1
|
León F, Pizarro E, Noll D, Pertierra LR, Parker P, Espinaze MPA, Luna-Jorquera G, Simeone A, Frere E, Dantas GPM, Cristofari R, Cornejo OE, Bowie RCK, Vianna JA. Comparative Genomics Supports Ecologically Induced Selection as a Putative Driver of Banded Penguin Diversification. Mol Biol Evol 2024; 41:msae166. [PMID: 39150953 PMCID: PMC11371425 DOI: 10.1093/molbev/msae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024] Open
Abstract
The relative importance of genetic drift and local adaptation in facilitating speciation remains unclear. This is particularly true for seabirds, which can disperse over large geographic distances, providing opportunities for intermittent gene flow among distant colonies that span the temperature and salinity gradients of the oceans. Here, we delve into the genomic basis of adaptation and speciation of banded penguins, Galápagos (Spheniscus mendiculus), Humboldt (Spheniscus humboldti), Magellanic (Spheniscus magellanicus), and African penguins (Spheniscus demersus), by analyzing 114 genomes from the main 16 breeding colonies. We aim to identify the molecular mechanism and genomic adaptive traits that have facilitated their diversifications. Through positive selection and gene family expansion analyses, we identified candidate genes that may be related to reproductive isolation processes mediated by ecological thermal niche divergence. We recover signals of positive selection on key loci associated with spermatogenesis, especially during the recent peripatric divergence of the Galápagos penguin from the Humboldt penguin. High temperatures in tropical habitats may have favored selection on loci associated with spermatogenesis to maintain sperm viability, leading to reproductive isolation among young species. Our results suggest that genome-wide selection on loci associated with molecular pathways that underpin thermoregulation, osmoregulation, hypoxia, and social behavior appears to have been crucial in local adaptation of banded penguins. Overall, these results contribute to our understanding of how the complexity of biotic, but especially abiotic, factors, along with the high dispersal capabilities of these marine species, may promote both neutral and adaptive lineage divergence even in the presence of gene flow.
Collapse
Affiliation(s)
- Fabiola León
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Eduardo Pizarro
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Daly Noll
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Luis R Pertierra
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Patricia Parker
- Department of Biology, University of Missouri St. Louis and Saint Louis Zoo, St. Louis, MO 63121-4400, USA
| | - Marcela P A Espinaze
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Guillermo Luna-Jorquera
- Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
| | - Alejandro Simeone
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Departamento de Ecología y Biodiversidad, Santiago, Chile
| | - Esteban Frere
- Centro de Investigaciones de Puerto Deseado, Universidad Nacional de la Patagonia Austral, Puerto Deseado, Argentina
| | - Gisele P M Dantas
- PPG Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG 30535-901, Brazil
| | - Robin Cristofari
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Omar E Cornejo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160, USA
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| |
Collapse
|
2
|
Anchundia DJ, Lam AW, Henderson JB, Van Dam MH, Dumbacher JP. Genome Assembly of Pyrocephalus nanus: A Step Toward the Genetic Conservation of the Endangered Little Vermilion Flycatcher of the Galapagos Islands. Genome Biol Evol 2024; 16:evae083. [PMID: 38652799 PMCID: PMC11077314 DOI: 10.1093/gbe/evae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
Incredibly powerful whole genome studies of conservation genetics, evolution, and biogeography become possible for non-model organisms when reference genomes are available. Here, we report the sequence and assembly of the whole genome of the little vermilion flycatcher (Pyrocephalus nanus; family Tyrannidae), which is an endemic, endangered, and declining species of the Galapagos Islands. Using PacBio HiFi reads to assemble long contigs and Hi-C reads for scaffolding, we assembled a genome of 1.07 Gb comprising 267 contigs in 152 scaffolds, scaffold N50 74 M, contig N50 17.8 M, with 98.9% assigned to candidate chromosomal sequences and 99.72% of the BUSCO passeriformes 10,844 single-copy orthologs present. In addition, we used the novel HiFiMiTie pipeline to fully assemble and verify all portions of the mitochondrial genome from HiFi reads, obtaining a mitogenome of 17,151 bases, containing 13 protein-coding genes, 22 tRNAs, 2 rRNAs, two control regions, and a unique structure of control region duplication and repeats. These genomes will be a critical tool for much-needed studies of phylogenetics, population genetics, biogeography, and conservation genetics of Pyrocephalus and related genera. This genome and other studies that use it will be able to provide recommendations for conservation management, taxonomic improvement, and to understand the evolution and diversification of this genus within the Galapagos Islands.
