1
|
Suri J, Gilmour R. Expediting Glycospace Exploration: Therapeutic Glycans via Automated Synthesis. Angew Chem Int Ed Engl 2025; 64:e202422766. [PMID: 39936247 PMCID: PMC11933530 DOI: 10.1002/anie.202422766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Glycans regulate a vast spectrum of disease-related processes, yet effectively leveraging these important mediators in a therapeutic context remains a frontier in contemporary medicine. Unlike many other classes of clinically important biopolymers, carbohydrates derive from discrete biosynthetic pathways and are not produced directly from genes. The conspicuous absence of a biological blueprint to achieve amplification creates a persistent challenge in obtaining well-defined glycostructures for therapeutic translation. Isolating purified sugars from biological sources is not without challenge, rendering synthetic organic chemistry the nexus of this advancing field. Chemical synthesis has proven to be an unfaltering pillar in the production of complex glycans, but laborious syntheses coupled with purification challenges frequently introduce reproducibility issues. In an effort to reconcile these preparative challenges with the societal importance of glycans, automated glycan synthesis was conceptualised at the start of the 21st century. This rapidly expanding, multifaceted field of scientific endeavor has effectively merged synthetic chemistry with technology and engineering to expedite the precision synthesis of target glycans. This minireview describes the structural diversity and function of glycans generated by automated glycan synthesis platforms over the last five years. The translational impact of these advances is discussed together with current limitations and future directions.
Collapse
Affiliation(s)
- James Suri
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| | - Ryan Gilmour
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| |
Collapse
|
2
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
3
|
Al-Lamki RS, Wang J, Pober JS, Bradley JR. Co-Expression and Functional Interactions of Death Receptor 3 and E-Selectin in Clear Cell Renal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:722-736. [PMID: 35063404 DOI: 10.1016/j.ajpath.2021.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Similar to the behavior of inflamed tubular epithelial cells, clear cell renal cell carcinoma (ccRCC) cells express death receptor 3 (DR3 or TNFSFR25) in situ, and expression increases with tumor grade. Surprisingly, E-selectin, which can be induced in endothelial cells by DR3 signaling, is also expressed by ccRCC cells and increases with tumor grade. In ccRCC organ cultures, addition of tumor necrosis factor-like 1A (TL1A or TNFSF15), the ligand for DR3, activates NF-κB and mitogen-activated protein kinases, induces both DR3 and E-selectin expression in an NF-κB-dependent manner, and promotes cell cycle entry. DR3 immunoprecipitated from ccRCC tissue contains sialyl Lewis X moieties (the ligand recognized by E-selectin), proximity ligation assays reveal DR3, and E-selectin interacts on ccRCC cells. Similar to that with the addition of TL1A, the addition of soluble E-selectin to ccRCC organ cultures activates NF-κB and mitogen-activated protein kinases in ccRCC cells and increases both DR3 and E-selectin expression and cell-cycle entry. In contrast, normal renal tubular epithelium, which poorly expresses DR3, is minimally responsive to either of these ligands. These data suggest a functional role for autocrine/paracrine DR3/E-selectin interactions in ccRCC and its progression, revealing a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Rafia S Al-Lamki
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.
| | - Jun Wang
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - John R Bradley
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Singh K, Tripathi RP. An Overview on Glyco-Macrocycles: Potential New Lead and their Future in Medicinal Chemistry. Curr Med Chem 2020; 27:3386-3410. [PMID: 30827227 DOI: 10.2174/0929867326666190227232721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Macrocycles cover a small segment of molecules with a vast range of biological activity in the chemotherapeutic world. Primarily, the natural sources derived from macrocyclic drug candidates with a wide range of biological activities are known. Further evolutions of the medicinal chemistry towards macrocycle-based chemotherapeutics involve the functionalization of the natural product by hemisynthesis. More recently, macrocycles based on carbohydrates have evolved a considerable interest among the medicinal chemists worldwide. Carbohydrates provide an ideal scaffold to generate chiral macrocycles with well-defined pharmacophores in a decorated fashion to achieve the desired biological activity. We have given an overview on carbohydrate-derived macrocycle involving their synthesis in drug design and discovery and potential role in medicinal chemistry.
