hossein Farahani
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ali Bashashati
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada.
| |
Collapse
|
13
|
Elfer K, Gardecki E, Garcia V, Ly A, Hytopoulos E, Wen S, Hanna MG, Peeters DJE, Saltz J, Ehinger A, Dudgeon SN, Li X, Blenman KRM, Chen W, Green U, Birmingham R, Pan T, Lennerz JK, Salgado R, Gallas BD. Reproducible Reporting of the Collection and Evaluation of Annotations for Artificial Intelligence Models. Mod Pathol 2024; 37:100439. [PMID: 38286221 DOI: 10.1016/j.modpat.2024.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
This work puts forth and demonstrates the utility of a reporting framework for collecting and evaluating annotations of medical images used for training and testing artificial intelligence (AI) models in assisting detection and diagnosis. AI has unique reporting requirements, as shown by the AI extensions to the Consolidated Standards of Reporting Trials (CONSORT) and Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) checklists and the proposed AI extensions to the Standards for Reporting Diagnostic Accuracy (STARD) and Transparent Reporting of a Multivariable Prediction model for Individual Prognosis or Diagnosis (TRIPOD) checklists. AI for detection and/or diagnostic image analysis requires complete, reproducible, and transparent reporting of the annotations and metadata used in training and testing data sets. In an earlier work by other researchers, an annotation workflow and quality checklist for computational pathology annotations were proposed. In this manuscript, we operationalize this workflow into an evaluable quality checklist that applies to any reader-interpreted medical images, and we demonstrate its use for an annotation effort in digital pathology. We refer to this quality framework as the Collection and Evaluation of Annotations for Reproducible Reporting of Artificial Intelligence (CLEARR-AI).
Collapse
Affiliation(s)
- Katherine Elfer
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland; National Institutes of Health, National Cancer Institute, Division of Cancer Prevention, Cancer Prevention Fellowship Program, Bethesda, Maryland.
| | - Emma Gardecki
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| | - Victor Garcia
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Si Wen
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| | - Matthew G Hanna
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dieter J E Peeters
- Department of Pathology, University Hospital Antwerp/University of Antwerp, Antwerp, Belgium; Department of Pathology, Sint-Maarten Hospital, Mechelen, Belgium
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York
| | - Anna Ehinger
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah N Dudgeon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kim R M Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, Connecticut; Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| | - Weijie Chen
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| | - Ursula Green
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Ryan Birmingham
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Tony Pan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Roberto Salgado
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia; Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Brandon D Gallas
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| |
Collapse
|
14
|
López-Pérez M, Morales-Álvarez P, Cooper LAD, Felicelli C, Goldstein J, Vadasz B, Molina R, Katsaggelos AK. Learning from crowds for automated histopathological image segmentation. Comput Med Imaging Graph 2024; 112:102327. [PMID: 38194768 DOI: 10.1016/j.compmedimag.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/20/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Automated semantic segmentation of histopathological images is an essential task in Computational Pathology (CPATH). The main limitation of Deep Learning (DL) to address this task is the scarcity of expert annotations. Crowdsourcing (CR) has emerged as a promising solution to reduce the individual (expert) annotation cost by distributing the labeling effort among a group of (non-expert) annotators. Extracting knowledge in this scenario is challenging, as it involves noisy annotations. Jointly learning the underlying (expert) segmentation and the annotators' expertise is currently a commonly used approach. Unfortunately, this approach is frequently carried out by learning a different neural network for each annotator, which scales poorly when the number of annotators grows. For this reason, this strategy cannot be easily applied to real-world CPATH segmentation. This paper proposes a new family of methods for CR segmentation of histopathological images. Our approach consists of two coupled networks: a segmentation network (for learning the expert segmentation) and an annotator network (for learning the annotators' expertise). We propose to estimate the annotators' behavior with only one network that receives the annotator ID as input, achieving scalability on the number of annotators. Our family is composed of three different models for the annotator network. Within this family, we propose a novel modeling of the annotator network in the CR segmentation literature, which considers the global features of the image. We validate our methods on a real-world dataset of Triple Negative Breast Cancer images labeled by several medical students. Our new CR modeling achieves a Dice coefficient of 0.7827, outperforming the well-known STAPLE (0.7039) and being competitive with the supervised method with expert labels (0.7723). The code is available at https://github.com/wizmik12/CRowd_Seg.