Collapse
Affiliation(s)
- David J Anchundia
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna 1030, Austria
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Galapagos, Ecuador
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Athena W Lam
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| | - James B Henderson
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Matthew H Van Dam
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| | - John P Dumbacher
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| |
Collapse
|
3
|
Herman RW, Clucas G, Younger J, Bates J, Robinson B, Reddy S, Stepanuk J, O'Brien K, Veeramah K, Lynch HJ. Whole genome sequencing reveals stepping-stone dispersal buffered against founder effects in a range expanding seabird. Mol Ecol 2024; 33:e17282. [PMID: 38299701 DOI: 10.1111/mec.17282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Many species are shifting their ranges in response to climate-driven environmental changes, particularly in high-latitude regions. However, the patterns of dispersal and colonization during range shifting events are not always clear. Understanding how populations are connected through space and time can reveal how species navigate a changing environment. Here, we present a fine-scale population genomics study of gentoo penguins (Pygoscelis papua), a presumed site-faithful colonial nesting species that has increased in population size and expanded its range south along the Western Antarctic Peninsula. Using whole genome sequencing, we analysed 129 gentoo penguin individuals across 12 colonies located at or near the southern range edge. Through a detailed examination of fine-scale population structure, admixture, and population divergence, we inferred that gentoo penguins historically dispersed rapidly in a stepping-stone pattern from the South Shetland Islands leading to the colonization of Anvers Island, and then the adjacent mainland Western Antarctica Peninsula. Recent southward expansion along the Western Antarctic Peninsula also followed a stepping-stone dispersal pattern coupled with limited post-divergence gene flow from colonies on Anvers Island. Genetic diversity appeared to be maintained across colonies during the historical dispersal process, and range-edge populations are still growing. This suggests large numbers of migrants may provide a buffer against founder effects at the beginning of colonization events to maintain genetic diversity similar to that of the source populations before migration ceases post-divergence. These results coupled with a continued increase in effective population size since approximately 500-800 years ago distinguish gentoo penguins as a robust species that is highly adaptable and resilient to changing climate.
Collapse
Affiliation(s)
- Rachael W Herman
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Gemma Clucas
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Jane Younger
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - John Bates
- Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, Illinois, USA
| | - Bryce Robinson
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Sushma Reddy
- Bell Museum of Natural History and Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Julia Stepanuk
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Katie O'Brien
- Milner Centre for Evolution, University of Bath, Bath, UK
| | - Krishna Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Heather J Lynch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Woods SJ, Hughes-Medlicott NJ, McDowell A. Pharmacokinetics in Penguins Compared to Other Avian Species: A Review of Enrofloxacin and Voriconazole. Mol Pharm 2023; 20:4430-4442. [PMID: 37579225 DOI: 10.1021/acs.molpharmaceut.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Australasia is home to unique and endangered avian species. Drug administration to this group of animal patients for prophylaxis and treatment is challenging from a number of different perspectives. A key limitation for optimal drug dosing in birds is the lack of published pharmacokinetic studies to guide dose requirements. The aim of this review was to systematically investigate published literature on pharmacokinetics in penguin species and compare that with the pharmacokinetics of other avian species with a focus on two drugs: enrofloxacin and voriconazole. The review was conducted following PRISMA guidelines. A systematic literature search was performed in Pubmed, Embase, Scopus, and Web of Science databases. A key finding is that penguin pharmacokinetics differs from other avian species, with weight-adjusted AUC and Cmax values higher than most other avian species (e.g., for enrofloxacin, the AUC in the African penguin is 85.7 μg h/mL, which is more than double the other bird species). Doses for some avian species may be successfully extrapolated from other avian species; however, it appears important to consider factors other than just body weight (e.g., clearance mechanism and drug physicochemical characteristics). Consequently, there is an important need for robust pharmacokinetic data in wildlife species to ensure optimal therapy for this special group of patients. As part of this review, we identify key aspects that should be considered when estimating dose in species for which there is limited pharmacokinetic information available.
