1
|
Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis 2019; 13:e0007424. [PMID: 31344033 PMCID: PMC6657821 DOI: 10.1371/journal.pntd.0007424] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether the current biosafety level of this strain should be reevaluated. In addition, we will summarize the current state of biotechnological research involving L. tarentolae and explain why this eukaryotic parasite is an advantageous and promising human recombinant protein expression host. This summary includes overall biotechnological applications, insights into its protein expression machinery (especially on glycoprotein and antibody fragment expression), available expression vectors, cell culture conditions, and its potential as an immunotherapy agent for human leishmaniasis treatment. Furthermore, we will highlight useful online tools and, finally, discuss possible future applications such as the humanization of the glycosylation profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigote-like cells of this species or in amastigotes of avirulent human-pathogenic Leishmania species.
Collapse
Affiliation(s)
- Stephan Klatt
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, University of California, Los Angeles, California, United States of America
| | - Dmitri A. Maslov
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
| | - Zoltán Konthur
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| |
Collapse
|
2
|
Juliant S, Harduin-Lepers A, Monjaret F, Catieau B, Violet ML, Cérutti P, Ozil A, Duonor-Cérutti M. The α1,6-fucosyltransferase gene (fut8) from the Sf9 lepidopteran insect cell line: insights into fut8 evolution. PLoS One 2014; 9:e110422. [PMID: 25333276 PMCID: PMC4204859 DOI: 10.1371/journal.pone.0110422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2014] [Indexed: 01/09/2023] Open
Abstract
The core alpha1,6-fucosyltransferase (FUT8) catalyzes the transfer of a fucosyl moiety from GDP-fucose to the innermost asparagine-linked N-acetylglucosamine residue of glycoproteins. In mammals, this glycosylation has an important function in many fundamental biological processes and although no essential role has been demonstrated yet in all animals, FUT8 amino acid (aa) sequence and FUT8 activity are very well conserved throughout the animal kingdom. We have cloned the cDNA and the complete gene encoding the FUT8 in the Sf9 (Spodoptera frugiperda) lepidopteran cell line. As in most animal genomes, fut8 is a single-copy gene organized in different exons. The open reading frame contains 12 exons, a characteristic that seems to be shared by all lepidopteran fut8 genes. We chose to study the gene structure as a way to characterize the evolutionary relationships of the fut8 genes in metazoans. Analysis of the intron-exon organization in 56 fut8 orthologs allowed us to propose a model for fut8 evolution in metazoans. The presence of a highly variable number of exons in metazoan fut8 genes suggests a complex evolutionary history with many intron gain and loss events, particularly in arthropods, but not in chordata. Moreover, despite the high conservation of lepidoptera FUT8 sequences also in vertebrates and hymenoptera, the exon-intron organization of hymenoptera fut8 genes is order-specific with no shared exons. This feature suggests that the observed intron losses and gains may be linked to evolutionary innovations, such as the appearance of new orders.
Collapse
Affiliation(s)
- Sylvie Juliant
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Anne Harduin-Lepers
- CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - François Monjaret
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Béatrice Catieau
- CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
- Laboratoire Français du Fractionnement et des Biotechnologies de Lille, Lille, France
| | - Marie-Luce Violet
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Pierre Cérutti
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | - Annick Ozil
- CNRS UPS3044 Baculovirus et Thérapie, Saint Christol Lèz Alès, France
| | | |
Collapse
|
3
|
Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate. Appl Environ Microbiol 2014; 80:5984-91. [PMID: 25063655 DOI: 10.1128/aem.01465-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
trans-Sialidase (TS) enzymes catalyze the transfer of sialyl (Sia) residues from Sia(α2-3)Gal(β1-x)-glycans (sialo-glycans) to Gal(β1-x)-glycans (asialo-glycans). Aiming to apply this concept for the sialylation of linear and branched (Gal)nGlc oligosaccharide mixtures (GOS) using bovine κ-casein-derived glycomacropeptide (GMP) as the sialic acid donor, a kinetic study has been carried out with three components of GOS, i.e., 3'-galactosyl-lactose (β3'-GL), 4'-galactosyl-lactose (β4'-GL), and 6'-galactosyl-lactose (β6'-GL). This prebiotic GOS is prepared from lactose by incubation with suitable β-galactosidases, whereas GMP is a side-stream product of the dairy industry. The trans-sialidase from Trypanosoma cruzi (TcTS) was expressed in Escherichia coli and purified. Its temperature and pH optima were determined to be 25°C and pH 5.0, respectively. GMP [sialic acid content, 3.6% (wt/wt); N-acetylneuraminic acid (Neu5Ac), >99%; (α2-3)-linked Neu5Ac, 59%] was found to be an efficient sialyl donor, and up to 95% of the (α2-3)-linked Neu5Ac could be transferred to lactose when a 10-fold excess of this acceptor substrate was used. The products of the TcTS-catalyzed sialylation of β3'-GL, β4'-GL, and β6'-GL, using GMP as the sialic acid donor, were purified, and their structures were elucidated by nuclear magnetic resonance spectroscopy. Monosialylated β3'-GL and β4'-GL contained Neu5Ac connected to the terminal Gal residue; however, in the case of β6'-GL, TcTS was shown to sialylate the 3 position of both the internal and terminal Gal moieties, yielding two different monosialylated products and a disialylated structure. Kinetic analyses showed that TcTS had higher affinity for the GL substrates than lactose, while the Vmax and kcat values were higher in the case of lactose.
