1
|
Canesin LEC, Vilaça ST, Oliveira RRM, Al-Ajli F, Tracey A, Sims Y, Formenti G, Fedrigo O, Banhos A, Sanaiotti TM, Farias IP, Jarvis ED, Oliveira G, Hrbek T, Solferini V, Aleixo A. A reference genome for the Harpy Eagle reveals steady demographic decline and chromosomal rearrangements in the origin of Accipitriformes. Sci Rep 2024; 14:19925. [PMID: 39261501 PMCID: PMC11390914 DOI: 10.1038/s41598-024-70305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
The Harpy Eagle (Harpia harpyja) is an iconic species that inhabits forested landscapes in Neotropical regions, with decreasing population trends mainly due to habitat loss, and currently classified as vulnerable. Here, we report on a chromosome-scale genome assembly for a female individual combining long reads, optical mapping, and chromatin conformation capture reads. The final assembly spans 1.35 Gb, with N50scaffold equal to 58.1 Mb and BUSCO completeness of 99.7%. We built the first extensive transposable element (TE) library for the Accipitridae to date and identified 7,228 intact TEs. We found a burst of an unknown TE ~ 13-22 million years ago (MYA), coincident with the split of the Harpy Eagle from other Harpiinae eagles. We also report a burst of solo-LTRs and CR1 retrotransposons ~ 31-33 MYA, overlapping with the split of the ancestor to all Harpiinae from other Accipitridae subfamilies. Comparative genomics with other Accipitridae, the closely related Cathartidae and Galloanserae revealed major chromosome-level rearrangements at the basal Accipitriformes genome, in contrast to a conserved ancient genome architecture for the latter two groups. A historical demography reconstruction showed a rapid decline in effective population size over the last 20,000 years. This reference genome serves as a crucial resource for future conservation efforts towards the Harpy Eagle.
Collapse
Affiliation(s)
| | - Sibelle T Vilaça
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Renato R M Oliveira
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Farooq Al-Ajli
- Rockefeller University, New York, USA
- Katara Biodiversity Genomics Program, Katara Cultural Village Foundation, Doha, Qatar
| | | | - Ying Sims
- Rockefeller University, New York, USA
| | | | | | - Aureo Banhos
- Universidade Federal do Espírito Santo (UFES), Alegre, Brazil
| | | | | | - Erich D Jarvis
- Rockefeller University, New York, USA
- Howard Hughes Medical Institute (HHMI), New York, USA
| | - Guilherme Oliveira
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Trinity University, San Antonio, USA
| | - Vera Solferini
- Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Alexandre Aleixo
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil.
| |
Collapse
|
2
|
Thörn F, Soares AER, Müller IA, Päckert M, Frahnert S, van Grouw H, Kamminga P, Peona V, Suh A, Blom MPK, Irestedt M. Contemporary intergeneric hybridization and backcrossing among birds-of-paradise. Evol Lett 2024; 8:680-694. [PMID: 39328285 PMCID: PMC11424083 DOI: 10.1093/evlett/qrae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 09/28/2024] Open
Abstract
Despite large differences in morphology, behavior and lek-mating strategies the birds-of-paradise are known to hybridize occasionally, even across different genera. Many of these bird-of-paradise hybrids were originally described as distinct species based on large morphological differences when compared to recognized species. Nowadays, these specimens are generally recognized as hybrids based on morphological assessments. Having fascinated naturalists for centuries, hybrid specimens of birds-of-paradise have been collected and the specimens kept in Natural History Collections. In the present study, we utilize this remarkable resource in a museomics framework and evaluate the genomic composition of most described intergeneric hybrids and some intrageneric hybrids. We show that the majority of investigated specimens are first-generation hybrids and that the parental species, in most cases, are in line with prior morphological assessments. We also identify two specimens that are the result of introgressive hybridization between different genera. Additionally, two specimens exhibit hybrid morphologies but have no identifiable signals of hybridization, which may indicate that minor levels of introgression can have large morphological effects. Our findings provide direct evidence of contemporary introgressive hybridization taking place between genera of birds-of-paradise in nature, despite markedly different morphologies and lek-mating behaviors.
