1
|
Wollenberg Valero KC, Garcia-Porta J, Irisarri I, Feugere L, Bates A, Kirchhof S, Jovanović Glavaš O, Pafilis P, Samuel SF, Müller J, Vences M, Turner AP, Beltran-Alvarez P, Storey KB. Functional genomics of abiotic environmental adaptation in lacertid lizards and other vertebrates. J Anim Ecol 2021; 91:1163-1179. [PMID: 34695234 DOI: 10.1111/1365-2656.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Understanding the genomic basis of adaptation to different abiotic environments is important in the context of climate change and resulting short-term environmental fluctuations. Using functional and comparative genomics approaches, we here investigated whether signatures of genomic adaptation to a set of environmental parameters are concentrated in specific subsets of genes and functions in lacertid lizards and other vertebrates. We first identify 200 genes with signatures of positive diversifying selection from transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in physiological and morphological adaptations to climate. To understand how functionally similar these genes are to previously predicted candidate functions for climate adaptation and to compare them with other vertebrate species, we then performed a meta-analysis of 1,100 genes under selection obtained from -omics studies in vertebrate species adapted to different abiotic factors. We found that the vertebrate gene set formed a tightly connected interactome, which was to 23% enriched in previously predicted functions of adaptation to climate, and to a large part (18%) involved in organismal stress response. We found a much higher degree of identical genes being repeatedly selected among different animal groups (43.6%), and of functional similarity and post-translational modifications than expected by chance, and no clear functional division between genes used for ectotherm and endotherm physiological strategies. In total, 171 out of 200 genes of Lacertidae were part of this network. These results highlight an important role of a comparatively small set of genes and their functions in environmental adaptation and narrow the set of candidate pathways and markers to be used in future research on adaptation and stress response related to climate change.
Collapse
Affiliation(s)
| | - Joan Garcia-Porta
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany.,Campus Institut Data Science (CIDAS), Göttingen, Germany
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Sebastian Kirchhof
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sabrina F Samuel
- Department of Biomedical Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
5
|
Karin BR, Gamble T, Jackman TR. Optimizing Phylogenomics with Rapidly Evolving Long Exons: Comparison with Anchored Hybrid Enrichment and Ultraconserved Elements. Mol Biol Evol 2020; 37:904-922. [PMID: 31710677 PMCID: PMC7038749 DOI: 10.1093/molbev/msz263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Biology, Villanova University, Villanova, PA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Milwaukee Public Museum, Milwaukee, WI
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA
| |
Collapse
|
6
|
Wollenberg Valero KC, Marshall JC, Bastiaans E, Caccone A, Camargo A, Morando M, Niemiller ML, Pabijan M, Russello MA, Sinervo B, Werneck FP, Sites JW, Wiens JJ, Steinfartz S. Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes (Basel) 2019; 10:genes10090646. [PMID: 31455040 PMCID: PMC6769790 DOI: 10.3390/genes10090646] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
In this contribution, the aspects of reptile and amphibian speciation that emerged from research performed over the past decade are reviewed. First, this study assesses how patterns and processes of speciation depend on knowing the taxonomy of the group in question, and discuss how integrative taxonomy has contributed to speciation research in these groups. This study then reviews the research on different aspects of speciation in reptiles and amphibians, including biogeography and climatic niches, ecological speciation, the relationship between speciation rates and phenotypic traits, and genetics and genomics. Further, several case studies of speciation in reptiles and amphibians that exemplify many of these themes are discussed. These include studies of integrative taxonomy and biogeography in South American lizards, ecological speciation in European salamanders, speciation and phenotypic evolution in frogs and lizards. The final case study combines genomics and biogeography in tortoises. The field of amphibian and reptile speciation research has steadily moved forward from the assessment of geographic and ecological aspects, to incorporating other dimensions of speciation, such as genetic mechanisms and evolutionary forces. A higher degree of integration among all these dimensions emerges as a goal for future research.
Collapse
Affiliation(s)
| | - Jonathon C Marshall
- Department of Zoology, Weber State University, 1415 Edvalson Street, Dept. 2505, Ogden, UT 84401, USA
| | - Elizabeth Bastiaans
- Department of Biology, State University of New York, College at Oneonta, Oneonta, NY 13820, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Arley Camargo
- Centro Universitario de Rivera, Universidad de la República, Ituzaingó 667, Rivera 40000, Uruguay
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC, CENPAT-CONICET) Bv. Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Fernanda P Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-000, Brazil
| | - Jack W Sites
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Steinfartz
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Kolora SRR, Weigert A, Saffari A, Kehr S, Walter Costa MB, Spröer C, Indrischek H, Chintalapati M, Lohse K, Doose G, Overmann J, Bunk B, Bleidorn C, Grimm-Seyfarth A, Henle K, Nowick K, Faria R, Stadler PF, Schlegel M. Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation. Gigascience 2019; 8:giy160. [PMID: 30535196 PMCID: PMC6381762 DOI: 10.1093/gigascience/giy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. FINDINGS Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. CONCLUSION The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.
Collapse
Affiliation(s)
- Sree Rohit Raj Kolora
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| | - Anne Weigert
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Amin Saffari
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Maria Beatriz Walter Costa
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Embrapa Agroenergia, Parque Estacaeo Biologica (PqEB), Asa Norte, Brasilia/DF, 70770-901, Brazil
| | - Cathrin Spröer
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, 01307, Germany
- Max Planck Institute for Physics of Complex Systems, Noethnitzerstrasse 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01397 Dresden, Germany
| | - Manjusha Chintalapati
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Gero Doose
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Jörg Overmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Animal Evolution and Biodiversity, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, 28006, Spain
| | - Annegret Grimm-Seyfarth
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
- Plant Ecology and Nature Conservation, University of Potsdam, Am Mühlenberg 3, Potsdam, 14476, Germany
| | - Klaus Henle
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Katja Nowick
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Rui Faria
- Department of Animal and Plant Sciences, Alfred Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Augustusplatz 12, Leipzig, 04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
- Fraunhofer Institut Für Zelltherapie Und Immunologie, Perlickstrasse 1, Leipzig, 04103, Germany
- Department of Theoretical Chemistry, University of Vienna, Währinger strasse 17, Wien, 1090, Austria
- Center for non-Coding RNA in Technology and Health, University of Copenhagen, Gronnegardsvej 3, Frederiksberg C, 1870, Denmark
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501, USA
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| |
Collapse
|