Collapse
Affiliation(s)
- Kartikey Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.,National Institute of Pharmaceutical Education and Research Raebareli, New Transit Campus, Bijnor Road, Sarojani Nagar Near CRPF Base Camp, Lucknow 226002, U.P., India
| |
Collapse
|
5
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
6
|
Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 2019; 593:1598-1615. [PMID: 31215021 DOI: 10.1002/1873-3468.13495] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
N-glycosylation is a ubiquitous protein modification, and N-glycosylation profiles are emerging as both biomarkers and functional effectors in various types of diabetes. Genome-wide association studies identified glycosyltransferase genes as candidate causal genes for type 1 and type 2 diabetes. Studies focused on N-glycosylation changes in type 2 diabetes demonstrated that patients can be distinguished from healthy controls based on N-glycome composition. In addition, individuals at an increased risk of future disease development could be identified based on N-glycome profiles. Moreover, accumulating evidence indicates that N-glycans have a major role in preventing the impairment of glucose-stimulated insulin secretion by maintaining the glucose transporter in proper orientation, indicating that interindividual variation in protein N-glycosylation might be a novel risk factor contributing to diabetes development. Defective N-glycosylation of T cells has been implicated in type 1 diabetes pathogenesis. Furthermore, studies of N-glycan alterations have successfully been used to identify individuals with rare types of diabetes (such as the HNF1A-MODY), and also to evaluate functional significance of novel diabetes-associated mutations. In conclusion, both N-glycans and glycosyltransferases emerge as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
7
|
Murugan V, Parasuraman P, Selvin JFA, Gromiha MM, Fukui K, Veluraja K. Theoretical investigation on the binding specificity of fluorinated sialyldisaccharides Neu5Acα(2–3)Gal and Neu5Acα(2–6)Gal with influenza hemagglutinin H1 – A Molecular Dynamics Study. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1365153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Veeramani Murugan
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - Ponnusamy Parasuraman
- Department of Physical Sciences, Bannari Amman Institute of Technology, Erode, Tamilnadu, India
| | | | - Michael M. Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - Kazuhiko Fukui
- National Institute of Advanced Industrial Science and Technology (AIST), Molecular Profiling Research Center for Drug Discovery (molprof), 2-4-7 Aomi, Koto-ku, Tokyo, Japan
| | | |
Collapse
|
8
|
Chantarasrivong C, Ueki A, Ohyama R, Unga J, Nakamura S, Nakanishi I, Higuchi Y, Kawakami S, Ando H, Imamura A, Ishida H, Yamashita F, Kiso M, Hashida M. Synthesis and Functional Characterization of Novel Sialyl LewisX Mimic-Decorated Liposomes for E-selectin-Mediated Targeting to Inflamed Endothelial Cells. Mol Pharm 2017; 14:1528-1537. [DOI: 10.1021/acs.molpharmaceut.6b00982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chanikarn Chantarasrivong
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Akiharu Ueki
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
- Institute for Integrated
Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryutaro Ohyama
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Johan Unga
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Shinya Nakamura
- Department of Pharmaceutical Sciences,
Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae,
Higashi-Osaka, Osaka 577-8502, Japan
| | - Isao Nakanishi
- Department of Pharmaceutical Sciences,
Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae,
Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Hiromune Ando
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
- Institute for Integrated
Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Gifu Center for Highly Advanced Integration
of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
- Gifu Center for Highly Advanced Integration
of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
- Institute for Integrated
Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
- Institute for Integrated
Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Preston RC, Jakob RP, Binder FPC, Sager CP, Ernst B, Maier T. E-selectin ligand complexes adopt an extended high-affinity conformation. J Mol Cell Biol 2015; 8:62-72. [PMID: 26117840 PMCID: PMC4710209 DOI: 10.1093/jmcb/mjv046] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
E-selectin is a cell-adhesion molecule of the vascular endothelium that promotes essential leukocyte rolling in the early inflammatory response by binding to glycoproteins containing the tetrasaccharide sialyl Lewis(x) (sLe(x)). Efficient leukocyte recruitment under vascular flow conditions depends on an increased lifetime of E-selectin/ligand complexes under tensile force in a so-called catch-bond binding mode. Co-crystal structures of a representative fragment of the extracellular E-selectin region with sLe(x) and a glycomimetic antagonist thereof reveal an extended E-selectin conformation, which is identified as a high-affinity binding state of E-selectin by molecular dynamics simulations. Small-angle X-ray scattering experiments demonstrate a direct link between ligand binding and E-selectin conformational transition under static conditions in solution. This permits tracing a series of concerted structural changes connecting ligand binding to conformational stretching as the structural basis of E-selectin catch-bond-mediated leukocyte recruitment. The detailed molecular view of the binding site paves the way for the design of a new generation of selectin antagonists. This is of special interest, since their therapeutic potential was recently demonstrated with the pan-selectin antagonists GMI-1070 (Rivipansel).