Collapse
Affiliation(s)
- Stacey J Woods
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | | | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Haidr NS. Ecomorphological variation of the penguin wing. J Morphol 2023; 284:e21588. [PMID: 37183492 DOI: 10.1002/jmor.21588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
Penguins (Aves, Sphenisciformes) are pursuit divers that feed mainly on krill, fish, and squid. Although they are opportunistic feeders, some species are more generalists than others and many show dietary preferences toward krill and other crustaceans or fish and squid. Their diving depth seems to follow a body size pattern and relates to the type of item that they prey on. Penguins dive with their wing; hence their wing musculature is responsible for the animal maneuverability and strength while diving. In the present study, ecological traits such as diving depths and prey composition are used to explore if morphology relates to foraging habits. A geometric morphometric approach is used to quantitatively address these morphological differences in the wing apparatus of all extant penguins and a fossil species taking into consideration allometric and phylogenetic factors. Results show that morphological differences among penguins with different diets are significant and strong; groups are well separated with the greatest differences found between piscivorous and crustacivorous penguins. Dive depth has a moderate covariation with morphology and a strong correspondence with wing area. Last, Madrynornis mirandus, an exceptionally well-preserved fossil from the Miocene of Patagonia, is found to be close to the piscivorous and generalist piscivorous species. It is proposed that swimming styles correlate with specific traits of the anatomy of wing and pectoral girdle skeleton and muscles.
Collapse
Affiliation(s)
- Nadia Soledad Haidr
- Unidad Ejecutora Lillo (FML-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
6
|
Guo X, Cui Y, Irwin DM, Liu Y. Accelerated evolution of dim-light vision-related arrestin in deep-diving amniotes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1069088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arrestins are key molecules involved in the signaling of light-sensation initiated by visual pigments in retinal photoreceptor cells. Vertebrate photoreceptor cells have two types of arrestins, rod arrestin, which is encoded by SAG and is expressed in both rods and cones, and cone arrestin, encoded by ARR3 in cones. The arrestins can bind to visual pigments, and thus regulate either dim-light vision via interactions with rhodopsin or bright-light vision together with cone visual pigments. After adapting to terrestrial life, several amniote lineages independently went back to the sea and evolved deep-diving habits. Interestingly, the rhodopsins in these species exhibit specialized phenotypes responding to rapidly changing dim-light environments. However, little is known about whether their rod arrestin also experienced adaptive evolution associated with rhodopsin. Here, we collected SAG coding sequences from >250 amniote species, and examined changes in selective pressure experienced by the sequences from deep-diving taxa. Divergent patterns of evolution of SAG were observed in the penguin, pinniped and cetacean clades, suggesting possible co-adaptation with rhodopsin. After verifying pseudogenes, the same analyses were performed for cone arrestin (ARR3) in deep-diving species and only sequences from cetacean species, and not pinnipeds or penguins, have experienced changed selection pressure compared to other species. Taken together, this evidence for changes in selective pressures acting upon arrestin genes strengthens the suggestion that rapid dim-light adaptation for deep-diving amniotes require SAG, but not ARR3.
