1
|
Zhu X, Wang J, Chen H, Kang M. Lineage Differentiation and Genomic Vulnerability in a Relict Tree From Subtropical Forests. Evol Appl 2024; 17:e70033. [PMID: 39494192 PMCID: PMC11530410 DOI: 10.1111/eva.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The subtropical forests of East Asia are renowned for their high plant diversity, particularly the abundance of ancient relict species. However, both the evolutionary history of these relict species and their capacity for resilience in the face of impending climatic changes remain unclear. Using whole-genome resequencing data, we investigated the lineage differentiation and demographic history of the relict and endangered tree, Bretschneidera sinensis (Akaniaceae). We employed a combination of population genomic and landscape genomic approaches to evaluate variation in mutation load and genomic offset, aiming to predict how different populations may respond to climate change. Our analysis revealed a profound genomic divergence between the East and West lineages, likely as the result of recurrent bottlenecks due to climatic fluctuations during the glacial period. Furthermore, we identified several genes potentially linked to growth characteristics and hypoxia response that had been subjected to positive selection during the lineage differentiation. Our assessment of genomic vulnerability uncovered a significantly higher mutation load and genomic offset in the edge populations of B. sinensis compared to their core counterparts. This implies that the edge populations are likely to experience the most significant impact from the predicted climate conditions. Overall, our research sheds light on the historical lineage differentiation and contemporary genomic vulnerability of B. sinensis. Broadening our understanding of the speciation history and future resilience of relict and endangered species such as B. sinensis, is crucial in developing effective conservation strategies in anticipation of future climatic changes.
Collapse
Affiliation(s)
- Xian‐Liang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Hong‐Feng Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
2
|
Liu L, James J, Zhang YQ, Wang ZF, Arakaki M, Vadillo G, Zhou QJ, Lascoux M, Ge XJ. The 'queen of the Andes' (Puya raimondii) is genetically fragile and fragmented: a consequence of long generation time and semelparity? THE NEW PHYTOLOGIST 2024; 244:277-291. [PMID: 39135394 DOI: 10.1111/nph.20036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 09/17/2024]
Abstract
Understanding how life history shapes genetic diversity is a fundamental issue in evolutionary biology, with important consequences for conservation. However, we still have an incomplete picture of the impact of life history on genome-wide patterns of diversity, especially in long-lived semelparous plants. Puya raimondii is a high-altitude semelparous species from the Andes that flowers at 40-100 years of age. We sequenced the whole genome and estimated the nucleotide diversity of 200 individuals sampled from nine populations. Coalescent-based approaches were then used to infer past population dynamics. Finally, these results were compared with results obtained for the iteroparous species, Puya macrura. The nine populations of P. raimondii were highly divergent, highly inbred, and carried an exceptionally high genetic load. They are genetically depauperate, although, locally in the genome, balancing selection contributed to the maintenance of genetic polymorphism. While both P. raimondii and P. macrura went through a severe bottleneck during the Pleistocene, P. raimondii did not recover from it and continuously declined, while P. macrura managed to bounce back. Our results demonstrate the importance of life history, in particular generation time and reproductive strategy, in affecting population dynamics and genomic variation, and illustrate the genetic fragility of long-lived semelparous plants.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Jennifer James
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
- Swedish Collegium of Advanced Study, Uppsala University, Uppsala, 75236, Sweden
| | - Yu-Qu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712044, China
| | - Zheng-Feng Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mónica Arakaki
- Natural History Museum, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Giovana Vadillo
- Plant Physiology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| | - Qiu-Jie Zhou
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Xue-Jun Ge
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
3
|
Yan X, Zheng K, Li P, Zhong X, Zhu Z, Zhou H, Zhu M. An efficient in vitro organogenesis protocol for the endangered relic tree species Bretschneidera sinensis and genetic fidelity assessment using DNA markers. FRONTIERS IN PLANT SCIENCE 2024; 15:1259925. [PMID: 38660444 PMCID: PMC11039884 DOI: 10.3389/fpls.2024.1259925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Bretschneidera sinensis is a monotypic species of rare and tertiary relic trees mainly distributed in China. B. sinensis is a potentially valuable horticultural plant, which has significant ornamental and research value, and is a crucial tool for the study of phylogeography. The artificial cultivation of B. sinensis is of great scientific value and practical significance. In this study, we developed a direct organogenesis process of B. sinensis using mature zygotic embryos as initial materials. The highest sterile germination induction (54.5%) from the mature zygotic embryo was obtained in a Murashige and Skoog (MS) medium with 2.0 mg·L-1 6-benzylaminopurine (6-BA) and 0.2 mg·L-1 α-naphthaleneacetic acid (NAA). The highest percentage of shoot regeneration (90.37%) was attained using 1.0 mg·L-1 6-BA and 0.01 mg·L-1 NAA in the MS medium. The Woody Plant Medium (WPM) had the greatest adventitious shoot elongation rate of 93.33%. The most optimized rooting rate was 88.89% in a half-strength MS medium containing 2.0 mg·L-1 indole-3-butyric acid (IBA) and 1.0 mg·L-1 NAA. The genetic fidelity of in vitro regenerated plantlets was assessed using inter-simple sequence repeats and random amplified polymorphic DNA molecular markers, confirming the genetic uniformity and stability of regenerated B. sinensis plantlets. Our research presents an effective in vitro propagation system for B. sinensis, laying the groundwork for its germplasm conservation and large-scale production while maintaining high genetic integrity.