Collapse
|
4
|
Cheng LL, Shidmoossavee FS, Bennet AJ. Neuraminidase Substrate Promiscuity Permits a Mutant Micromonospora viridifaciens Enzyme To Synthesize Artificial Carbohydrates. Biochemistry 2014; 53:3982-89. [DOI: 10.1021/bi500203p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Lydia L. Cheng
- Departments
of Chemistry
and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Fahimeh S. Shidmoossavee
- Departments
of Chemistry
and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J. Bennet
- Departments
of Chemistry
and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
5
|
Nahálka J, Pätoprstý V. Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org Biomol Chem 2009; 7:1778-80. [PMID: 19590770 DOI: 10.1039/b822549b] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Active inclusion bodies of polyphosphate kinase 3 and cytidine 5'-monophosphate kinase were combined with whole cells that co-express sialic acid aldolase and CMP-sialic acid synthetase. The biocatalytic mixture was used for the synthesis of CMP-sialic acid, which was then converted to 3'-sialyllactose by whole cells.
Collapse
Affiliation(s)
- Jozef Nahálka
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538, Bratislava, Slovak Republic.
| | | |
Collapse
|
6
|
Decrem Y, Mariller M, Lahaye K, Blasioli V, Beaufays J, Zouaoui Boudjeltia K, Vanhaeverbeek M, Cérutti M, Brossard M, Vanhamme L, Godfroid E. The impact of gene knock-down and vaccination against salivary metalloproteases on blood feeding and egg laying by Ixodes ricinus. Int J Parasitol 2007; 38:549-60. [PMID: 17959179 DOI: 10.1016/j.ijpara.2007.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/28/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
Two cDNAs coding homologous putative metalloproteases (Metis 1 and Metis 2, expected molecular weights of 55.6 and 56.0kDa, respectively) were identified from the hard tick Ixodes ricinus. The expression of Metis genes was induced in salivary glands during tick blood meal. RNA interference was used to assess the role of both Metis 1 and Metis 2 in tick feeding. It was found that salivary gland extracts lacking Metis 1-2 had a restricted ability to interfere with fibrinolysis. RNAi against Metis 1-2 also induced a high mortality rate. An immune reaction was raised in repeatedly bitten animals against Metis 1 and 2. Vaccination of hosts with the recombinant Metis 1 protein produced in a eukaryotic system partially interfered with completion of the blood meal. Although vaccination did not alter the survival rate or feeding time of ticks, their weight gain and oviposition rate were reduced. This will affect their reproductive fitness in the field. We believe this is the first report of an anti-tick vaccine trial using a metalloprotease derived from I. ricinus.
Collapse
Affiliation(s)
- Yves Decrem
- Laboratoire de Biologie Moléculaire des Ectoparasites, IBMM (Institut de Biologie et Médecine Moléculaires), Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet, 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Riollet C, Mutuel D, Duonor-Cérutti M, Rainard P. Determination and Characterization of Bovine Interleukin-17 cDNA. J Interferon Cytokine Res 2006; 26:141-9. [PMID: 16542136 DOI: 10.1089/jir.2006.26.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine produced by activated memory T cells, and it appears to play an upstream role in T cell-triggered inflammation by stimulating stromal cells to secrete other cytokines. We hypothesize that IL-17 plays a role in the recruitment of neutrophils in the bovine mammary gland during infection or immune-mediated inflammation. The rapid amplification of cDNA ends (RACE) method was used to obtain a cDNA of bovine IL-17 (BoIL-17) containing a 462-bp open reading frame (ORF) encoding a protein of 153 amino acids (aa) with a molecular mass of 17.2 kDa, a 23-residue NH(2)-terminal signal peptide, a single potential N-linked glycosylation site, and 6 cysteine residues. BoIL-17 protein shared 73.5% identity with the human protein and 67% with the mouse and rat proteins. Sf9 insect cells were transfected with BoIL-17 cDNA, and supernatant was tested for biologic activity on a primary culture of bovine mammary epithelial cells (MECs). mRNA synthesis of IL-6, IL-8, and growth-related oncogene alpha (Groalpha) was induced, suggesting a functional role for IL-17 in mammary immunity.