Collapse
|
7
|
Genomic insights into the secondary aquatic transition of penguins. Nat Commun 2022; 13:3912. [PMID: 35853876 PMCID: PMC9296559 DOI: 10.1038/s41467-022-31508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth. This study examines the tempo and drivers of penguin diversification by combining genomes from all extant and recently extinct penguin lineages, stratigraphic data from fossil penguins and morphological and biogeographic data from all extant and extinct species. Together, these datasets provide new insights into the genetic basis and evolution of adaptations in penguins.
Collapse
|
8
|
Fiddaman SR, Vinkler M, Spiro SG, Levy H, Emerling CA, Boyd AC, Dimopoulos EA, Vianna JA, Cole TL, Pan H, Fang M, Zhang G, Hart T, Frantz LAF, Smith AL. Adaptation and cryptic pseudogenization in penguin Toll-like Receptors. Mol Biol Evol 2021; 39:6460345. [PMID: 34897511 PMCID: PMC8788240 DOI: 10.1093/molbev/msab354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.
Collapse
Affiliation(s)
- Steven R Fiddaman
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University Prague, Czech Republic
| | - Simon G Spiro
- Wildlife Health Services, Zoological Society of London Regent's Park, London, UK
| | - Hila Levy
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | | | - Amy C Boyd
- Jenner Institute, University of Oxford Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford Oxford, UK
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ecosistemas y Medio Ambiente Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Theresa L Cole
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark
| | - Hailin Pan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Miaoquan Fang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Tom Hart
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Fogg Building, Queen Mary University of London Mile End Rd, Bethnal Green, London E1 4DQ, UK.,Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Germany
| | - Adrian L Smith
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
9
|
Xia Y, Cui Y, Wang A, Liu F, Chi H, Potter JHT, Williamson J, Chen X, Rossiter SJ, Liu Y. Convergent Phenotypic Evolution of Rhodopsin for Dim-Light Sensing across Deep-Diving Vertebrates. Mol Biol Evol 2021; 38:5726-5734. [PMID: 34463769 PMCID: PMC8662592 DOI: 10.1093/molbev/msab262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rhodopsin comprises an opsin attached to a retinal chromophore and is the only visual pigment conferring dim-light vision in vertebrates. On activation by photons, the retinal group becomes detached from the opsin, which is then inactive until it is recharged. Of all vertebrate species, those that dive face unique visual challenges, experiencing rapid decreases in light level and hunting in near darkness. Here, we combine sequence analyses with functional assays to show that the rhodopsin pigments of four divergent lineages of deep-diving vertebrates have undergone convergent increases in their retinal release rate. We compare gene sequences and detect parallel amino acids between penguins and diving mammals and perform mutagenesis to show that a single critical residue fully explains the observed increases in retinal release rate in both the emperor penguin and beaked whale. At the same time, we find that other shared sites have no significant effect on retinal release, implying that convergence does not always signify adaptive significance. We propose that accelerated retinal release confers rapid rhodopsin recharging, enabling the visual systems of diving species to adjust quickly to changing light levels as they descend through the water column. This contrasts with nocturnal species, where adaptation to darkness has been attributed to slower retinal release rates.