Collapse
Affiliation(s)
- Xuetong Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Keyuan Zheng
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zongwei Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huijing Zhou
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Mulan Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| |
Collapse
|
4
|
Zou Z, Zhang L, Zhao Y. Integrative Analysis of Oleosin Genes Provides Insights into Lineage-Specific Family Evolution in Brassicales. PLANTS (BASEL, SWITZERLAND) 2024; 13:280. [PMID: 38256833 PMCID: PMC10820149 DOI: 10.3390/plants13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Oleosins (OLEs) are a class of small but abundant structural proteins that play essential roles in the formation and stabilization of lipid droplets (LDs) in seeds of oil crops. Despite the proposal of five oleosin clades (i.e., U, SL, SH, T, and M) in angiosperms, their evolution in eudicots has not been well-established. In this study, we employed Brassicales, an economically important order of flowering plants possessing the lineage-specific T clade, as an example to address this issue. Three to 10 members were identified from 10 species representing eight plant families, which include Caricaceae, Moringaceae, Akaniaceae, Capparaceae, and Cleomaceae. Evolutionary and reciprocal best hit-based homologous analyses assigned 98 oleosin genes into six clades (i.e., U, SL, SH, M, N, and T) and nine orthogroups (i.e., U1, U2, SL, SH1, SH2, SH3, M, N, and T). The newly identified N clade represents an ancient group that has already appeared in the basal angiosperm Amborella trichopoda, which are constitutively expressed in the tree fruit crop Carica papaya, including pulp and seeds of the fruit. Moreover, similar to Clade N, the previously defined M clade is actually not Lauraceae-specific but an ancient and widely distributed group that diverged before the radiation of angiosperm. Compared with A. trichopoda, lineage-specific expansion of the family in Brassicales was largely contributed by recent whole-genome duplications (WGDs) as well as the ancient γ event shared by all core eudicots. In contrast to the flower-preferential expression of Clade T, transcript profiling revealed an apparent seed/embryo/endosperm-predominant expression pattern of most oleosin genes in Arabidopsis thaliana and C. papaya. Moreover, the structure and expression divergence of paralogous pairs was frequently observed, and a good example is the lineage-specific gain of an intron. These findings provide insights into lineage-specific family evolution in Brassicales, which facilitates further functional studies in nonmodel plants such as C. papaya.
Collapse
Affiliation(s)
- Zhi Zou
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Li Zhang
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yongguo Zhao
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525011, China
| |
Collapse
|
5
|
Martínez-Salazar S, Kramer EM, González F, Pabón-Mora N. Spatio-temporal expression of candidate genes for nectar spur development in Tropaeolum (Tropaeolaceae: Brassicales). ANNALS OF BOTANY 2023; 132:1205-1218. [PMID: 37864498 PMCID: PMC10902891 DOI: 10.1093/aob/mcad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND AND AIMS Tropaeolaceae (Brassicales) comprise ~100 species native to South and Central America. Tropaeolaceae flowers have a nectar spur, formed by a late expansion and evagination of the fused proximal region of the perianth (i.e. the floral tube). This spur is formed in the domain of the tube oriented towards the inflorescence axis, which corresponds to the adaxial floral region. However, little is known about the molecular mechanisms responsible for the evolution of spurs in Tropaeolaceae. METHODS In this study, we examined the spatio-temporal expression of genes putatively responsible for differential patterns of cell division between the adaxial and abaxial floral regions in Tropaeolaceae. These genes include previously identified TCP and KNOX transcription factors and the cell division marker HISTONE H4 (HIS4). KEY RESULTS We found a TCP4 homologue concomitantly expressed with spur initiation and elaboration. Tropaeolaceae possess two TCP4-like (TCP4L) copies, as a result of a Tropaeolaceae-specific duplication. The two copies (TCP4L1 and TCP4L2) in Tropaeolum longifolium show overlapping expression in the epidermis of reproductive apices (inflorescence meristems) and young floral buds, but only TlTCP4L2 shows differential expression in the floral tube at early stages of spur formation, restricted to the adaxial region. This adaxial expression of TlTCP4L2 overlaps with the expression of TlHIS4. Later in development, only TlTCP4L2 is expressed in the nectariferous tissue of the spur. CONCLUSIONS Based on these results, we hypothesize that Tropaeolaceae TCP4L genes had a plesiomorphic role in epidermal development and that, after gene duplication, TCP4L2 acquired a new function in spur initiation and elaboration. To better understand spur evolution in Tropaeolaceae, it is critical to expand developmental genetic studies to their sister group, the Akaniaceae, which possess simultaneously an independent duplication of TCP4L genes and a spurless floral tube.