Collapse
Affiliation(s)
- Miguel López-Pérez
- Department of Computer Science and Artificial Intelligence, University of Granada, Spain.
| | | | - Lee A D Cooper
- Department of Pathology at Northwestern University, Chicago, USA; Center for Computational Imaging and Signal Analytics, Northwestern University, Chicago, USA.
| | | | | | - Brian Vadasz
- Department of Pathology at Northwestern University, Chicago, USA
| | - Rafael Molina
- Department of Computer Science and Artificial Intelligence, University of Granada, Spain.
| | - Aggelos K Katsaggelos
- Center for Computational Imaging and Signal Analytics, Northwestern University, Chicago, USA; Department of Electrical and Computer Engineering at Northwestern University, Chicago, USA.
| |
Collapse
|
15
|
Xun D, Wang R, Zhang X, Wang Y. Microsnoop: A generalist tool for microscopy image representation. Innovation (N Y) 2024; 5:100541. [PMID: 38235187 PMCID: PMC10794109 DOI: 10.1016/j.xinn.2023.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Accurate profiling of microscopy images from small scale to high throughput is an essential procedure in basic and applied biological research. Here, we present Microsnoop, a novel deep learning-based representation tool trained on large-scale microscopy images using masked self-supervised learning. Microsnoop can process various complex and heterogeneous images, and we classified images into three categories: single-cell, full-field, and batch-experiment images. Our benchmark study on 10 high-quality evaluation datasets, containing over 2,230,000 images, demonstrated Microsnoop's robust and state-of-the-art microscopy image representation ability, surpassing existing generalist and even several custom algorithms. Microsnoop can be integrated with other pipelines to perform tasks such as superresolution histopathology image and multimodal analysis. Furthermore, Microsnoop can be adapted to various hardware and can be easily deployed on local or cloud computing platforms. We will regularly retrain and reevaluate the model using community-contributed data to consistently improve Microsnoop.
Collapse
Affiliation(s)
- Dejin Xun
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rui Wang
- State Key Lab of Computer-Aided Design & Computer Graphics, Zhejiang University, Hangzhou 310058, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
16
|
Amgad M, Hodge JM, Elsebaie MAT, Bodelon C, Puvanesarajah S, Gutman DA, Siziopikou KP, Goldstein JA, Gaudet MM, Teras LR, Cooper LAD. A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer. Nat Med 2024; 30:85-97. [PMID: 38012314 DOI: 10.1038/s41591-023-02643-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023]
Abstract
Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which are qualitative and do not account for noncancerous elements within the tumor microenvironment. Here we present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast tumor microenvironment morphology. HiPS uses deep learning to accurately map cellular and tissue structures to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study-II and validated using data from three independent cohorts, including the Prostate, Lung, Colorectal, and Ovarian Cancer trial, Cancer Prevention Study-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists in predicting survival outcomes, independent of tumor-node-metastasis stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve patient prognosis.
Collapse
Affiliation(s)
- Mohamed Amgad
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James M Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Maha A T Elsebaie
- Department of Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Clara Bodelon
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - David A Gutman
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kalliopi P Siziopikou
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffery A Goldstein
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mia M Gaudet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Lee A D Cooper
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Del Amor R, Pérez-Cano J, López-Pérez M, Terradez L, Aneiros-Fernandez J, Morales S, Mateos J, Molina R, Naranjo V. Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset. Artif Intell Med 2023; 145:102686. [PMID: 37925214 DOI: 10.1016/j.artmed.2023.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
Digital Pathology (DP) has experienced a significant growth in recent years and has become an essential tool for diagnosing and prognosis of tumors. The availability of Whole Slide Images (WSIs) and the implementation of Deep Learning (DL) algorithms have paved the way for the appearance of Artificial Intelligence (AI) systems that support the diagnosis process. These systems require extensive and varied data for their training to be successful. However, creating labeled datasets in histopathology is laborious and time-consuming. We have developed a crowdsourcing-multiple instance labeling/learning protocol that is applied to the creation and use of the CR-AI4SkIN dataset.2 CR-AI4SkIN contains 271 WSIs of 7 Cutaneous Spindle Cell (CSC) neoplasms with expert and non-expert labels at region and WSI levels. It is the first dataset of these types of neoplasms made available. The regions selected by the experts are used to learn an automatic extractor of Regions of Interest (ROIs) from WSIs. To produce the embedding of each WSI, the representations of patches within the ROIs are obtained using a contrastive learning method, and then combined. Finally, they are fed to a Gaussian process-based crowdsourcing classifier, which utilizes the noisy non-expert WSI labels. We validate our crowdsourcing-multiple instance learning method in the CR-AI4SkIN dataset, addressing a binary classification problem (malign vs. benign). The proposed method obtains an F1 score of 0.7911 on the test set, outperforming three widely used aggregation methods for crowdsourcing tasks. Furthermore, our crowdsourcing method also outperforms the supervised model with expert labels on the test set (F1-score = 0.6035). The promising results support the proposed crowdsourcing multiple instance learning annotation protocol. It also validates the automatic extraction of interest regions and the use of contrastive embedding and Gaussian process classification to perform crowdsourcing classification tasks.