Collapse
Affiliation(s)
- Yu Xia
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yimeng Cui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | | | - Fangnan Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hai Chi
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Joshua H T Potter
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Joseph Williamson
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | | | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Zoonosis of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Evolved increases in hemoglobin-oxygen affinity and the Bohr effect coincided with the aquatic specialization of penguins. Proc Natl Acad Sci U S A 2021; 118:2023936118. [PMID: 33753505 PMCID: PMC8020755 DOI: 10.1073/pnas.2023936118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In diving birds like penguins, physiologic considerations suggest that increased hemoglobin (Hb)-O2 affinity may improve pulmonary O2 extraction and enhance dive capacity. We integrated experimental tests on whole-blood and native Hbs of penguins with protein engineering experiments on reconstructed ancestral Hbs. The experiments involving ancestral protein resurrection enabled us to test for evolved changes in Hb function in the stem lineage of penguins after divergence from their closest nondiving relatives. We demonstrate that penguins evolved an increased Hb-O2 affinity in conjunction with a greatly augmented Bohr effect (i.e., reduction in Hb-O2 affinity at low pH) that should maximize pulmonary O2 extraction without compromising O2 delivery at systemic capillaries. Dive capacities of air-breathing vertebrates are dictated by onboard O2 stores, suggesting that physiologic specialization of diving birds such as penguins may have involved adaptive changes in convective O2 transport. It has been hypothesized that increased hemoglobin (Hb)-O2 affinity improves pulmonary O2 extraction and enhances the capacity for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hb with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hb representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O2 affinity and a greatly augmented Bohr effect (i.e., reduced Hb-O2 affinity at low pH). Although an increased Hb-O2 affinity reduces the gradient for O2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O2 affinity in combination with the augmented Bohr effect maximizes both O2 extraction from the lungs and O2 unloading from the blood, allowing penguins to fully utilize their onboard O2 stores and maximize underwater foraging time.
Collapse
|
11
|
Abstract
Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (N e ) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased N e between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.
Collapse
|
12
|
Thomas DB, Tennyson AJD, Scofield RP, Heath TA, Pett W, Ksepka DT. Ancient crested penguin constrains timing of recruitment into seabird hotspot. Proc Biol Sci 2020; 287:20201497. [PMID: 32781949 DOI: 10.1098/rspb.2020.1497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
New Zealand is a globally significant hotspot for seabird diversity, but the sparse fossil record for most seabird lineages has impeded our understanding of how and when this hotspot developed. Here, we describe multiple exceptionally well-preserved specimens of a new species of penguin from tightly dated (3.36-3.06 Ma) Pliocene deposits in New Zealand. Bayesian and parsimony analyses place Eudyptes atatu sp. nov. as the sister species to all extant and recently extinct members of the crested penguin genus Eudyptes. The new species has a markedly more slender upper beak and mandible compared with other Eudyptes penguins. Our combined evidence approach reveals that deep bills evolved in both crested and stiff-tailed penguins (Pygoscelis) during the Pliocene. That deep bills arose so late in the greater than 60 million year evolutionary history of penguins suggests that dietary shifts may have occurred as wind-driven Pliocene upwelling radically restructured southern ocean ecosystems. Ancestral area reconstructions using BioGeoBEARS identify New Zealand as the most likely ancestral area for total-group penguins, crown penguins and crested penguins. Our analyses provide a timeframe for recruitment of crown penguins into the New Zealand avifauna, indicating this process began in the late Neogene and was completed via multiple waves of colonizing lineages.
Collapse
Affiliation(s)
- Daniel B Thomas
- School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand
| | - Alan J D Tennyson
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand
| | - R Paul Scofield
- Canterbury Museum, Rolleston Avenue, Christchurch 8001, New Zealand
| | - Tracy A Heath
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
13
|
Pan H, Cole TL, Bi X, Fang M, Zhou C, Yang Z, Ksepka DT, Hart T, Bouzat JL, Argilla LS, Bertelsen MF, Boersma PD, Bost CA, Cherel Y, Dann P, Fiddaman SR, Howard P, Labuschagne K, Mattern T, Miller G, Parker P, Phillips RA, Quillfeldt P, Ryan PG, Taylor H, Thompson DR, Young MJ, Ellegaard MR, Gilbert MTP, Sinding MHS, Pacheco G, Shepherd LD, Tennyson AJD, Grosser S, Kay E, Nupen LJ, Ellenberg U, Houston DM, Reeve AH, Johnson K, Masello JF, Stracke T, McKinlay B, Borboroglu PG, Zhang DX, Zhang G. High-coverage genomes to elucidate the evolution of penguins. Gigascience 2020; 8:5571031. [PMID: 31531675 PMCID: PMC6904868 DOI: 10.1093/gigascience/giz117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.