Collapse
Affiliation(s)
- Filip Thörn
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - André E R Soares
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingo A Müller
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Päckert
- Section Ornithology, Senckenberg Natural History Collections, Museum für Tierkunde, Dresden, Germany
| | - Sylke Frahnert
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Hein van Grouw
- Bird Group, Department of Life Sciences, Natural History Museum, Tring, Herts, United Kingdom
| | | | - Valentina Peona
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Swiss Ornithological Institute—Vogelwarte, Sempach, Switzerland
| | - Alexander Suh
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Mozes P K Blom
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
3
|
Blom MP, Peona V, Prost S, Christidis L, Benz BW, Jønsson KA, Suh A, Irestedt M. Hybridization in birds-of-paradise: Widespread ancestral gene flow despite strong sexual selection in a lek-mating system. iScience 2024; 27:110300. [PMID: 39055907 PMCID: PMC11269930 DOI: 10.1016/j.isci.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Sexual selection can directly contribute to reproductive isolation and is an important mechanism that can lead to speciation. Lek-mating is one of the most extreme forms of sexual selection, but surprisingly does not seem to preclude occasional hybridization in nature. However, hybridization among lekking species may still be trivial if selection against offspring with intermediate phenotypes prohibits introgression. Here we investigate this further by sequencing the genomes of nearly all bird-of-paradise (Paradisaeidae) species and 10 museum specimens of putative hybrid origin. We find that intergeneric hybridization indeed still takes place despite extreme differentiation in form, plumage, and behavior. In parallel, the genomes of contemporary species contain widespread signatures of past introgression, demonstrating that hybridization has repeatedly resulted in shared genetic variation despite strong sexual isolation. Our study raises important questions about extrinsic factors that modulate hybridization probability and the evolutionary consequences of introgressive hybridization between lekking species.
Collapse
Affiliation(s)
- Mozes P.K. Blom
- Department for Evolutionary Diversity Dynamics, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Research, 10115 Berlin, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Valentina Peona
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Les Christidis
- Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Brett W. Benz
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| |
Collapse
|
4
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
5
|
Li X, Mao C, He J, Bin X, Liu G, Dong Z, Zhao R, Wan X, Li X. The first chromosome-level genome of the stag beetle Dorcus hopei Saunders, 1854 (Coleoptera: Lucanidae). Sci Data 2024; 11:396. [PMID: 38637640 PMCID: PMC11026507 DOI: 10.1038/s41597-024-03251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Stag beetles (Coleoptera: Lucanidae) represent a significant saproxylic assemblage in forest ecosystems and are noted for their enlarged mandibles and male polymorphism. Despite their relevance as ideal models for the study of exaggerated mandibles that aid in attracting mates, the regulatory mechanisms associated with these traits remain understudied, and restricted by the lack of high-quality reference genomes for stag beetles. To address this limitation, we successfully assembled the first chromosome-level genome of a representative species Dorcus hopei. The genome was 496.58 Mb in length, with a scaffold N50 size of 54.61 Mb, BUSCO values of 99.8%, and 96.8% of scaffolds anchored to nine pairs of chromosomes. We identified 285.27 Mb (57.45%) of repeat sequences and annotated 11,231 protein-coding genes. This genome will be a valuable resource for further understanding the evolution and ecology of stag beetles, and provides a basis for studying the mechanisms of exaggerated mandibles through comparative analysis.
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Chuyang Mao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Jinwu He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Xiaoyan Bin
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Guichun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Zhiwei Dong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Ruoping Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China
| | - Xia Wan
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| | - Xueyan Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, 650223, China.
| |
Collapse
|
6
|
Stuart KC, Johnson RN, Major RE, Atsawawaranunt K, Ewart KM, Rollins LA, Santure AW, Whibley A. The genome of a globally invasive passerine, the common myna, Acridotheres tristis. DNA Res 2024; 31:dsae005. [PMID: 38366840 PMCID: PMC10917472 DOI: 10.1093/dnares/dsae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
In an era of global climate change, biodiversity conservation is receiving increased attention. Conservation efforts are greatly aided by genetic tools and approaches, which seek to understand patterns of genetic diversity and how they impact species health and their ability to persist under future climate regimes. Invasive species offer vital model systems in which to investigate questions regarding adaptive potential, with a particular focus on how changes in genetic diversity and effective population size interact with novel selection regimes. The common myna (Acridotheres tristis) is a globally invasive passerine and is an excellent model species for research both into the persistence of low-diversity populations and the mechanisms of biological invasion. To underpin research on the invasion genetics of this species, we present the genome assembly of the common myna. We describe the genomic landscape of this species, including genome wide allelic diversity, methylation, repeats, and recombination rate, as well as an examination of gene family evolution. Finally, we use demographic analysis to identify that some native regions underwent a dramatic population increase between the two most recent periods of glaciation, and reveal artefactual impacts of genetic bottlenecks on demographic analysis.