Collapse
Affiliation(s)
- Roland C Preston
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Florian P C Binder
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Christoph P Sager
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Select human milk oligosaccharides directly modulate peripheral blood mononuclear cells isolated from 10-d-old pigs. Br J Nutr 2013; 111:819-28. [PMID: 24131853 DOI: 10.1017/s0007114513003267] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infant formulas lack the complex mixture of oligosaccharides found in human milk. These human milk oligosaccharides (HMO) may be pivotal to the development of the neonatal immune system. Few comprehensive analyses of the effects of HMO on immune cells from neonates have been undertaken. Herein, the direct effects of HMO on immune cells were analysed ex vivo. Peripheral blood mononuclear cells (PBMC) isolated from 10-d-old sow-reared (SR) or colostrum-deprived formula-fed (FF) pigs were stimulated for 72 h with single HMO, mixtures of single HMO or a complex mixture of HMO isolated from human milk (iHMO). T-cell phenotype, cytokine production and proliferation were measured by flow cytometry, immunoassay and [³H]thymidine incorporation, respectively. Stimulation with HMO had direct effects on PBMC. For instance, cells stimulated with iHMO produced more IL-10 than unstimulated cells, and cells stimulated with fucosylated HMO tended to proliferate less than unstimulated cells. Additionally, co-stimulation with HMO mixtures or single HMO altered PBMC responses to phytohaemagglutinin (PHA) or lipopolysaccharide (LPS) stimulation. Compared with PBMC stimulated with PHA alone, cells co-stimulated with iHMO and PHA proliferated more and had fewer detectable CD4⁺CD8⁺ T cells. Compared with PBMC stimulated by LPS alone, cells co-stimulated with a mixture of sialylated HMO and LPS proliferated more and tended to have fewer detectable CD4⁺ T cells. Differences in the baseline responses of PBMC isolated from the SR or FF pigs were observed. In summary, HMO directly affected PBMC populations and functions. Additionally, ex vivo measurements of PBMC phenotype, cytokine production and proliferation were influenced by the neonate's diet.
Collapse
|
11
|
Targeting Underglycosylated MUC1 for the Selective Capture of Highly Metastatic Breast Cancer Cells Under Flow. Cell Mol Bioeng 2013; 6:148-159. [PMID: 23805168 PMCID: PMC3689911 DOI: 10.1007/s12195-013-0282-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/15/2013] [Indexed: 12/26/2022] Open
Abstract
The underglycosylated form of the MUC1 glycoprotein, uMUC1, has been identified as a ligand for both E-selectin and ICAM-1 and can play multiple potential roles during rolling and firm adhesion events in the metastatic cascade. Using flow cytometry and confocal microscopy, the T47D and ZR-75-1 cell lines were verified to highly express uMUC1, however it was found that only ZR-75-1 cells expressed the E-selectin binding moiety sialyl Lewis x (sLex). Furthermore, perfusing T47D cells through E-selectin coated microtubes resulted in fast rolling velocities and low numbers of interacting cells and blocking uMUC1 with the SM3 antibody had no effect. ZR-75-1 cells, on the other hand, were highly dependent on the E-selectin:uMUC1 interaction as exemplified by significant increases in cell rolling velocities and decreases in the number of interacting cells when blocking with SM3 or when uMUC1 expression was knocked down via siRNA transfection. Whereas uMUC1 interactions with E-selectin supported cell rolling, P-selectin: uMUC1 interactions exclusively facilitated cell tethering, while L-selectin surfaces supported no cell adhesive interactions. These experimental observations are consistent with molecular dynamics simulations of uMUC1 bound to E-, P-, and L-selectin where the degree of residue contact correlated with the differential adhesion of uMUC1 to each selectin. Finally, an E-selectin and SM3 combined surface coating captured approximately 30% of the total number of interacting cancer cells comparable to the number of adhered cells when utilizing E-selectin and ICAM-1 combined surfaces. The E-selectin/SM3 surface strategy offers a viable method to selectively capture cancer cells from whole blood samples.
Collapse
|
12
|
Binder FPC, Lemme K, Preston RC, Ernst B. Sialyl-Lewisx - ein “präorganisiertes Wasseroligomer”? Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202555] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Binder FPC, Lemme K, Preston RC, Ernst B. Sialyl Lewis(x): a "pre-organized water oligomer"? Angew Chem Int Ed Engl 2012; 51:7327-31. [PMID: 22782926 DOI: 10.1002/anie.201202555] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Indexed: 01/18/2023]
Abstract
Organized and released: Sialyl Lewis(x) (sLe(x)) represents a "pre-organized water oligomer", that is, a surrogate for clustered water molecules attached to a scaffold. The impetus for sLe(x) binding to E-selectin is shown to be the high degree of pre-organization allowing an array of directed hydrogen bonds, and the entropic benefit of the release of water molecules from the large binding interface to bulk water (see picture).