Collapse
Affiliation(s)
- Hailin Pan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Theresa L Cole
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, Canterbury 7640, New Zealand.,Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand
| | - Xupeng Bi
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Miaoquan Fang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chengran Zhou
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zhengtao Yang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Tom Hart
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Juan L Bouzat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Lisa S Argilla
- The Wildlife Hospital Dunedin, School of Veterinary Nursing, Otago Polytechnic, Dunedin, Otago 9016, New Zealand
| | - Mads F Bertelsen
- Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Dee Boersma
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Peter Dann
- Research Department, Phillip Island Nature Parks, PO Box 97, Cowes, Phillip Island, Victoria, 3922, Australia
| | - Steven R Fiddaman
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Pauline Howard
- Hornby Veterinary Centre, 7 Tower Street, Hornby, Christchurch, Canterbury 8042, New Zealand.,South Island Wildlife Hospital, Christchurch, Canterbury, New Zealand
| | - Kim Labuschagne
- National Zoological Garden, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
| | - Thomas Mattern
- Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand
| | - Gary Miller
- Division of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Patricia Parker
- Department of Biology, University of Missouri St. Louis, St Louis, MO 63121, USA
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, UK
| | - Petra Quillfeldt
- Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Helen Taylor
- Vet Services Hawkes Bay Ltd, 801 Heretaunga Street, Hastings, New Zealand.,Wairoa Farm Vets, 77 Queen Street, Wairoa 4108, New Zealand
| | - David R Thompson
- National Institute of Water and Atmospheric Research Ltd., Private Bag 14901, Kilbirnie, Wellington 6241, New Zealand
| | - Melanie J Young
- Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand
| | - Martin R Ellegaard
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen, Denmark.,NTNU University Museum, Trondheim, Norway
| | - Mikkel-Holger S Sinding
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen, Denmark
| | - George Pacheco
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen, Denmark
| | - Lara D Shepherd
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand
| | - Alan J D Tennyson
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand
| | - Stefanie Grosser
- Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand.,Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Emily Kay
- Wildbase, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.,Wellington Zoo, 200 Daniell St, Newtown, Wellington 6021, New Zealand
| | - Lisa J Nupen
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa.,National Zoological Gardens of South Africa, Pretoria, South Africa
| | - Ursula Ellenberg
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia.,Global Penguin Society, University of Washington, Seattle, WA, USA
| | - David M Houston
- Biodiversity Group, Department of Conservation, Auckland, New Zealand
| | - Andrew Hart Reeve
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.,Department of Biology, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Kathryn Johnson
- Wildbase, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.,Wellington Zoo, 200 Daniell St, Newtown, Wellington 6021, New Zealand
| | - Juan F Masello
- Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Thomas Stracke
- South Island Wildlife Hospital, Christchurch, Canterbury, New Zealand
| | - Bruce McKinlay
- Biodiversity Group, Department of Conservation, Dunedin, New Zealand
| | - Pablo García Borboroglu
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA.,Global Penguin Society, Puerto Madryn 9120, Argentina.,CESIMAR CCT Cenpat-CONICET, Puerto Madryn 9120, Chubut, Argentina
| | - De-Xing Zhang
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
14
|
Pan H, Cole TL, Bi X, Fang M, Zhou C, Yang Z, Ksepka DT, Hart T, Bouzat JL, Argilla LS, Bertelsen MF, Boersma PD, Bost CA, Cherel Y, Dann P, Fiddaman SR, Howard P, Labuschagne K, Mattern T, Miller G, Parker P, Phillips RA, Quillfeldt P, Ryan PG, Taylor H, Thompson DR, Young MJ, Ellegaard MR, Gilbert MTP, Sinding MHS, Pacheco G, Shepherd LD, Tennyson AJD, Grosser S, Kay E, Nupen LJ, Ellenberg U, Houston DM, Reeve AH, Johnson K, Masello JF, Stracke T, McKinlay B, Garc Ia Borboroglu P, Zhang DX, Zhang G. Correction to: High-coverage genomes to elucidate the evolution of penguins. Gigascience 2020; 9:giaa031. [PMID: 32191810 PMCID: PMC7081963 DOI: 10.1093/gigascience/giaa031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Hailin Pan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Theresa L Cole
