1
|
Nishiyama N, Shinozawa A, Matsumoto T, Izawa T. High genome heterozygosity revealed vegetative propagation over the sea in Moso bamboo. BMC Genomics 2023; 24:348. [PMID: 37355596 DOI: 10.1186/s12864-023-09428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/04/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Moso bamboo (Phyllostachys edulis) is a typical East Asian bamboo that does not flower for > 60 years and propagates without seed reproduction. Thus, Moso bamboo can be propagated vegetatively, possibly resulting in highly heterozygous genetic inheritance. Recently, a draft genome of Moso bamboo was reported, followed by whole genome single nucleotide polymorphisms (SNP) analysis, which showed that the genome of Moso bamboo in China has regional characteristics. Moso bamboo in Japan is thought to have been introduced from China over the sea in 1736. However, it is unclear where and how Moso bamboo was introduced in Japan from China. Here, based on detailed analysis of heterozygosity in genome diversity, we estimate the spread of genome diversity and its pedigree of Moso bamboo. RESULTS We sequenced the whole genome of Moso bamboo in Japan and compared them with data reported previously from 15 regions of China. Only 4.1 million loci (0.37% of the analyzed genomic region) were identified as polymorphic loci. We next narrowed down the number of polymorphic loci using several filters and extracted more reliable SNPs. Among the 414,952 high-quality SNPs, 319,431 (77%) loci were identified as heterozygous common to all tested samples. The result suggested that all tested samples were clones via vegetative reproduction. Somatic mutations may accumulate in a heterozygous manner within a single clone. We examined common heterozygous loci between samples from Japan and elsewhere, from which we inferred that an individual closely related to the sample from Fujian, China, was introduced to Japan across the sea without seed reproduction. In addition, we collected 16 samples from four nearby bamboo forests in Japan and performed SNP and insertion/deletion analyses using a genotyping by sequencing (GBS) method. The results suggested that a small number of somatic mutations would spread within and between bamboo groves. CONCLUSIONS High heterozygosity in the genome-wide diversity of Moso bamboo implies the vegetative propagation of Moso bamboo from China to Japan, the pedigree of Moso bamboo in Japan, and becomes a useful marker to approach the spread of genome diversity in clonal plants.
Collapse
Affiliation(s)
- Norihide Nishiyama
- Department of Agricultural and Environmental Biology, Laboratory of Plant Breeding & Genetics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Akihisa Shinozawa
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-Ku, Tokyo, 156-8502, Japan
- The NODAI Genome Research Center (NGRC), Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-Ku, Tokyo, 156-8502, Japan
| | - Takashi Matsumoto
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-Ku, Tokyo, 156-8502, Japan
| | - Takeshi Izawa
- Department of Agricultural and Environmental Biology, Laboratory of Plant Breeding & Genetics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
2
|
Chen Y, Wang Y, Zhou P, Huang H, Li R, Zeng Z, Cui Z, Tian R, Jin Z, Liu J, Huang Z, Li L, Huang Z, Tian X, Yu M, Hu Z. VIS Atlas: A Database of Virus Integration Sites in Human Genome from NGS Data to Explore Integration Patterns. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:300-310. [PMID: 36804047 PMCID: PMC10626058 DOI: 10.1016/j.gpb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Integration of oncogenic DNA viruses into the human genome is a key step in most virus-induced carcinogenesis. Here, we constructed a virus integration site (VIS) Atlas database, an extensive collection of integration breakpoints for three most prevalent oncoviruses, human papillomavirus, hepatitis B virus, and Epstein-Barr virus based on the next-generation sequencing (NGS) data, literature, and experimental data. There are 63,179 breakpoints and 47,411 junctional sequences with full annotations deposited in the VIS Atlas database, comprising 47 virus genotypes and 17 disease types. The VIS Atlas database provides (1) a genome browser for NGS breakpoint quality check, visualization of VISs, and the local genomic context; (2) a novel platform to discover integration patterns; and (3) a statistics interface for a comprehensive investigation of genotype-specific integration features. Data collected in the VIS Atlas aid to provide insights into virus pathogenic mechanisms and the development of novel antitumor drugs. The VIS Atlas database is available at https://www.vis-atlas.tech/.