Collapse
Affiliation(s)
- Katarina C Stuart
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca N Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Richard E Major
- Australian Museum Research Institute, Australian Museum, Sydney, Australia
| | | | - Kyle M Ewart
- Australian Museum Research Institute, Australian Museum, Sydney, Australia
- School of Life and Environmental Sciences,University of Sydney, Sydney, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| |
Collapse
|
7
|
Peona V, Kutschera VE, Blom MPK, Irestedt M, Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol 2023; 32:1288-1305. [PMID: 35488497 DOI: 10.1111/mec.16484] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
Satellite DNA (satDNA) is a fast-evolving portion of eukaryotic genomes. The homogeneous and repetitive nature of such satDNA causes problems during the assembly of genomes, and therefore it is still difficult to study it in detail in nonmodel organisms as well as across broad evolutionary timescales. Here, we combined the use of short- and long-read data to explore the diversity and evolution of satDNA between individuals of the same species and between genera of birds spanning ~40 millions of years of bird evolution using birds-of-paradise (Paradisaeidae) and crow (Corvus) species. These avian species highlighted the presence of a GC-rich Corvoidea satellitome composed of 61 satellite families and provided a set of candidate satDNA monomers for being centromeric on the basis of length, abundance, homogeneity and transcription. Surprisingly, we found that the satDNA of crow species rapidly diverged between closely related species while the satDNA appeared more similar between birds-of-paradise species belonging to different genera.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Mozes P K Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biological Sciences-Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
8
|
Kong HK, Chan Z, Yan SW, Lo PY, Wong WT, Wong KH, Lo CL. Revealing the species-specific genotype of the edible bird’s nest-producing swiftlet, Aerodramus fuciphagus and the proteome of edible bird’s nest. Food Res Int 2022; 160:111670. [DOI: 10.1016/j.foodres.2022.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
|
9
|
Ng EYX, Li S, Zhang D, Garg KM, Song G, Martinez J, Hung LM, Tu VT, Fuchs J, Dong L, Olsson U, Huang Y, Alström P, Rheindt FE, Lei F. Genome‐wide
SNPs
confirm plumage polymorphism and hybridisation within a
Cyornis
flycatcher species complex. ZOOL SCR 2022. [DOI: 10.1111/zsc.12568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elize Y. X. Ng
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Discipline of Biological Science, School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Siqi Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Kritika M. Garg
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Centre for Interdisciplinary Archaeological Research Ashoka University Sonipat India
- Department of Biology Ashoka University Sonipat India
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | | | - Le Manh Hung
- Institute of Ecology and Biological Resources, Graduate University of Science and Technology Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Graduate University of Science and Technology Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Jérôme Fuchs
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle CNRS, 22 S U, EPHE, UA CP51 Paris France
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences Beijing Normal University Beijing China
| | - Urban Olsson
- Systematics and Biodiversity, Department of Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
- Gothenburg Global Biodiversity Center Göteborg Sweden
| | - Yuan Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Frank E. Rheindt
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
10
|
Cuevas-Caballé C, Ferrer Obiol J, Vizueta J, Genovart M, Gonzalez-Solís J, Riutort M, Rozas J. The First Genome of the Balearic Shearwater (Puffinus mauretanicus) Provides a Valuable Resource for Conservation Genomics and Sheds Light on Adaptation to a Pelagic lifestyle. Genome Biol Evol 2022; 14:evac067. [PMID: 35524941 PMCID: PMC9117697 DOI: 10.1093/gbe/evac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
The Balearic shearwater (Puffinus mauretanicus) is the most threatened seabird in Europe and a member of the most speciose group of pelagic seabirds, the order Procellariiformes, which exhibit extreme adaptations to a pelagic lifestyle. The fossil record suggests that human colonisation of the Balearic Islands resulted in a sharp decrease of the Balearic shearwater population size. Currently, populations of the species continue to be decimated mainly due to predation by introduced mammals and bycatch in longline fisheries, with some studies predicting its extinction by 2070. Here, using a combination of short and long reads, we generate the first high-quality reference genome for the Balearic shearwater, with a completeness amongst the highest across available avian species. We used this reference genome to study critical aspects relevant to the conservation status of the species and to gain insights into the adaptation to a pelagic lifestyle of the order Procellariiformes. We detected relatively high levels of genome-wide heterozygosity in the Balearic shearwater despite its reduced population size. However, the reconstruction of its historical demography uncovered an abrupt population decline potentially linked to a reduction of the neritic zone during the Penultimate Glacial Period (∼194-135 ka). Comparative genomics analyses uncover a set of candidate genes that may have played an important role into the adaptation to a pelagic lifestyle of Procellariiformes, including those for the enhancement of fishing capabilities, night vision, and the development of natriuresis. The reference genome obtained will be the crucial in the future development of genetic tools in conservation efforts for this Critically Endangered species.