Collapse
Affiliation(s)
- Céline Riollet
- Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | | | | | | |
Collapse
|
8
|
Bel Haj Rhouma R, Cérutti-Duonor M, Benkhadir K, Goudey-Perrière F, El Ayeb M, Lopez-Ferber M, Karoui H. Insecticidal effects of Buthus occitanus tunetanus BotIT6 toxin expressed in Escherichia coli and baculovirus/insect cells. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1376-83. [PMID: 16216259 DOI: 10.1016/j.jinsphys.2005.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/24/2005] [Accepted: 08/26/2005] [Indexed: 05/04/2023]
Abstract
BotIT6 is a neurotoxin polypeptide derived from the venom of the scorpion Buthus occitanus tunetanus (Bot). Its mature form is composed of 62 amino acids. BotIT6 has been reported to be the most potent toxin from Bot venom that has a strict selectivity for insects. Such toxin may have potential as a potent animal-harmless tool against insects. Using RT-PCR, we isolated and sequenced a cDNA encoding 62 amino acid residues corresponding to the known amino acid sequence of BotIT6. We have expressed a recombinant active form of BotIT6 in significantly high amounts in Escherichia coli. We have also engineered the cDNA into the Autographa californica Nuclear Polyhedrosis Virus (AcMNPV) genome and expressed the protein under control of the polyhedrin promoter. Supernatants of AcIT6-virus infected Sf9 insect cells exhibit a typical intoxication effect when injected to Spodoptera littoralis larvae. Moreover, injection of the recombinant virus showed enhanced insecticidal potency against S. littoralis larvae compared with wild type AcMNPV.
Collapse
Affiliation(s)
- Rahima Bel Haj Rhouma
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, Tunis-Belvedère, Tunisia
| | | | | | | | | | | | | |
Collapse
|
9
|
Mechulam A, Cerutti M, Pugnière M, Missé D, Gajardo J, Roquet F, Robinson J, Veas F. Highly conserved beta16/beta17 beta-hairpin structure in human immunodeficiency virus type 1 YU2 gp120 is critical for CCR5 binding. J Mol Med (Berl) 2005; 83:542-52. [PMID: 15905975 DOI: 10.1007/s00109-005-0673-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Whereas gp120 CD4-induced structures have been largely documented and at least in part elucidated by crystallization, information about gp120 coreceptor-induced structures remains incomplete despite numerous studies. In this work, mutations were carried out in a selected internal region of HIV-1/YU2 gp120, proximal to the CD4-binding site, because of its highly conserved nature among retroviruses and its high structural stability. The targeted residues, belonging to the beta16/beta17 beta-hairpin, modulate gp120 binding to CD4 and gp120-CD4 complex binding to CCR5. Thus, it appears that this gp120 structure acts as a hinge between the CD4-binding site and the putative coreceptor binding structure. Substitution of amino acid residues like E381A did not affect gp120 binding to CD4 and did not induce significant structural changes in gp120, as demonstrated by epitope analysis, BIACORE analysis, and circular dichroism. Nevertheless, E381 has a critical influence on the maintenance of CCR5 coreceptor binding by forming a salt bridge with K207. Another important element of the beta-hairpin in this interaction is the probable hydrophobic link between F383 and I420. Altogether, these results suggest that the beta-hairpin structure likely governs interactions between the surface of gp120 with native CCR5 or the CCR5 amino-terminal domain (CCR5-Nt). The mutations within the beta-hairpin had a direct effect on the proximal surface of the bridging sheet, the putative CCR5 surface, and the gp120 YU2 HIV-1-CD4 binding site. These results on the gp120-CCR5-Nt binding mechanism contribute to our understanding of CCR5 and HIV-1 gp120 association and HIV-1 entry; they may also contribute to designing novel inhibitors.