Collapse
Affiliation(s)
- Florian P C Binder
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
14
|
Dernedde J, Papp I, Enders S, Wedepohl S, Paulus F, Haag R. Synthesis and Evaluation of Nonsulfated and Sulfated Glycopolymers as L- and P-selectin Inhibitors. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.608227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Lauc G, Essafi A, Huffman JE, Hayward C, Knežević A, Kattla JJ, Polašek O, Gornik O, Vitart V, Abrahams JL, Pučić M, Novokmet M, Redžić I, Campbell S, Wild SH, Borovečki F, Wang W, Kolčić I, Zgaga L, Gyllensten U, Wilson JF, Wright AF, Hastie ND, Campbell H, Rudd PM, Rudan I. Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet 2010; 6:e1001256. [PMID: 21203500 PMCID: PMC3009678 DOI: 10.1371/journal.pgen.1001256] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/19/2010] [Indexed: 12/14/2022] Open
Abstract
Over half of all proteins are glycosylated, and alterations in glycosylation have been observed in numerous physiological and pathological processes. Attached glycans significantly affect protein function; but, contrary to polypeptides, they are not directly encoded by genes, and the complex processes that regulate their assembly are poorly understood. A novel approach combining genome-wide association and high-throughput glycomics analysis of 2,705 individuals in three population cohorts showed that common variants in the Hepatocyte Nuclear Factor 1α (HNF1α) and fucosyltransferase genes FUT6 and FUT8 influence N-glycan levels in human plasma. We show that HNF1α and its downstream target HNF4α regulate the expression of key fucosyltransferase and fucose biosynthesis genes. Moreover, we show that HNF1α is both necessary and sufficient to drive the expression of these genes in hepatic cells. These results reveal a new role for HNF1α as a master transcriptional regulator of multiple stages in the fucosylation process. This mechanism has implications for the regulation of immunity, embryonic development, and protein folding, as well as for our understanding of the molecular mechanisms underlying cancer, coronary heart disease, and metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- Gordan Lauc
- Glycobiology Laboratory, Genos Ltd., Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Abdelkader Essafi
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Jennifer E. Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Ana Knežević
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Jayesh J. Kattla
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Ozren Polašek
- Gen Info Ltd., Zagreb, Croatia
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Jodie L. Abrahams
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Maja Pučić
- Glycobiology Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Irma Redžić
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Susan Campbell
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Sarah H. Wild
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | | | - Wei Wang
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Ivana Kolčić
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Lina Zgaga
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Ulf Gyllensten
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - James F. Wilson
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Nicholas D. Hastie
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Harry Campbell
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Igor Rudan
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| |
Collapse
|
16
|
Biomimetic MRI contrast agent for imaging of inflammation in atherosclerotic plaque of ApoE-/- mice: a pilot study. Invest Radiol 2010; 44:151-8. [PMID: 19169144 DOI: 10.1097/rli.0b013e31819472ac] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Atherosclerosis involves an inflammatory process characterized by cellular and molecular responses. A slow-clearance blood-pool paramagnetic agent (CMD-A2-Gd-DOTA: P717) chemically modified to create a functionalized product (F-P717) for targeting inflammation in vessel walls was evaluated in vivo in mice. METHODS AND RESULTS Carboxylate and sulfate groups were grafted onto the macromolecular paramagnetic Gd-DOTA-dextran backbone. Products were also fluorescently labeled with rhodamine isothiocyanate. Pre- and postcontrast MRI was performed on a 2-Tesla magnet in ApoE-/- and control C57BL/6 mice after P717 or F-P717 injection at a dose of 60 micromol Gd/kg. Axial T1-weighted images of the abdominal aorta were obtained using a 2D multislice spin-echo sequence. F-P717 significantly enhanced the magnetic resonance imaging (MRI) signal in the abdominal aortic wall of ApoE-/- mice (>50% signal-to-noise ratio increase between 10 and 30 minutes), but not of control mice. P717 produced only moderate (<20%) MRI signal enhancement within the same time frame. The MRI data were correlated to histopathology. Immunofluorescence in ApoE-/- mice colocalized F-P717 but not P717 with the inflammatory area revealed by P-selectin labeling. CONCLUSION This study demonstrates the efficacy of F-P717 as a new molecular imaging agent for noninvasive in vivo MRI location of inflammatory vascular tree lesions in ApoE-/- mice.
Collapse
|
17
|
Ishida T. Computational modeling of carbohydrate-recognition process in E-selectin complex: structural mapping of sialyl Lewis X onto ab initio QM/MM free energy surface. J Phys Chem B 2010; 114:3950-64. [PMID: 20078087 DOI: 10.1021/jp905872t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To advance our knowledge of carbohydrate recognition by lectins, we propose a systematic computational modeling strategy to identify complex sugar-chain conformations on the reduced free energy surface (FES). We selected the complex of E-selectin with sialyl Lewis X (denoted E-selectin/SLe(x) complex) as a first target molecule. First, we introduced the reduced 2D-FES that characterizes conformational changes in carbohydrate structure as well as the degree of solvation stability of the carbohydrate ligand, and evaluated the overall free energy profile by classical molecular dynamics simulation combined with ab initio QM/MM energy corrections. Second, we mapped flexible carbohydrate structures onto the reduced QM/MM 2D-FES, and identified the details of molecular interactions between each monosaccharide component and the amino acid residues at the carbohydrate-recognition domain. Finally, we confirmed the validity of our modeling strategy by evaluating the chemical shielding tensor by ab initio QM/MM-GIAO computations for several QM/MM-refined geometries sampled from the minimum free energy region in the 2D-FES, and compared this theoretical averaging data with the experimental 1D-NMR profile. The model clearly shows that the binding geometries of the E-selectin/SLe(x) complex are determined not by one single, rigid carbohydrate structure but rather by the sum of averaged conformations fluctuating around the minimum free energy region. For the E-selectin/SLe(x) complex, the major molecular interactions are hydrogen bonds between Fuc and the Ca(2+) binding site in the carbohydrate-recognition domain, and Gal is important in determining the ligand specificity.