Collapse
Affiliation(s)
- Cristian Cuevas-Caballé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Department of Environmental Science and Policy, Università degli Studi di Milano (UniMi), Milan, Italy
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meritxell Genovart
- Mediterranean Institute for Advanced Studies (IMEDEA), CSIC-UIB & Centre for Advanced Studies of Blanes (CEAB), CSIC, Esporles, Spain
| | - Jacob Gonzalez-Solís
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| |
Collapse
|
11
|
Alfonso C, Jones BC, Vernasco BJ, Moore IT. Integrative Studies of Sexual Selection in Manakins, a Clade of Charismatic Tropical Birds. Integr Comp Biol 2021; 61:1267-1280. [PMID: 34251421 DOI: 10.1093/icb/icab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
The neotropical manakins (family Pipridae) provide a great opportunity for integrative studies of sexual selection as nearly all of the 51 species are lek-breeding, an extreme form of polygyny, and highly sexually dimorphic both in appearance and behavior. Male courtship displays are often elaborate and include auditory cues, both vocal and mechanical, as well as visual elements. In addition, the displays are often extremely rapid, highly acrobatic, and, in some species, multiple males perform coordinated displays that form the basis of long-term coalitions. Male manakins also exhibit unique neuroendocrine, physiological, and anatomical adaptations to support the performance of these complex displays and the maintenance of their intricate social systems. The Manakin Genomics Research Coordination Network (Manakin RCN, https://www.manakinsrcn.org) has brought together researchers (many in this symposium and this issue) from across disciplines to address the implications of sexual selection on evolution, ecology, behavior, and physiology in manakins. The objective of this paper is to present some of the most pertinent and integrative manakin research as well as introducing the papers presented in this issue. The results discussed at the manakin symposium, part of the 2021 Society for Integrative and Comparative Biology Conference, highlight the remarkable genomic, behavioral, and physiological adaptations as well as the evolutionary causes and consequences of strong sexual selection pressures that are evident in manakins.
Collapse
Affiliation(s)
- Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Blake C Jones
- Science and Mathematics, Bennington College, 1 College Dr., Bennington, VT 05201, USA
| | - Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Saranathan V, Finet C. Cellular and developmental basis of avian structural coloration. Curr Opin Genet Dev 2021; 69:56-64. [PMID: 33684846 DOI: 10.1016/j.gde.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Vivid structural colors in birds are a conspicuous and vital part of their phenotype. They are produced by a rich diversity of integumentary photonic nanostructures in skin and feathers. Unlike pigmentary coloration, whose genetic basis is being elucidated, little is known regarding the pathways underpinning organismal structural coloration. Here, we review available data on the development of avian structural colors. In particular, feather photonic nanostructures are understood to be intracellularly self-assembled by physicochemical forces typically seen in soft colloidal systems. We identify promising avenues for future research that can address current knowledge gaps, which are also highly relevant for the sustainable engineering of advanced bioinspired and biomimetic materials.
Collapse
Affiliation(s)
- Vinodkumar Saranathan
- Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore; NUS Nanotechnology and Nanoscience Initiative, National University of Singapore, 117581, Singapore.