Collapse
Affiliation(s)
- Rocío Del Amor
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Jose Pérez-Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, 18010 Granada, Spain
| | - Miguel López-Pérez
- Department of Computer Science and Artificial Intelligence, University of Granada, 18010 Granada, Spain.
| | - Liria Terradez
- Pathology Department. Hospital Clínico Universitario de Valencia, Universidad de Valencia, Spain
| | | | - Sandra Morales
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Javier Mateos
- Department of Computer Science and Artificial Intelligence, University of Granada, 18010 Granada, Spain
| | - Rafael Molina
- Department of Computer Science and Artificial Intelligence, University of Granada, 18010 Granada, Spain
| | - Valery Naranjo
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
18
|
Deng R, Li Y, Li P, Wang J, Remedios LW, Agzamkhodjaev S, Asad Z, Liu Q, Cui C, Wang Y, Wang Y, Tang Y, Yang H, Huo Y. Democratizing Pathological Image Segmentation with Lay Annotators via Molecular-empowered Learning. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14225:497-507. [PMID: 38529367 PMCID: PMC10961594 DOI: 10.1007/978-3-031-43987-2_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annotation from experienced domain experts (e.g., pathologists). Moreover, such annotation is error-prone when differentiating fine-grained cell types (e.g., podocyte and mesangial cells) via the naked human eye. In this study, we assess the feasibility of democratizing pathological AI deployment by only using lay annotators (annotators without medical domain knowledge). The contribution of this paper is threefold: (1) We proposed a molecular-empowered learning scheme for multi-class cell segmentation using partial labels from lay annotators; (2) The proposed method integrated Giga-pixel level molecular-morphology cross-modality registration, molecular-informed annotation, and molecular-oriented segmentation model, so as to achieve significantly superior performance via 3 lay annotators as compared with 2 experienced pathologists; (3) A deep corrective learning (learning with imperfect label) method is proposed to further improve the segmentation performance using partially annotated noisy data. From the experimental results, our learning method achieved F1 = 0.8496 using molecular-informed annotations from lay annotators, which is better than conventional morphology-based annotations (F1 = 0.7015) from experienced pathologists. Our method democratizes the development of a pathological segmentation deep model to the lay annotator level, which consequently scales up the learning process similar to a non-medical computer vision task. The official implementation and cell annotations are publicly available at https://github.com/hrlblab/MolecularEL.
Collapse
Affiliation(s)
| | - Yanwei Li
- Vanderbilt University, Nashville TN 37215, USA
| | - Peize Li
- Vanderbilt University, Nashville TN 37215, USA
| | | | | | | | - Zuhayr Asad
- Vanderbilt University, Nashville TN 37215, USA
| | - Quan Liu
- Vanderbilt University, Nashville TN 37215, USA
| | - Can Cui
- Vanderbilt University, Nashville TN 37215, USA
| | - Yaohong Wang
- Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Yihan Wang
- Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Yucheng Tang
- NVIDIA Corporation, Santa Clara and Bethesda, USA
| | - Haichun Yang
- Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Yuankai Huo
- Vanderbilt University, Nashville TN 37215, USA
| |
Collapse
|
19
|
Thagaard J, Broeckx G, Page DB, Jahangir CA, Verbandt S, Kos Z, Gupta R, Khiroya R, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado‐Cabrero I, Amgad M, Azmoudeh‐Ardalan F, Badve S, Baharun NB, Balslev E, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Chardas A, Chon U Cheang M, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dahl AB, Dantas Portela FL, Deman F, Demaria S, Doré Hansen J, Dudgeon SN, Ebstrup T, Elghazawy M, Fernandez‐Martín C, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez‐Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hauberg S, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm A, Lang‐Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Manur Narasimhamurthy V, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault‐Llorca F, Perera RD, Pinard CJ, Pinto‐Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis‐Filho JS, Ribeiro JM, Rimm D, Roslind A, Vincent‐Salomon A, Salto‐Tellez M, Saltz J, Sayed S, Scott E, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Fineberg S, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, van Diest PJ, Verghese GE, Viale G, Vieth M, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Zin RM, Adams S, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Salgado R, Specht Stovgaard E. Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J Pathol 2023; 260:498-513. [PMID: 37608772 PMCID: PMC10518802 DOI: 10.1002/path.6155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 08/24/2023]
Abstract
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jeppe Thagaard
- Technical University of DenmarkKongens LyngbyDenmark
- Visiopharm A/SHørsholmDenmark
| | - Glenn Broeckx
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of MedicineAntwerp UniversityAntwerpBelgium
| | - David B Page
- Earle A Chiles Research InstituteProvidence Cancer InstitutePortlandORUSA
| | - Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | - Sara Verbandt
- Digestive Oncology, Department of OncologyKU LeuvenLeuvenBelgium
| | - Zuzana Kos
- Department of Pathology and Laboratory MedicineBC Cancer Vancouver Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rajarsi Gupta
- Department of Biomedical InformaticsStony Brook UniversityStony BrookNYUSA
| | - Reena Khiroya
- Department of Cellular PathologyUniversity College Hospital LondonLondonUK
| | | | | | - Balazs Acs
- Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co IncRahwayNJUSA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics (DCEG)National Cancer Institute (NCI)Rockville, MDUSA
| | | | - Mohamed Amgad
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | | | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineEmory University Winship Cancer InstituteAtlantaGAUSA
| | | | - Eva Balslev
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
| | - Enrique R Bellolio
- Departamento de Anatomía Patológica, Facultad de MedicinaUniversidad de La FronteraTemucoChile
| | | | - Kim RM Blenman
- Department of Internal Medicine Section of Medical Oncology and Yale Cancer CenterYale School of MedicineNew HavenCTUSA
- Department of Computer ScienceYale School of Engineering and Applied ScienceNew HavenCTUSA
| | | | - Najat Bouchmaa
- Institute of Biological Sciences, Faculty of Medical SciencesMohammed VI Polytechnic University (UM6P)Ben‐GuerirMorocco
| | - Octavio Burgues
- Pathology DepartmentHospital Cliníco Universitario de Valencia/InclivaValenciaSpain
| | - Alexandros Chardas
- Department of Pathobiology & Population SciencesThe Royal Veterinary CollegeLondonUK
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR‐CTSU, Division of Clinical StudiesThe Institute of Cancer ResearchLondonUK
| | - Francesco Ciompi
- Radboud University Medical CenterDepartment of PathologyNijmegenThe Netherlands
| | - Lee AD Cooper
- Department of PathologyNorthwestern Feinberg School of MedicineChicagoILUSA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and ImmunotherapyKU LeuvenLeuvenBelgium
| | - Germán Corredor
- Biomedical Engineering DepartmentEmory UniversityAtlantaGAUSA
| | - Anders B Dahl
- Technical University of DenmarkKongens LyngbyDenmark
| | | | | | - Sandra Demaria
- Department of Radiation OncologyWeill Cornell MedicineNew YorkNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Sarah N Dudgeon
- Conputational Biology and BioinformaticsYale UniversityNew HavenCTUSA
| | | | | | - Claudio Fernandez‐Martín
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN‐techUniversitat Politècnica de ValènciaValenciaSpain
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/Onc, and Pathology, Tisch Cancer Institute – Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Niels Halama
- Department of Translational ImmunotherapyGerman Cancer Research CenterHeidelbergGermany
| | - Matthew G Hanna
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
| | | | - Steven N Hart
- Department of Laboratory Medicine and PathologyMayo ClinicRochester, MNUSA
| | - Johan Hartman
- Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - Søren Hauberg
- Technical University of DenmarkKongens LyngbyDenmark
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Akira I Hida
- Department of PathologyMatsuyama Shimin HospitalMatsuyamaJapan
| | - Hugo M Horlings
- Division of PathologyNetherlands Cancer Institute (NKI)AmsterdamThe Netherlands
| | | | | | - Sheeba Irshad
- King's College London & Guy's & St Thomas’ NHS TrustLondonUK
| | - Emiel AM Janssen
- Department of PathologyStavanger University HospitalStavangerNorway
- Department of Chemistry, Bioscience and Environmental TechnologyUniversity of StavangerStavangerNorway
| | | | | | - Kosuke Kawaguchi
- Department of Breast SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | | | - Andrey I Khramtsov
- Department of Pathology and Laboratory MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Umay Kiraz
- Department of PathologyStavanger University HospitalStavangerNorway
- Department of Chemistry, Bioscience and Environmental TechnologyUniversity of StavangerStavangerNorway
| | - Pawan Kirtani
- Department of HistopathologyAakash Healthcare Super Speciality HospitalNew DelhiIndia
| | - Liudmila L Kodach
- Department of PathologyNetherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product DevelopmentF. Hoffmann‐La Roche AGBaselSwitzerland
| | - Anikó Kovács
- Department of Clinical PathologySahlgrenska University HospitalGothenburgSweden
- Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anne‐Vibeke Laenkholm
- Department of Surgical PathologyZealand University HospitalRoskildeDenmark
- Department of Surgical PathologyUniversity of CopenhagenCopenhagenDenmark
| | - Corinna Lang‐Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbHFriedrich‐Alexander‐University Erlangen‐NurembergBayreuthGermany
| | - Denis Larsimont
- Institut Jules BordetUniversité Libre de BruxellesBrusselsBelgium
| | - Jochen K Lennerz
- Center for Integrated DiagnosticsMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO)Mines Paris, PSL UniversityParisFrance
- Institut CuriePSL UniversityParisFrance
- INSERMParisFrance
| | - Xiaoxian Li
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGAUSA
| | - Amy Ly
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, PathologyGeorgia Institute of Technology and Emory UniversityAtlantaGAUSA
| | - Sai K Maley
- NRG Oncology/NSABP FoundationPittsburghPAUSA
| | | | | | - Elizabeth S McDonald
- Breast Cancer Translational Research GroupUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ravi Mehrotra
- Indian Cancer Genomic AtlasPuneIndia
- Centre for Health, Innovation and Policy FoundationNoidaIndia
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat U1018, InsermUniversity Paris‐Saclay, Ligue Contre le Cancer labeled TeamVillejuifFrance
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattle, WAUSA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL and Cellular Pathology DepartmentUCLHLondonUK
| | - Shamim Mushtaq
- Department of BiochemistryZiauddin UniversityKarachiPakistan
| | - Hussain Nighat
- Pathology and Laboratory MedicineAll India Institute of Medical sciencesRaipurIndia
| | - Thomas Papathomas
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Department of Clinical PathologyDrammen Sykehus, Vestre Viken HFDrammenNorway
| | - Frederique Penault‐Llorca