Collapse
Affiliation(s)
- Toyokazu Ishida
- Research Institute for Computational Sciences, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.
| |
Collapse
|
18
|
Pudelko M, Bull J, Kunz H. Chemical and Chemoenzymatic Synthesis of Glycopeptide Selectin Ligands Containing Sialyl Lewis X Structures. Chembiochem 2010; 11:904-30. [DOI: 10.1002/cbic.201000029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Bachelet L, Bertholon I, Lavigne D, Vassy R, Jandrot-Perrus M, Chaubet F, Letourneur D. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim Biophys Acta Gen Subj 2008; 1790:141-6. [PMID: 19026722 DOI: 10.1016/j.bbagen.2008.10.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 10/13/2008] [Accepted: 10/18/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND P-selectin is an adhesion receptor expressed on activated platelets and endothelial cells. Its natural ligand, P-selectin glycoprotein ligand-1, is expressed on leucocytes and the P-selectin/PSGL-1 interaction is involved in leukocyte rolling. We have compared the interaction of P-selectin with several low molecular weight polysaccharides: fucoidan, heparin and dextran sulfate. METHODS Binding assays were obtained from the interaction of the polysaccharides with Sialyl Lewis X and PSGL-1 based constructs onto microtiter plates coated with P-selectin. SELDI TOF mass spectrometry was performed with anionic chips arrays coated with P-selectin in the absence or in the presence of polysaccharides. Kd were obtained from surface plasmon resonance experiments with immobilized P-selectin constructs, polysaccharides being injected in the mobile phase. Human whole blood flow cytometry experiments were performed with fluorescein isothiocyanate labelled polysaccharides with or without platelets activators. RESULTS The fucoidan prevented P-selectin binding to Sialyl Lewis X with an IC(50) of 20 nM as compared to 400 nM for heparin and <25000 nM for dextran sulfate. It exhibited the highest affinity for immobilized P-selectin with a KD of 1.2 nM, two orders of magnitude greater than the K(D) of the other polysaccharides. Mass spectrometry evidenced the formation of a complex between P-selectin and fucoidan. The intensity of the fucoidan binding to platelets was dependent on the level of platelet activation. Competition between fucoidan and an anti P-selectin antibody demonstrated the specificity of the interaction. GENERAL SIGNIFICANCE Low molecular weight fucoidan is a promising therapeutic agent of natural origin for biomedical applications.
Collapse
Affiliation(s)
- Laure Bachelet
- Inserm, U698, Cardiovascular Bioengineering, CHU X. Bichat, University Paris 7, Paris, F-75877, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Moreno-Vargas AJ, Molina L, Carmona AT, Ferrali A, Lambelet M, Spertini O, Robina I. Synthesis and Biological Evaluation ofS-Neofucopeptides as E- and P-Selectin Inhibitors. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Titz A, Patton J, Alker AM, Porro M, Schwardt O, Hennig M, Francotte E, Magnani J, Ernst B. Is adamantane a suitable substituent to pre-organize the acid orientation in E-selectin antagonists? Bioorg Med Chem 2008; 16:1046-56. [PMID: 17845854 DOI: 10.1016/j.bmc.2007.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 07/01/2007] [Accepted: 07/10/2007] [Indexed: 10/22/2022]
Abstract
The selectins play a key role in the inflammatory process, that is, the recruitment of leukocytes from blood vessels into inflamed tissue. Because excessive infiltration of leukocytes can induce acute or chronic reactions, the control of leukocyte extravasation is of great pharmaceutical interest. All physiological ligands of the selectins contain the tetrasaccharide epitope sialyl Lewis(x), which therefore became the lead structure in selectin antagonist research. Previous studies indicated that an important factor for the affinity of sLe(x) is the fact that in solution its pharmacophores are already conformationally pre-organized in the bioactive orientation. In mimics where the GlcNAc- and the NeuNAc-moieties of sLe(x) were replaced by (R,R)-cyclohexane-1,2-diol and (S)-cyclohexyllactic acid, respectively, an optimized pre-organization of the pharmacophores could be realized, leading to antagonists with improved affinities. To further optimize the pre-organization of the carboxylic acid, a pharmacophore essential for binding, the replacement of NeuNAc by bulky (R)- and (S)-adamantyl-lactic acid was studied. Although antagonist (S)-7 showed a slightly reduced affinity, the expected beneficial effect of the (S)-configuration at C-2 of the lactate could be confirmed.