Collapse
Affiliation(s)
- Sebastián Martínez-Salazar
- Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá 111321, Colombia
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| |
Collapse
|
6
|
Zou Z, Zheng Y, Xie Z. Analysis of Carica papaya Informs Lineage-Specific Evolution of the Aquaporin (AQP) Family in Brassicales. PLANTS (BASEL, SWITZERLAND) 2023; 12:3847. [PMID: 38005748 PMCID: PMC10674200 DOI: 10.3390/plants12223847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Aquaporins (AQPs), a type of intrinsic membrane proteins that transport water and small solutes across biological membranes, play crucial roles in plant growth and development. This study presents a first genome-wide identification and comparative analysis of the AQP gene family in papaya (Carica papaya L.), an economically and nutritionally important fruit tree of tropical and subtropical regions. A total of 29 CpAQP genes were identified, which represent five subfamilies, i.e., nine plasma intrinsic membrane proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), seven NOD26-like intrinsic proteins (NIPs), two X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). Although the family is smaller than the 35 members reported in Arabidopsis, it is highly diverse, and the presence of CpXIP genes as well as orthologs in Moringa oleifera and Bretschneidera sinensis implies that the complete loss of the XIP subfamily in Arabidopsis is lineage-specific, sometime after its split with papaya but before Brassicaceae-Cleomaceae divergence. Reciprocal best hit-based sequence comparison of 530 AQPs and synteny analyses revealed that CpAQP genes belong to 29 out of 61 identified orthogroups, and lineage-specific evolution was frequently observed in Brassicales. Significantly, the well-characterized NIP3 group was completely lost; lineage-specific loss of the NIP8 group in Brassicaceae occurred sometime before the divergence with Cleomaceae, and lineage-specific loss of NIP2 and SIP3 groups in Brassicaceae occurred sometime after the split with Cleomaceae. In contrast to a predominant role of recent whole-genome duplications (WGDs) on the family expansion in B. sinensis, Tarenaya hassleriana, and Brassicaceae plants, no recent AQP repeats were identified in papaya, and ancient WGD repeats are mainly confined to the PIP subfamily. Subfamily even group-specific evolution was uncovered via comparing exon-intron structures, conserved motifs, the aromatic/arginine selectivity filter, and gene expression profiles. Moreover, down-regulation during fruit ripening and expression divergence of duplicated CpAQP genes were frequently observed in papaya. These findings will not only improve our knowledge on lineage-specific family evolution in Brassicales, but also provide valuable information for further studies of AQP genes in papaya and species beyond.
Collapse
Affiliation(s)
- Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Z.); (Z.X.)
| | | | | |
Collapse
|
7
|
Zhang H, Du X, Dong C, Zheng Z, Mu W, Zhu M, Yang Y, Li X, Hu H, Shrestha N, Li M, Yang Y. Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae). Gigascience 2022; 11:giac050. [PMID: 35701375 PMCID: PMC9197684 DOI: 10.1093/gigascience/giac050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bretschneidera sinensis is an endangered relic tree species in the Akaniaceae family and is sporadically distributed in eastern Asia. As opposed to its current narrow and rare distribution, the fossil pollen of B. sinensis has been found to be frequent and widespread in the Northern Hemisphere during the Late Miocene. B. sinensis is also a typical mycorrhizal plant, and its annual seedlings exhibit high mortality rates in absence of mycorrhizal development. The chromosome-level high-quality genome of B. sinensis will help us to more deeply understand the survival and demographic histories of this relic species. RESULTS A total of 25.39 Gb HiFi reads and 109.17 Gb Hi-C reads were used to construct the chromosome-level genome of B. sinensis, which is 1.21 Gb in length with the contig N50 of 64.13 Mb and chromosome N50 of 146.54 Mb. The identified transposable elements account for 55.21% of the genome. A total of 45,839 protein-coding genes were predicted in B. sinensis. A lineage-specific whole-genome duplication was detected, and 7,283 lineage-specific expanded gene families with functions related to the specialized endotrophic mycorrhizal adaptation were identified. The historical effective population size (Ne) of B. sinensis was found to oscillate greatly in response to Quaternary climatic changes. The Ne of B. sinensis has decreased rapidly in the recent past, making its extant Ne extremely lower. Our additional evolutionary genomic analyses suggested that the developed mycorrhizal adaption might have been repeatedly disrupted by environmental changes caused by Quaternary climatic oscillations. The environmental changes and an already decreased population size during the Holocene may have led to the current rarity of B. sinensis. CONCLUSION This is a detailed report of the genome sequences for the family Akaniaceae distributed in evergreen forests in eastern Asia. Such a high-quality genomic resource may provide critical clues for comparative genomics studies of this family in the future.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Congcong Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingbo Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojie Li
- Emeishan Biological Resources Experimental Station, Emei 511181, Sichuan, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|