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, Canterbury 7640, New Zealand
- Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand
| | - Xupeng Bi
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Miaoquan Fang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chengran Zhou
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zhengtao Yang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Tom Hart
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Juan L Bouzat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Lisa S Argilla
- The Wildlife Hospital Dunedin, School of Veterinary Nursing, Otago Polytechnic, Dunedin, Otago 9016, New Zealand
| | - Mads F Bertelsen
- Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Dee Boersma
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Charles-Andre Bost
- Centre d'Etudes Biologiques de Chize (CEBC), UMR 7372 du CNRS-La Rochelle Universite, 79360 Villiers-en-Bois, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chize (CEBC), UMR 7372 du CNRS-La Rochelle Universite, 79360 Villiers-en-Bois, France
| | - Peter Dann
- Research Department, Phillip Island Nature Parks, PO Box 97, Cowes, Phillip Island, Victoria, 3922, Australia
| | - Steven R Fiddaman
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Pauline Howard
- Hornby Veterinary Centre, 7 Tower Street, Hornby, Christchurch, Canterbury 8042, New Zealand
- South Island Wildlife Hospital, Christchurch, Canterbury, New Zealand
| | - Kim Labuschagne
- National Zoological Garden, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
| | - Thomas Mattern
- Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand
| | - Gary Miller
- Division of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Patricia Parker
- Department of Biology, University of Missouri St. Louis, St Louis, MO 63121, USA
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, UK
| | - Petra Quillfeldt
- Justus-Liebig-Universitat Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Helen Taylor
- Vet Services Hawkes Bay Ltd, 801 Heretaunga Street, Hastings, New Zealand
- Wairoa Farm Vets, 77 Queen Street, Wairoa 4108, New Zealand
| | - David R Thompson
- National Institute of Water and Atmospheric Research Ltd., Private Bag 14901, Kilbirnie, Wellington 6241, New Zealand
| | - Melanie J Young
- Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand
| | - Martin R Ellegaard
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen, Denmark
- NTNU University Museum, Trondheim, Norway
| | - Mikkel-Holger S Sinding
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen, Denmark
| | - George Pacheco
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen, Denmark
| | - Lara D Shepherd
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand
| | - Alan J D Tennyson
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand
| | - Stefanie Grosser
- Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Emily Kay
- Wildbase, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Wellington Zoo, 200 Daniell St, Newtown, Wellington 6021, New Zealand
| | - Lisa J Nupen
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
- National Zoological Gardens of South Africa, Pretoria, South Africa
| | - Ursula Ellenberg
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
- Global Penguin Society, University of Washington, Seattle, WA, USA
| | - David M Houston
- Biodiversity Group, Department of Conservation, Auckland, New Zealand
| | - Andrew Hart Reeve
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Department of Biology, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Kathryn Johnson
- Wildbase, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Wellington Zoo, 200 Daniell St, Newtown, Wellington 6021, New Zealand
| | - Juan F Masello
- Justus-Liebig-Universitat Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Thomas Stracke
- South Island Wildlife Hospital, Christchurch, Canterbury, New Zealand
| | - Bruce McKinlay
- Biodiversity Group, Department of Conservation, Dunedin, New Zealand
| | - Pablo Garc Ia Borboroglu
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
- Global Penguin Society, Puerto Madryn 9120, Argentina
- CESIMAR CCT Cenpat-CONICET, Puerto Madryn 9120, Chubut, Argentina
| | - De-Xing Zhang
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|