Collapse
Affiliation(s)
- Ye Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yuyan Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Hao Huang
- Office of Scientific Research & Development, Sun Yat-sen University, Guangzhou 510000, China
| | - Rui Li
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Rui Tian
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhuang Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jiashuo Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhaoyue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Lifang Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zheying Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Meiying Yu
- Department of Pathology, the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
3
|
Xu Y, Liu H, Gao Y, Xiong R, Wu M, Zhang K, Xiang Y. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2021; 40:1971-1987. [PMID: 34392380 DOI: 10.1007/s00299-021-02765-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
PeTCP10 can be induced by salt stresses and play important regulation roles in salt stresses response in transgenic Arabidopsis. Salt stress is one of the major adverse environmental factors that affect normal plant development and growth. PeTCP10, a Class I TCP member, was markedly expressed in moso bamboo mature leaf, root and stem under normal conditions and also induced by salt stress. Overexpressed PeTCP10 was found to enhance salt tolerance of transgenic Arabidopsis at the vegetative growth stage. It was also found capable to increase relative water content, while decreasing relative electrolyte leakage and Na+ accumulation of transgenic Arabidopsis versus wild-type (WT) plants at high-salt conditions. In addition, it improved antioxidant capacity of transgenic Arabidopsis plants by promoting catalase activity and enhanced their H2O2 tolerance. In contrast to WT plants, transcriptome analysis demonstrated that multiple genes related to abscisic acid, salt and H2O2 response were induced after NaCl treatment in transgenic plants. Meanwhile, overexpressed PeTCP10 improved the tolerance of abscisic acid. Moreover, luciferase reporter assay results showed that PeTCP10 is able to directly activate the expression of BT2 in transgenic plants. In contrary, the germination rates of transgenic plants were significantly lower than those of WT plants under high-NaCl conditions. Both primary root length and survival rate at the seedling stage are also found lower in transgenic plants than in WT plants. It is concluded that overexpressed PeTCP10 enhances salt stress tolerance of transgenic plants at the vegetative growth stage, and it also improves salt sensitiveness in both germination and seedling stages. These research results will contribute to further understand the functions of TCPs in abiotic stress response.
Collapse
Affiliation(s)
- Yuzeng Xu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Hou D, Li L, Ma T, Pei J, Zhao Z, Lu M, Wu A, Lin X. The SOC1-like gene BoMADS50 is associated with the flowering of Bambusa oldhamii. HORTICULTURE RESEARCH 2021; 8:133. [PMID: 34059654 PMCID: PMC8166863 DOI: 10.1038/s41438-021-00557-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 05/27/2023]
Abstract
Bamboo is known for its edible shoots and beautiful texture and has considerable economic and ornamental value. Unique among traditional flowering plants, many bamboo plants undergo extensive synchronized flowering followed by large-scale death, seriously affecting the productivity and application of bamboo forests. To date, the molecular mechanism of bamboo flowering characteristics has remained unknown. In this study, a SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)-like gene, BoMADS50, was identified from Bambusa oldhamii. BoMADS50 was highly expressed in mature leaves and the floral primordium formation period during B. oldhamii flowering and overexpression of BoMADS50 caused early flowering in transgenic rice. Moreover, BoMADS50 could interact with APETALA1/FRUITFULL (AP1/FUL)-like proteins (BoMADS14-1/2, BoMADS15-1/2) in vivo, and the expression of BoMADS50 was significantly promoted by BoMADS14-1, further indicating a synergistic effect between BoMADS50 and BoAP1/FUL-like proteins in regulating B. oldhamii flowering. We also identified four additional transcripts of BoMADS50 (BoMADS50-1/2/3/4) with different nucleotide variations. Although the protein-CDS were polymorphic, they had flowering activation functions similar to those of BoMADS50. Yeast one-hybrid and transient expression assays subsequently showed that both BoMADS50 and BoMADS50-1 bind to the promoter fragment of itself and the SHORT VEGETATIVE PHASE (SVP)-like gene BoSVP, but only BoMADS50-1 can positively induce their transcription. Therefore, nucleotide variations likely endow BoMADS50-1 with strong regulatory activity. Thus, BoMADS50 and BoMADS50-1/2/3/4 are probably important positive flowering regulators in B. oldhamii. Moreover, the functional conservatism and specificity of BoMADS50 and BoMADS50-1 might be related to the synchronized and sporadic flowering characteristics of B. oldhamii.
Collapse
Affiliation(s)
- Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China
| | - Ling Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China
| | - Tengfei Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China
| | - Zhongyu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642, Guangzhou, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 510642, Guangzhou, China.
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China.
| |
Collapse
|
5
|
Li L, Shi Q, Li Z, Gao J. Genome-wide identification and functional characterization of the PheE2F/DP gene family in Moso bamboo. BMC PLANT BIOLOGY 2021; 21:158. [PMID: 33781213 PMCID: PMC8008544 DOI: 10.1186/s12870-021-02924-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/11/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND E2F/DP proteins have been shown to regulate genes implicated in cell cycle control and DNA repair. However, to date, research into the potential role of the Moso bamboo E2F/DP family has been limited. RESULTS Here, we identified 23 E2F/DPs in the Moso bamboo genome, including nine E2F genes, six DP genes, eight DEL genes and one gene with a partial E2F domain. An estimation of the divergence time of the paralogous gene pairs suggested that the E2F/DP family expansion primarily occurred through a whole-genome duplication event. A regulatory element and coexpression network analysis indicated that E2F/DP regulated the expression of cell cycle-related genes. A yeast two-hybrid assay and expression analysis based on transcriptome data and in situ hybridization indicated that the PheE2F-PheDP complex played important roles in winter Moso bamboo shoot growth. The qRT-PCR results showed that the PheE2F/DPs exhibited diverse expression patterns in response to drought and salt treatment and diurnal cycles. CONCLUSION Our findings provide novel insights into the Moso bamboo E2F/DP family and partial experimental evidence for further functional verification of the PheE2F/DPs.