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies ThéranostiquesClermont FerrandFrance
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Christopher J Pinard
- Radiogenomics LaboratorySunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
- Department of OncologyLakeshore Animal Health PartnersMississaugaOntarioCanada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE‐AI)University of GuelphGuelphOntarioCanada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Faculty of Medicine and SurgeryUniversity of MilanMilanItaly
| | - Lajos Pusztai
- Yale Cancer CenterYale UniversityNew HavenCTUSA
- Department of Medical Oncology, Yale School of MedicineYale UniversityNew HavenCTUSA
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre of RosebankJohannesburgSouth Africa
- Department of Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Tilman T Rau
- Institute of PathologyUniversity Hospital Düsseldorf and Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Jorge S Reis‐Filho
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Joana M Ribeiro
- Département de Médecine OncologiqueGustave RoussyVillejuifFrance
| | - David Rimm
- Department of PathologyYale University School of MedicineNew HavenCTUSA
- Department of MedicineYale University School of MedicineNew HavenCTUSA
| | - Anne Roslind
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
| | - Anne Vincent‐Salomon
- Department of Diagnostic and Theranostic Medicine, Institut CurieUniversity Paris‐Sciences et LettresParisFrance
| | - Manuel Salto‐Tellez
- Integrated Pathology UnitThe Institute of Cancer ResearchLondonUK
- Precision Medicine CentreQueen's University BelfastBelfastUK
| | - Joel Saltz
- Department of Biomedical InformaticsStony Brook UniversityStony BrookNYUSA
| | - Shahin Sayed
- Department of PathologyAga Khan UniversityNairobiKenya
| | - Ely Scott
- Translational PathologyTranslational Sciences and Diagnostics/Translational Medicine/R&D, Bristol Myers SquibbPrincetonNJUSA
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.‐C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB)Université Libre de Bruxelles (ULB)BrusselsBelgium
- Medical Oncology Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB)Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Albrecht Stenzinger
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
- Centers for Personalized Medicine (ZPM)HeidelbergGermany
| | | | - Daniel Sur
- Department of Medical OncologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu”Cluj‐NapocaRomania
| | - Susan Fineberg
- Montefiore Medical CenterBronxNYUSA
- Albert Einstein College of MedicineBronxNYUSA
| | - Fraser Symmans
- University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of OncologyKU LeuvenLeuvenBelgium
| | - Jonas Teuwen
- AI for Oncology Lab, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | | | - Trine Tramm
- Department of PathologyAarhus University HospitalAarhusDenmark
- Institute of Clinical MedicineAarhus UniversityAarhusDenmark
| | - William T Tran
- Department of Radiation OncologyUniversity of Toronto and Sunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Jeroen van der Laak
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
- Johns Hopkins Oncology CenterBaltimoreMDUSA
| | - Gregory E Verghese
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Giuseppe Viale
- Department of PathologyEuropean Institute of OncologyMilanItaly
- Department of PathologyUniversity of MilanMilanItaly
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbHFriedrich‐Alexander‐University Erlangen‐NurembergBayreuthGermany
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Thomas Walter
- Centre for Computational Biology (CBIO)Mines Paris, PSL UniversityParisFrance
- Institut CuriePSL UniversityParisFrance
- INSERMParisFrance
| | | | - Hannah Y Wen
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer CenterShanghaiPR China
| | - Yinyin Yuan
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Reena Md Zin
- Department of Pathology, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Sylvia Adams
- Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
- Department of MedicineNYU Grossman School of MedicineManhattanNYUSA
| | | | - Sibylle Loibl
- Department of Medicine and ResearchGerman Breast GroupNeu‐IsenburgGermany
| | - Carsten Denkert
- Institut für PathologiePhilipps‐Universität Marburg und Universitätsklinikum MarburgMarburgGermany
| | - Peter Savas
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Sherene Loi
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Roberto Salgado
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Elisabeth Specht Stovgaard
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
20
|
Das N, Saha S, Nasipuri M, Basu S, Chakraborti T. Deep-Fuzz: A synergistic integration of deep learning and fuzzy water flows for fine-grained nuclei segmentation in digital pathology. PLoS One 2023; 18:e0286862. [PMID: 37352172 PMCID: PMC10289330 DOI: 10.1371/journal.pone.0286862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/24/2023] [Indexed: 06/25/2023] Open
Abstract
Robust semantic segmentation of tumour micro-environment is one of the major open challenges in machine learning enabled computational pathology. Though deep learning based systems have made significant progress, their task agnostic data driven approach often lacks the contextual grounding necessary in biomedical applications. We present a novel fuzzy water flow scheme that takes the coarse segmentation output of a base deep learning framework to then provide a more fine-grained and instance level robust segmentation output. Our two stage synergistic segmentation method, Deep-Fuzz, works especially well for overlapping objects, and achieves state-of-the-art performance in four public cell nuclei segmentation datasets. We also show through visual examples how our final output is better aligned with pathological insights, and thus more clinically interpretable.