| | - Cédric Finet
- Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore
| |
Collapse
|
13
|
Peona V, Blom MPK, Xu L, Burri R, Sullivan S, Bunikis I, Liachko I, Haryoko T, Jønsson KA, Zhou Q, Irestedt M, Suh A. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol Ecol Resour 2021; 21:263-286. [PMID: 32937018 PMCID: PMC7757076 DOI: 10.1111/1755-0998.13252] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat-rich and GC-rich regions (genomic "dark matter") limits insights into the evolution of genome structure and regulatory networks. Here, we compare the efficiency of currently available sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter. By adopting different de novo assembly strategies, we compare individual draft assemblies to a curated multiplatform reference assembly and identify the genomic features that cause gaps within each assembly. We show that a multiplatform assembly implementing long-read, linked-read and proximity sequencing technologies performs best at recovering transposable elements, multicopy MHC genes, GC-rich microchromosomes and the repeat-rich W chromosome. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is now possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects for optimized completeness of both the coding and noncoding parts of nonmodel genomes.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
- Museum für NaturkundeLeibniz Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Luohao Xu
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
| | - Reto Burri
- Department of Population EcologyInstitute of Ecology and EvolutionFriedrich‐Schiller‐University JenaJenaGermany
| | | | - Ignas Bunikis
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala Genome CenterUppsala UniversityUppsalaSweden
| | | | - Tri Haryoko
- Research Centre for BiologyMuseum Zoologicum BogorienseIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | - Knud A. Jønsson
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Qi Zhou
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
- MOE Laboratory of Biosystems Homeostasis & ProtectionLife Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Reproductive MedicineThe 2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Martin Irestedt
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Alexander Suh
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- School of Biological Sciences—Organisms and the EnvironmentUniversity of East AngliaNorwichUK
| |
Collapse
|
14
|
Mendes FK, Vanderpool D, Fulton B, Hahn MW. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 2020; 36:5516-5518. [PMID: 33325502 DOI: 10.1093/bioinformatics/btaa1022] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Genome sequencing projects have revealed frequent gains and losses of genes between species. Previous versions of our software, CAFE (Computational Analysis of gene Family Evolution), have allowed researchers to estimate parameters of gene gain and loss across a phylogenetic tree. However, the underlying model assumed that all gene families had the same rate of evolution, despite evidence suggesting a large amount of variation in rates among families. RESULTS Here we present CAFE 5, a completely re-written software package with numerous performance and user-interface enhancements over previous versions. These include improved support for multithreading, the explicit modelling of rate variation among families using gamma-distributed rate categories, and command-line arguments that preclude the use of accessory scripts. AVAILABILITY CAFE 5 source code, documentation, test data, and a detailed manual with examples are freely available at https://github.com/hahnlab/CAFE5/releases.
Collapse
Affiliation(s)
- Fábio K Mendes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Dan Vanderpool
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ben Fulton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.,University Information Technology Services Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.,Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Sackton TB. Studying Natural Selection in the Era of Ubiquitous Genomes. Trends Genet 2020; 36:792-803. [DOI: 10.1016/j.tig.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/15/2023]
|
16
|
Davies KTJ, Yohe LR, Almonte J, Sánchez MKR, Rengifo EM, Dumont ER, Sears KE, Dávalos LM, Rossiter SJ. Foraging shifts and visual preadaptation in ecologically diverse bats. Mol Ecol 2020; 29:1839-1859. [PMID: 32293071 DOI: 10.1111/mec.15445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/28/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Changes in behaviour may initiate shifts to new adaptive zones, with physical adaptations for novel environments evolving later. While new mutations are commonly considered engines of adaptive change, sensory evolution enabling access to new resources might also arise from standing genetic diversity, and even gene loss. We examine the relative contribution of molecular adaptations, measured by positive and relaxed selection, acting on eye-expressed genes associated with shifts to new adaptive zones in ecologically diverse bats from the superfamily Noctilionoidea. Collectively, noctilionoids display remarkable ecological breadth, from highly divergent echolocation to flight strategies linked to specialized insectivory, the parallel evolution of diverse plant-based diets (e.g., nectar, pollen and fruit) from ancestral insectivory, and-unusually for echolocating bats-often have large, well-developed eyes. We report contrasting levels of positive selection in genes associated with the development, maintenance and scope of visual function, tracing back to the origins of noctilionoids and Phyllostomidae (the bat family with most dietary diversity), instead of during shifts to novel diets. Generalized plant visiting was not associated with exceptional molecular adaptation, and exploration of these novel niches took place in an ancestral phyllostomid genetic background. In contrast, evidence for positive selection in vision genes was found at subsequent shifts to either nectarivory or frugivory. Thus, neotropical noctilionoids that use visual cues for identifying food and roosts, as well as for orientation, were effectively preadapted, with subsequent molecular adaptations in nectar-feeding lineages and the subfamily Stenodermatinae of fig-eating bats fine-tuning pre-existing visual adaptations for specialized purposes.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Laurel R Yohe