Collapse
Affiliation(s)
- Long Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhouqi Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, China.
| |
Collapse
|
6
|
Pischedda E, Crava C, Carlassara M, Zucca S, Gasmi L, Bonizzoni M. ViR: a tool to solve intrasample variability in the prediction of viral integration sites using whole genome sequencing data. BMC Bioinformatics 2021; 22:45. [PMID: 33541262 PMCID: PMC7863434 DOI: 10.1186/s12859-021-03980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Several bioinformatics pipelines have been developed to detect sequences from viruses that integrate into the human genome because of the health relevance of these integrations, such as in the persistence of viral infection and/or in generating genotoxic effects, often progressing into cancer. Recent genomics and metagenomics analyses have shown that viruses also integrate into the genome of non-model organisms (i.e., arthropods, fish, plants, vertebrates). However, rarely studies of endogenous viral elements (EVEs) in non-model organisms have gone beyond their characterization from reference genome assemblies. In non-model organisms, we lack a thorough understanding of the widespread occurrence of EVEs and their biological relevance, apart from sporadic cases which nevertheless point to significant roles of EVEs in immunity and regulation of expression. The concomitance of repetitive DNA, duplications and/or assembly fragmentations in a genome sequence and intrasample variability in whole-genome sequencing (WGS) data could determine misalignments when mapping data to a genome assembly. This phenomenon hinders our ability to properly identify integration sites. Results To fill this gap, we developed ViR, a pipeline which solves the dispersion of reads due to intrasample variability in sequencing data from both single and pooled DNA samples thus ameliorating the detection of integration sites. We tested ViR to work with both in silico and real sequencing data from a non-model organism, the arboviral vector Aedes albopictus. Potential viral integrations predicted by ViR were molecularly validated supporting the accuracy of ViR results. Conclusion ViR will open new venues to explore the biology of EVEs, especially in non-model organisms. Importantly, while we generated ViR with the identification of EVEs in mind, its application can be extended to detect any lateral transfer event providing an ad-hoc sequence to interrogate.
Collapse
Affiliation(s)
- Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Cristina Crava
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.,ERI BIOTECMED, Universitat de Valencia, 46010, Valencia, Spain
| | - Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | | | - Leila Gasmi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
7
|
Gao S, Hu X, Xu F, Gao C, Xiong K, Zhao X, Chen H, Zhao S, Wang M, Fu D, Zhao X, Bai J, Mao L, Li B, Wu S, Wang J, Li S, Yang H, Bolund L, Pedersen CNS. BS-virus-finder: virus integration calling using bisulfite sequencing data. Gigascience 2018; 7:1-7. [PMID: 29267855 PMCID: PMC5788064 DOI: 10.1093/gigascience/gix123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/30/2017] [Indexed: 01/10/2023] Open
Abstract
Background DNA methylation plays a key role in the regulation of gene expression and carcinogenesis. Bisulfite sequencing studies mainly focus on calling single nucleotide polymorphism, different methylation region, and find allele-specific DNA methylation. Until now, only a few software tools have focused on virus integration using bisulfite sequencing data. Findings We have developed a new and easy-to-use software tool, named BS-virus-finder (BSVF, RRID:SCR_015727), to detect viral integration breakpoints in whole human genomes. The tool is hosted at https://github.com/BGI-SZ/BSVF. Conclusions BS-virus-finder demonstrates high sensitivity and specificity. It is useful in epigenetic studies and to reveal the relationship between viral integration and DNA methylation. BS-virus-finder is the first software tool to detect virus integration loci by using bisulfite sequencing data.
Collapse
Affiliation(s)
- Shengjie Gao
- Bioinformatics Research Center, Aarhus University, C. F. Møllers Allé 8, DK-8000, Aarhus C, Denmark.,Forensics Genomics International (FGI), BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.,The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China.,Department of Biomedicine, Aarhus University, Vennelyst Boulevard 4, DK-8000 Aarhus C, Denmark
| | - Xuesong Hu
- Forensics Genomics International (FGI), BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China
| | - Fengping Xu
- BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Changduo Gao
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
| | - Kai Xiong
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark
| | - Xiao Zhao
- Forensics Genomics International (FGI), BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixiao Chen
- BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shancen Zhao
- BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Mengyao Wang
- BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China
| | - Dongke Fu
- Forensics Genomics International (FGI), BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China
| | - Xiaohui Zhao
- College of Mathematics & Statistics, Changsha University of Science and Technology, Changsha 410114, China
| | - Jie Bai
- BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China
| | - Likai Mao
- BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China
| | - Bo Li
- Forensics Genomics International (FGI), BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Jian Wang
- BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China
| | - Shengbin Li
- Forensics Genomics International (FGI), BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,Shenzhen Key Laboratory of Forensics, BGI-Shenzhen, Shenzhen 518083, China.,College of Medicine and Forensics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huangming Yang
- BGI-Shenzhen, BeiShan Industrial Zone, Yantian District, Shenzhen, Guangdong 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.,BGI Education Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Vennelyst Boulevard 4, DK-8000 Aarhus C, Denmark
| | - Christian N S Pedersen
- Bioinformatics Research Center, Aarhus University, C. F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| |
Collapse
|