Collapse
Affiliation(s)
- Nirmal Das
- Deapartemnt of Computer Science and Engineering (AIML), Institute of Engineering and Management, Kolkata, West Bengal, India
- Deapartment of Computer Science and Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Satadal Saha
- Department of Electrical and Computer Engineering, MCKV Institute of Engineering, Howrah, West Bengal, India
| | - Mita Nasipuri
- Deapartment of Computer Science and Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Subhadip Basu
- Deapartment of Computer Science and Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Tapabrata Chakraborti
- University College London and The Alan Turing Institute, London, United Kingdom
- Linacre College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Foucart A, Debeir O, Decaestecker C. Panoptic quality should be avoided as a metric for assessing cell nuclei segmentation and classification in digital pathology. Sci Rep 2023; 13:8614. [PMID: 37244964 DOI: 10.1038/s41598-023-35605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/20/2023] [Indexed: 05/29/2023] Open
Abstract
Panoptic Quality (PQ), designed for the task of "Panoptic Segmentation" (PS), has been used in several digital pathology challenges and publications on cell nucleus instance segmentation and classification (ISC) since its introduction in 2019. Its purpose is to encompass the detection and the segmentation aspects of the task in a single measure, so that algorithms can be ranked according to their overall performance. A careful analysis of the properties of the metric, its application to ISC and the characteristics of nucleus ISC datasets, shows that is not suitable for this purpose and should be avoided. Through a theoretical analysis we demonstrate that PS and ISC, despite their similarities, have some fundamental differences that make PQ unsuitable. We also show that the use of the Intersection over Union as a matching rule and as a segmentation quality measure within PQ is not adapted for such small objects as nuclei. We illustrate these findings with examples taken from the NuCLS and MoNuSAC datasets. The code for replicating our results is available on GitHub ( https://github.com/adfoucart/panoptic-quality-suppl ).
Collapse
Affiliation(s)
- Adrien Foucart
- Laboratory of Image Synthesis and Analysis, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium.
| | - Olivier Debeir
- Laboratory of Image Synthesis and Analysis, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- Laboratory of Image Synthesis and Analysis, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
22
|
Goldstein JA, Nateghi R, Irmakci I, Cooper LAD. Machine learning classification of placental villous infarction, perivillous fibrin deposition, and intervillous thrombus. Placenta 2023; 135:43-50. [PMID: 36958179 PMCID: PMC10156426 DOI: 10.1016/j.placenta.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
INTRODUCTION Placental parenchymal lesions are commonly encountered and carry significant clinical associations. However, they are frequently missed or misclassified by general practice pathologists. Interpretation of pathology slides has emerged as one of the most successful applications of machine learning (ML) in medicine with applications ranging from cancer detection and prognostication to transplant medicine. The goal of this study was to use a whole-slide learning model to identify and classify placental parenchymal lesions including villous infarctions, intervillous thrombi (IVT), and perivillous fibrin deposition (PVFD). METHODS We generated whole slide images from placental discs examined at our institution with infarct, IVT, PVFD, or no macroscopic lesion. Slides were analyzed as a set of overlapping patches. We extracted feature vectors from each patch using a pretrained convolutional neural network (EfficientNetV2L). We trained a model to assign attention to each vector and used the attentions as weights to produce a pooled feature vector. The pooled vector was classified as normal or 1 of 3 lesions using a fully connected network. Patch attention was plotted to highlight informative areas of the slide. RESULTS Overall balanced accuracy in a test set of held-out slides was 0.86 with receiver-operator characteristic areas under the curve of 0.917-0.993. Cases of PVFD were frequently miscalled as normal or infarcts, the latter possibly due to the perivillous fibrin found at the periphery of infarctions. We used attention maps to further understand some errors, including one most likely due to poor tissue fixation and processing. DISCUSSION We used a whole-slide learning paradigm to train models to recognize three of the most common placental parenchymal lesions. We used attention maps to gain insight into model function, which differed from intuitive explanations.