Collapse
Affiliation(s)
- Alexander Titz
- Institute of Molecular Pharmacy, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 2007; 11:1473-91. [PMID: 18028011 DOI: 10.1517/14728222.11.11.1473] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation and cancer metastasis are associated with extravasation of leukocytes or tumor cells from blood into tissue. Such movement is believed to follow a coordinated and sequential molecular cascade initiated, in part, by the three members of the selectin family of carbohydrate-binding proteins: E-selectin (CD62E), L-selectin (CD62L) and P-selectin (CD62P). E-selectin is particularly noteworthy in disease by virtue of its expression on activated endothelium and on bone-skin microvascular linings and for its role in cell rolling, cell signaling and chemotaxis. E-selectin, along with L- or P-selectin, mediates cell tethering and rolling interactions through the recognition of sialo-fucosylated Lewis carbohydrates expressed on structurally diverse protein-lipid ligands on circulating leukocytes or tumor cells. Major advances in understanding the role of E-selectin in inflammation and cancer have been advanced by experiments assaying E-selectin-mediated rolling of leukocytes and tumor cells under hydrodynamic shear flow, by clinical models of E-selectin-dependent inflammation, by mice deficient in E-selectin and by mice deficient in glycosyltransferases that regulate the binding activity of E-selectin ligands. Here, the authors elaborate on how E-selectin and its ligands may facilitate leukocyte or tumor cell recruitment in inflammatory and metastatic settings. Antagonists that target cellular interactions with E-selectin and other members of the selectin family, including neutralizing monoclonal antibodies, competitive ligand inhibitors or metabolic carbohydrate mimetics, exemplify a growing arsenal of potentially effective therapeutics in controlling inflammation and the metastatic behavior of cancer.
Collapse
Affiliation(s)
- Steven R Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Room 669, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
23
|
Chaubet F, Bertholon I, Serfaty JM, Bazeli R, Alsaid H, Jandrot-Perrus M, Zahir C, Even P, Bachelet L, Touat Z, Lancelot E, Corot C, Canet-Soulas E, Letourneur D. A new macromolecular paramagnetic MR contrast agent binds to activated human platelets. CONTRAST MEDIA & MOLECULAR IMAGING 2007; 2:178-88. [PMID: 17828728 DOI: 10.1002/cmmi.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new functionalized macromolecular magnetic resonance (MR) contrast agent has been developed from a carboxymethyldextran-Gd(DOTA) devoid of biospecificity. The functionalized contrast agent was synthesized in order to mimic PSGL-1, the main ligand of P-selectin, a glycoprotein mainly expressed on the surface of activated platelets. The starting compound, CM1, was first carboxymethylated by monochloroacetic acid leading to a series of 10 derivatives varying in their carboxymethyl content. CM8 derivative, with a degree of substitution in carboxymethyl of 0.84, was chosen for subsequent fluorolabeling and sulfation to give CM8FS. CM8FS has an average number molecular weight of 27 000 +/- 500 g/mol, a hydrodynamic radius of 5.7 +/- 0.2 nm and a high relaxivity (r(1) = 11.2/mM (Gd)/s at 60 MHz). Flow cytometry experiments on whole human blood or on isolated platelets evidenced in vitro a preferential binding of CM8FS on TRAP-activated human platelets. Interestingly, CM8FS did not bind to other blood cells or to resting platelets. Pellets of TRAP-activated human platelets have also been imaged in tubes with a 1.5 T MR imager. A MR signal was observed for activated platelets incubated with CM8FS. Altogether, these in vitro results evidenced the recognition of activated human platelets by a fluorescent paramagnetic contrast agent grafted with carboxyl and sulfate groups. This biomimetic approach associated with the versatile macromolecular platform appears promising for the development of new contrast agents for molecular imaging of activated platelets in cardiovascular diseases such as atherosclerosis and aneurysms.
Collapse
Affiliation(s)
- Frédéric Chaubet
- Inserm, U698, Cardiovascular Bio-engineering, CHU X. Bichat, University Paris 7, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pedatella S, De Nisco M, Ernst B, Guaragna A, Wagner B, Woods RJ, Palumbo G. New sialyl Lewis(x) mimic containing an alpha-substituted beta(3)-amino acid spacer. Carbohydr Res 2007; 343:31-8. [PMID: 17980866 DOI: 10.1016/j.carres.2007.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/20/2007] [Accepted: 10/02/2007] [Indexed: 11/16/2022]
Abstract
A highly convergent and efficient synthesis of a new sialyl Lewis(x) (sLe(x)) mimic, which was predicted by computational studies to fulfil the spacial requirements for a selectin antagonist, has been developed. With a beta(2,3)-amino acid residue l-galactose (bioisostere of the l-fucose moiety present in the natural sLe(x)) and succinate are linked, leading to a mimic of sLe(x) that contains all the required pharmacophores, namely the 3- and 4-hydroxy group of l-fucose, the 4- and 6-hydroxy group of d-galactose and the carboxylic acid of N-acetylneuraminic acid. The key step of the synthesis involves a tandem reaction consisting of a N-deprotection and a suitable O-->N intramolecular acyl migration reaction which is promoted by cerium ammonium nitrate (CAN). Finally, the new sialyl Lewis(x) mimic was biologically evaluated in a competitive binding assay.