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, USA.,Department of Geology & Geophysics, Yale University, New Haven, CT, USA
| | - Jesus Almonte
- Independent Scientist, Santo Domingo, Dominican Republic
| | - Miluska K R Sánchez
- Escuela Profesional de Ciencias Biológicas, Universidad Nacional de Piura, Piura, Peru
| | - Edgardo M Rengifo
- Programa de Pós-Graduação Interunidades em Ecologia Aplicada, Escola Superior de Agricultura 'Luiz de Queiroz', Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil.,Centro de Investigación Biodiversidad Sostenible (BioS), Lima, Peru
| | - Elizabeth R Dumont
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, USA.,Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
|
18
|
A Multireference-Based Whole Genome Assembly for the Obligate Ant-Following Antbird, Rhegmatorhina melanosticta (Thamnophilidae). DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current generation high-throughput sequencing technology has facilitated the generation of more genomic-scale data than ever before, thus greatly improving our understanding of avian biology across a range of disciplines. Recent developments in linked-read sequencing (Chromium 10×) and reference-based whole-genome assembly offer an exciting prospect of more accessible chromosome-level genome sequencing in the near future. We sequenced and assembled a genome of the Hairy-crested Antbird (Rhegmatorhina melanosticta), which represents the first publicly available genome for any antbird (Thamnophilidae). Our objectives were to (1) assemble scaffolds to chromosome level based on multiple reference genomes, and report on differences relative to other genomes, (2) assess genome completeness and compare content to other related genomes, and (3) assess the suitability of linked-read sequencing technology for future studies in comparative phylogenomics and population genomics studies. Our R. melanosticta assembly was both highly contiguous (de novo scaffold N50 = 3.3 Mb, reference based N50 = 53.3 Mb) and relatively complete (contained close to 90% of evolutionarily conserved single-copy avian genes and known tetrapod ultraconserved elements). The high contiguity and completeness of this assembly enabled the genome to be successfully mapped to the chromosome level, which uncovered a consistent structural difference between R. melanosticta and other avian genomes. Our results are consistent with the observation that avian genomes are structurally conserved. Additionally, our results demonstrate the utility of linked-read sequencing for non-model genomics. Finally, we demonstrate the value of our R. melanosticta genome for future researchers by mapping reduced representation sequencing data, and by accurately reconstructing the phylogenetic relationships among a sample of thamnophilid species.
Collapse
|
19
|
Prost S, Armstrong EE, Nylander J, Thomas GWC, Suh A, Petersen B, Dalen L, Benz BW, Blom MPK, Palkopoulou E, Ericson PGP, Irestedt M. Comparative analyses identify genomic features potentially involved in the evolution of birds-of-paradise. Gigascience 2019; 8:giz003. [PMID: 30689847 PMCID: PMC6497032 DOI: 10.1093/gigascience/giz003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The diverse array of phenotypes and courtship displays exhibited by birds-of-paradise have long fascinated scientists and nonscientists alike. Remarkably, almost nothing is known about the genomics of this iconic radiation. There are 41 species in 16 genera currently recognized within the birds-of-paradise family (Paradisaeidae), most of which are endemic to the island of New Guinea. In this study, we sequenced genomes of representatives from all five major clades within this family to characterize genomic changes that may have played a role in the evolution of the group's extensive phenotypic diversity. We found genes important for coloration, morphology, and feather and eye development to be under positive selection. In birds-of-paradise with complex lekking systems and strong sexual dimorphism, the core birds-of-paradise, we found Gene Ontology categories for "startle response" and "olfactory receptor activity" to be enriched among the gene families expanding significantly faster compared to the other birds in our study. Furthermore, we found novel families of retrovirus-like retrotransposons active in all three de novo genomes since the early diversification of the birds-of-paradise group, which might have played a role in the evolution of this fascinating group of birds.
Collapse
Affiliation(s)
- Stefan Prost
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
- Department of Integrative Biology, University of California, 3040 Valley Life Science Building, Berkeley, CA 94720-3140, USA
| | - Ellie E Armstrong
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305–5020, USA
| | - Johan Nylander
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Gregg W C Thomas
- Department of Biology and School of Informatics, Computing, and Engineering, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Norbyvaegen 14-18, 75236 Uppsala, Sweden
| | - Bent Petersen
- Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, Asian Institute of Medicine, Science and Technology,Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia
| | - Love Dalen
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Brett W Benz
- Department of Ornithology, American Museum of Natural History, Central Park West, New York, NY 10024, USA
| | - Mozes P K Blom
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Eleftheria Palkopoulou
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Per G P Ericson
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Martin Irestedt
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| |
Collapse
|
20
|
Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nat Ecol Evol 2019; 3:834-844. [DOI: 10.1038/s41559-019-0850-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
|