Collapse
Affiliation(s)
| | - Ramin Nateghi
- Northwestern University, Department of Pathology, Chicago, IL, USA
| | - Ismail Irmakci
- Northwestern University, Department of Pathology, Chicago, IL, USA
| | - Lee A D Cooper
- Northwestern University, Department of Pathology, Chicago, IL, USA; Northwestern University, McCormick School of Engineering, Evanston, IL, USA
| |
Collapse
|
23
|
Wang J, Qin L, Chen D, Wang J, Han BW, Zhu Z, Qiao G. An improved Hover-net for nuclear segmentation and classification in histopathology images. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
24
|
Verdicchio M, Brancato V, Cavaliere C, Isgrò F, Salvatore M, Aiello M. A pathomic approach for tumor-infiltrating lymphocytes classification on breast cancer digital pathology images. Heliyon 2023; 9:e14371. [PMID: 36950640 PMCID: PMC10025040 DOI: 10.1016/j.heliyon.2023.e14371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Background and objectives The detection of tumor-infiltrating lymphocytes (TILs) could aid in the development of objective measures of the infiltration grade and can support decision-making in breast cancer (BC). However, manual quantification of TILs in BC histopathological whole slide images (WSI) is currently based on a visual assessment, thus resulting not standardized, not reproducible, and time-consuming for pathologists. In this work, a novel pathomic approach, aimed to apply high-throughput image feature extraction techniques to analyze the microscopic patterns in WSI, is proposed. In fact, pathomic features provide additional information concerning the underlying biological processes compared to the WSI visual interpretation, thus providing more easily interpretable and explainable results than the most frequently investigated Deep Learning based methods in the literature. Methods A dataset containing 1037 regions of interest with tissue compartments and TILs annotated on 195 TNBC and HER2+ BC hematoxylin and eosin (H&E)-stained WSI was used. After segmenting nuclei within tumor-associated stroma using a watershed-based approach, 71 pathomic features were extracted from each nucleus and reduced using a Spearman's correlation filter followed by a nonparametric Wilcoxon rank-sum test and least absolute shrinkage and selection operator. The relevant features were used to classify each candidate nucleus as either TILs or non-TILs using 5 multivariable machine learning classification models trained using 5-fold cross-validation (1) without resampling, (2) with the synthetic minority over-sampling technique and (3) with downsampling. The prediction performance of the models was assessed using ROC curves. Results 21 features were selected, with most of them related to the well-known TILs properties of having regular shape, clearer margins, high peak intensity, more homogeneous enhancement and different textural pattern than other cells. The best performance was obtained by Random-Forest with ROC AUC of 0.86, regardless of resampling technique. Conclusions The presented approach holds promise for the classification of TILs in BC H&E-stained WSI and could provide support to pathologists for a reliable, rapid and interpretable clinical assessment of TILs in BC.
Collapse
Affiliation(s)
| | | | - Carlo Cavaliere
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | - Francesco Isgrò
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Claudio 21, Naples, 80125, Italy
| | - Marco Salvatore
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | - Marco Aiello
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| |
Collapse
|
25
|
Nasir ES, Parvaiz A, Fraz MM. Nuclei and glands instance segmentation in histology images: a narrative review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Qiao Y, Zhao L, Luo C, Luo Y, Wu Y, Li S, Bu D, Zhao Y. Multi-modality artificial intelligence in digital pathology. Brief Bioinform 2022; 23:6702380. [PMID: 36124675 PMCID: PMC9677480 DOI: 10.1093/bib/bbac367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianhe Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| | - Chunlong Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengtong Li
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| |
Collapse
|
27
|
Amgad M, Atteya LA, Hussein H, Mohammed KH, Hafiz E, Elsebaie MAT, Alhusseiny AM, AlMoslemany MA, Elmatboly AM, Pappalardo PA, Sakr RA, Mobadersany P, Rachid A, Saad AM, Alkashash AM, Ruhban IA, Alrefai A, Elgazar NM, Abdulkarim A, Farag AA, Etman A, Elsaeed AG, Alagha Y, Amer YA, Raslan AM, Nadim MK, Elsebaie MAT, Ayad A, Hanna LE, Gadallah A, Elkady M, Drumheller B, Jaye D, Manthey D, Gutman DA, Elfandy H, Cooper LAD. NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer. Gigascience 2022; 11:giac037. [PMID: 35579553 PMCID: PMC9112766 DOI: 10.1093/gigascience/giac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 03/18/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the foundation of interpretable machine-learning models for computational pathology. However, generating adequate labels for these structures is a critical barrier, given the time and effort required from pathologists. RESULTS This article describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce quality labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing >220,000 annotations of cell nuclei in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation dataset for training that is the largest such resource for multi-scale analysis of breast cancer histology. This article presents data and analysis results for single and multi-rater annotations from both non-experts and pathologists. We present a novel workflow that uses algorithmic suggestions to collect accurate segmentation data without the need for laborious manual tracing of nuclei. Our results indicate that even noisy algorithmic suggestions do not adversely affect pathologist accuracy and can help non-experts improve annotation quality. We also present a new approach for inferring truth from multiple raters and show that non-experts can produce accurate annotations for visually distinctive classes. CONCLUSIONS This study is the most extensive systematic exploration of the large-scale use of wisdom-of-the-crowd approaches to generate data for computational pathology applications.