Collapse
Affiliation(s)
- Silvana Pedatella
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Via Cynthia, 4 I-80126 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Patel TP, Edge CJ, Parekh RB, Goelz SE, Lobb RR. Identification of endogenous protein-associated carbohydrate ligands for E-selectin. CIBA FOUNDATION SYMPOSIUM 2007; 189:212-22; discussion 222-6. [PMID: 7587635 DOI: 10.1002/9780470514719.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A comparative analysis of carbohydrate libraries derived from cell lines binding E-selectin was used to identify endogenous protein-associated carbohydrate ligands for E-selectin. Three structures, which together constitute less than 1% of the total cell surface protein-associated carbohydrate, were unique to cell lines capable of binding E-selectin, including neutrophils and the monocytic cell line U937. All are tetra-antennary N-linked structures, with a sialic acid alpha 2 --> 3 galactose beta 1 --> 4 (fucose alpha 1 --> 3) N-acetyl glucosamine beta 1 --> 3 galactose beta 1 --> 4 (fucose alpha 1 --> 3) N-acetyl glucosamine lactosaminoglycan extension (sialyl-di-Lewis X [S-diLe(x)]) on the arm linked through the C4 residue on the mannose. While all contained the expected 3-SLe(x) sub-structure, these native structures have an additional fucosylated lactosamine unit. Direct evidence that these S-di-Lex-containing structures are high-affinity ligands for E-selectin came from the use of recombinant soluble E-selectin-agarose affinity chromatography. These three carbohydrate structures bound specifically to the E-selectin column, while 3-SLe(x) itself does not bind under identical conditions.
Collapse
Affiliation(s)
- T P Patel
- Oxford GlycoSystems Ltd, Abingdon, Oxon, UK
| | | | | | | | | |
Collapse
|
26
|
Filser C, Kowalczyk D, Jones C, Wild MK, Ipe U, Vestweber D, Kunz H. Synthetic glycopeptides from the E-selectin ligand 1 with varied sialyl Lewis(x) structure as cell-adhesion inhibitors of E-selectin. Angew Chem Int Ed Engl 2007; 46:2108-11. [PMID: 17295374 DOI: 10.1002/anie.200604442] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Christian Filser
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Filser C, Kowalczyk D, Jones C, Wild M, Ipe U, Vestweber D, Kunz H. Vom E-Selektin-Liganden 1 abgeleitete Glycopeptide mit variierter Sialyl-Lewisx-Struktur als Zelladhäsionsinhibitoren für E-Selektin. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604442] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
Makimura Y, Ishida H, Kiso M, Hasegawa A. Synthetic Studies on Tumor-Associated Antigens: Efficient Syntheses of Leaand Sialyl-LeaOligosaccharides, and Their Deaminated Analogs1. J Carbohydr Chem 2006. [DOI: 10.1080/07328309608006500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yataka Makimura
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu 501-11, Japan
| | - Hideharu Ishida
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu 501-11, Japan
| | - Makoto Kiso
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu 501-11, Japan
| | - Akira Hasegawa
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu 501-11, Japan
| |
Collapse
|
30
|
Tanahashi E, Murase K, Shibuya M, Igarashi Y, Ishida H, Hasegawa A, Kiso M. Synthetic Studies on Selectin Ligands/Inhibitors: A Systematic Synthesis of Sulfatide and Its Higher Congeners Carrying 2-(Tetradecyl)Hexadecyl Group as a Ceramide Substitute. J Carbohydr Chem 2006. [DOI: 10.1080/07328309708006543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Eiji Tanahashi
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-11, Japan
| | - Katsutoshi Murase
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-11, Japan
| | - Mika Shibuya
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-11, Japan
| | - Yumie Igarashi
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-11, Japan
| | - Hideharu Ishida
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-11, Japan
| | - Akira Hasegawa
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-11, Japan
| | - Makoto Kiso
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-11, Japan
| |
Collapse
|
31
|
Furui[2] H, Ando-Furui K, Inagaki H, Ando T, Ishida H, Kiso M. SYNTHESIS OF SIALYL- AND SULFO-Lex/LeaANALOGS CONTAININGN-ALKYL-1-DEOXYNOJIRIMYCIN AS POTENTIAL SELECTIN BLOCKERS. J Carbohydr Chem 2006. [DOI: 10.1081/car-100108657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroyasu Furui[2]
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-1193, Japan
| | - Keiko Ando-Furui
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-1193, Japan
| | - Haruko Inagaki
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-1193, Japan
| | - Takayuki Ando
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-1193, Japan
| | - Hideharu Ishida
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-1193, Japan
| | - Makoto Kiso
- a Department of Applied Bioorganic Chemistry , Gifu University , Gifu, 501-1193, Japan
| |
Collapse
|
32
|