Collapse
Affiliation(s)
- Alain Mechulam
- Laboratoire d'Immunologie Rétrovirale et Moléculaire, Institut Français de Recherches pour le Développement (IRD), UR 034, 240 Av. Emile Jeanbrau, Etablissement Français du Sang, 34094, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etiévant P, Ronin C. Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem Senses 2005; 30:195-207. [PMID: 15741602 DOI: 10.1093/chemse/bji015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Olfactory receptors (ORs) are the largest member of the G-protein-coupled receptors which mediate early olfactory perception in discriminating among thousands of odorant molecules. Assigning odorous ligands to ORs is a prerequisite to gaining an understanding of the mechanisms of odorant recognition. The functional expression of ORs represents a critical step in addressing this issue. Due to limitations in heterologous expression, very few mammal ORs have been characterized, and so far only one is from human origin. Consequently, OR function still remains poorly understood, especially in humans, whose genome encodes a restricted chemosensory repertoire compared with most mammal species. In this study, we have designed cassette baculovirus vectors to coexpress human OR 17-209 or OR 17-210 with either G(alpha olf) or G(alpha16) proteins in Sf9 cells. Each OR was found to be expressed at the cell surface and colocalized with both G(alpha) proteins. Using Ca2+ imaging, we showed that OR 17-209 and OR 17-210 proteins are activated by esters and ketones respectively. Odorant-induced calcium response was increased when ORs were coexpressed with G(alpha16) protein, whereas coexpression with G(alpha olf) abolished calcium signaling. This strategy has been found to overcome most of the limitations encountered when expressing an OR protein and has permitted odorant screening of functional ORs. Our approach could thus be of interest for further expression and ligand assignment of other orphan receptor proteins.
Collapse
Affiliation(s)
- Valéry Matarazzo
- UMR 6149 et GDR 2590 CNRS et Université de Provence, IFR du Cerveau, 31 Chemin J. Aiguier, F-13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bossard C, Van den Berghe L, Laurell H, Castano C, Cerutti M, Prats AC, Prats H. Antiangiogenic properties of fibstatin, an extracellular FGF-2-binding polypeptide. Cancer Res 2004; 64:7507-12. [PMID: 15492277 DOI: 10.1158/0008-5472.can-04-0287] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By using the two-hybrid system with basic fibroblast growth factor (FGF-2) as bait, we isolated and characterized fibstatin, an endogenous M(r) 29,000 human basement membrane-derived inhibitor of angiogenesis and tumor growth. Fibstatin, a fragment containing the type III domains 12-14 of fibronectin, was produced as a recombinant protein and was shown to inhibit the proliferation, migration, and differentiation of endothelial cells in vitro. Antiangiogenic activity of fibstatin was confirmed in a Matrigel angiogenesis assay in vivo, and electrotransfer of the fibstatin gene into muscle tissue resulted in reduced B16F10 tumor growth. Taken together, these results suggest that fibstatin could act as a powerful molecule for antiangiogenic therapy.
Collapse
Affiliation(s)
- Carine Bossard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U589, C.H.U. Rangueil, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Katae M, Miyahira Y, Takeda K, Matsuda H, Yagita H, Okumura K, Takeuchi T, Kamiyama T, Ohwada A, Fukuchi Y, Aoki T. Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy. Infect Immun 2002; 70:4833-40. [PMID: 12183527 PMCID: PMC128276 DOI: 10.1128/iai.70.9.4833-4840.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We tested the immunogenicity of two Trypanosoma cruzi antigens injected into mice in the form of DNA vaccine. Immunization with DNA encoding dihydroorotate dehydrogenase did not confer protective immunity in all mouse strains tested. Immunization with DNA encoding trans-sialidase surface antigen (TSSA) protected C57BL/6 (H-2(b)) mice but not BALB/c (H-2(d)) or C3H/Hej (H-2(k)) mice against lethal T. cruzi infection. In vivo depletion of CD4(+) or CD8(+) T cells abolished the protective immunity elicited by TSSA gene in C57BL/6 mice. Enzyme-linked immunospot assay with splenocytes from T. cruzi-infected mice or TSSA gene-vaccinated mice identified an H-2K(b)-restricted antigenic peptide, ANYNFTLV. The CD8(+)-T-cell line specific for this peptide could recognize T. cruzi-infected cells in vitro and could protect naive mice from lethal infection when adoptively transferred. Coadministration of the interleukin-12 (IL-12) gene with the TSSA gene facilitated the induction of ANYNFTLV-specific CD8(+) T cells and improved the vaccine efficacy against lethal T. cruzi infection. These results reinforced the utility of immunomodulatory adjuvants such as IL-12 gene for eliciting protective immunity against intracellular parasites by DNA vaccination.
Collapse
Affiliation(s)
- Masaharu Katae
- Department of Respiratory Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|