Collapse
Affiliation(s)
- Mohamed Amgad
- Department of Pathology, Northwestern University, 750 N Lake Shore Dr., Chicago, IL 60611, USA
| | - Lamees A Atteya
- Cairo Health Care Administration, Egyptian Ministry of Health, 3 Magles El Shaab Street, Cairo, Postal code 222, Egypt
| | - Hagar Hussein
- Department of Pathology, Nasser institute for research and treatment, 3 Magles El Shaab Street, Cairo, Postal code 222, Egypt
| | - Kareem Hosny Mohammed
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3620 Hamilton Walk M163, Philadelphia, PA 19104, USA
| | - Ehab Hafiz
- Department of Clinical Laboratory Research, Theodor Bilharz Research Institute, 1 El-Nile Street, Imbaba Warrak El-Hadar, Giza, Postal code 12411, Egypt
| | - Maha A T Elsebaie
- Department of Medicine, Cook County Hospital, 1969 W Ogden Ave, Chicago, IL 60612, USA
| | - Ahmed M Alhusseiny
- Department of Pathology, Baystate Medical Center, University of Massachusetts, 759 Chestnut St, Springfield, MA 01199, USA
| | - Mohamed Atef AlMoslemany
- Faculty of Medicine, Menoufia University, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Abdelmagid M Elmatboly
- Faculty of Medicine, Al-Azhar University, 15 Mohammed Abdou, El-Darb El-Ahmar, Cairo Governorate, Postal code 11651, Egypt
| | - Philip A Pappalardo
- Consultant for The Center for Applied Proteomics and Molecular Medicine (CAPMM), George Mason University, 10920 George Mason Circle Institute for Advanced Biomedical Research Room 2008, MS1A9 Manassas, Virginia 20110, USA
| | - Rokia Adel Sakr
- Department of Pathology, National Liver Institute, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Pooya Mobadersany
- Department of Pathology, Northwestern University, 750 N Lake Shore Dr., Chicago, IL 60611, USA
| | - Ahmad Rachid
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Anas M Saad
- Cleveland Clinic Foundation, 9500 Euclid Ave. Cleveland, Ohio 44195, USA
| | - Ahmad M Alkashash
- Department of Pathology, Indiana University, 635 Barnhill Drive Medical Science Building A-128 Indianapolis, IN 46202, USA
| | - Inas A Ruhban
- Faculty of Medicine, Damascus University, Damascus, Damaskus, PO Box 30621, Syria
| | - Anas Alrefai
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Nada M Elgazar
- Faculty of Medicine, Mansoura University, 1 El Gomhouria St, Dakahlia Governorate 35516, Egypt
| | - Ali Abdulkarim
- Faculty of Medicine, Cairo University, Kasr Al Ainy Hospitals, Kasr Al Ainy St., Cairo, Postal code: 11562, Egypt
| | - Abo-Alela Farag
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Amira Etman
- Faculty of Medicine, Menoufia University, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Ahmed G Elsaeed
- Faculty of Medicine, Mansoura University, 1 El Gomhouria St, Dakahlia Governorate 35516, Egypt
| | - Yahya Alagha
- Faculty of Medicine, Cairo University, Kasr Al Ainy Hospitals, Kasr Al Ainy St., Cairo, Postal code: 11562, Egypt
| | - Yomna A Amer
- Faculty of Medicine, Menoufia University, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Ahmed M Raslan
- Department of Anaesthesia and Critical Care, Menoufia University Hospital, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Menatalla K Nadim
- Department of Clinical Pathology, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Mai A T Elsebaie
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Ahmed Ayad
- Research Department, Oncology Consultants, 2130 W. Holcombe Blvd, 10th Floor, Houston, Texas 77030, USA
| | - Liza E Hanna
- Department of Pathology, Nasser institute for research and treatment, 3 Magles El Shaab Street, Cairo, Postal code 222, Egypt
| | - Ahmed Gadallah
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Mohamed Elkady
- Siparadigm Diagnostic Informatics, 25 Riverside Dr no. 2, Pine Brook, NJ 07058, USA
| | - Bradley Drumheller
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - David Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - David Manthey
- Kitware Inc., 1712 Route 9. Suite 300. Clifton Park, New York 12065, USA
| | - David A Gutman
- Department of Neurology, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - Habiba Elfandy
- Department of Pathology, National Cancer Institute, Kasr Al Eini Street, Fom El Khalig, Cairo, Postal code: 11562, Egypt
- Department of Pathology, Children’s Cancer Hospital Egypt (CCHE 57357), 1 Seket Al-Emam Street, El-Madbah El-Kadeem Yard, El-Saida Zenab, Cairo, Postal code: 11562, Egypt
| | - Lee A D Cooper
- Department of Pathology, Northwestern University, 750 N Lake Shore Dr., Chicago, IL 60611, USA
- Lurie Cancer Center, Northwestern University, 675 N St Clair St Fl 21 Ste 100, Chicago, IL 60611, USA
- Center for Computational Imaging and Signal Analytics, Northwestern University Feinberg School of Medicine, 750 N Lake Shore Dr., Chicago, IL 60611, USA
| |
Collapse
|