Mowery P, Yang ZQ, Gordon EJ, Dwir O, Spencer AG, Alon R, Kiessling LL. Synthetic glycoprotein mimics inhibit L-selectin-mediated rolling and promote L-selectin shedding. ACTA ACUST UNITED AC 2005; 11:725-32. [PMID: 15157883 DOI: 10.1016/j.chembiol.2004.03.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 03/05/2004] [Accepted: 03/11/2004] [Indexed: 12/18/2022]
Abstract
L-selectin is a leukocyte cell-surface protein that facilitates the rolling of leukocytes along the endothelium, a process that leads to leukocyte migration to a site of infection. Preventing L-selectin-mediated rolling minimizes leukocyte adhesion and extravasation; therefore, compounds that inhibit rolling may act as anti-inflammatory agents. To investigate the potential role of multivalent ligands as rolling inhibitors, compounds termed neoglycopolymers were synthesized that possess key structural features of physiological L-selectin ligands. Sulfated neoglycopolymers substituted with sialyl Lewis x derivatives (3',6-disulfo Lewis x or 6-sulfo sialyl Lewis x) or a sulfatide analog (3,6-disulfo galactose) inhibited L-selectin-mediated rolling of lymphoid cells. Functional analysis of the inhibitory ligands indicates that they also induce proteolytic release of L-selectin. Thus, their inhibitory potency may arise from their ability to induce shedding. Our data indicate that screening for compounds that promote L-selectin release can identify ligands that inhibit rolling.
Collapse
Affiliation(s)
- Patricia Mowery
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ehrhardt C, Kneuer C, Bakowsky U. Selectins-an emerging target for drug delivery. Adv Drug Deliv Rev 2004; 56:527-49. [PMID: 14969757 DOI: 10.1016/j.addr.2003.10.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 10/14/2003] [Indexed: 01/10/2023]
Abstract
Selectins are multifunctional adhesion molecules that mediate the initial interactions between circulating leukocytes and cells of the endothelium. First identified over a decade ago, selectins have provided insight into areas as diverse as normal lymphocyte homing, leukocyte recruitment during inflammatory responses, carbohydrate ligand biosynthesis and adhesion-mediated signalling. Of late, selectins were introduced as targets for drug delivery in the development of new anti-inflammatory therapeutics and in anti-cancer therapy. This review will examine the selectins and their ligands with a focus on recent findings on their role in physiology and pathophysiology as well as the emerging role of selectins as targets in controlled drug delivery.
Collapse
Affiliation(s)
- Carsten Ehrhardt
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Building 8.1, 66123 Saarbrücken, Germany
| | | | | |
Collapse
|
34
|
Yamaguchi M, Ishida H, Kanamori A, Kannagi R, Kiso M. Studies on the endogenous L-selectin ligands: systematic and highly efficient total synthetic routes to lactamized-sialyl 6-O-sulfo Lewis X and other novel gangliosides containing lactamized neuraminic acid. Carbohydr Res 2003; 338:2793-812. [PMID: 14667701 DOI: 10.1016/j.carres.2003.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Systematic syntheses of lactamized neuraminic acid-containing gangliosides GM4, sulfated sialylparagloboside, and sulfated/nonsulfated sialyl Lewis X are described. The highly efficient, one-step lactamization of neuraminic acid was accomplished by treatment of the N-deacetylated sialic acid (neuraminic acid)-containing gangliosides with HBTU and HOBt in DMF at 65 degrees C. Both the lactamized neuraminic acid residue and the sulfate group at O-6 of the GlcNAc residue were found to be involved in the antigenic determinant defined by G159 monoclonal antibody, while the fucose residue may not be critical for the recognition by G159 mAb.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | |
Collapse
|
35
|
Abstract
Selectins are optimal biological molecules for targeted delivery of therapeutic agents because of their localized and carefully regulated expression in several human diseases, and their highly specific interactions with their counter receptors. In this study, we describe a targeted delivery system that can potentially deliver anti-inflammatory drug to sites of chronic inflammation using Poly(lactic-co-glycolic acid) (PLGA) and selectin-ligand chemistry. Biotinylated-sialyl Lewis(x) (sLe(x)), a carbohydrate that serves as a ligand to selectins, was attached to the surface of avidin-linked PLGA microspheres. These carbohydrate-coated microspheres mimic the adhesive behavior of leukocytes on selectins in flow chambers, displaying slow rolling under flow. The rolling velocity of these artificial leukocytes is similar to that displayed by leukocytes rolling on P- or E-selectin coated surfaces. We can tune rolling velocity, and hence residence time of capsules on surfaces, by changing the density of sialyl Lewis(x) on the microsphere surfaces. Therefore, we have made a targeted drug delivery vehicle that mimics the adhesive properties of leukocytes and is biodegradable.
Collapse
Affiliation(s)
- A Omolola Eniola
- Department of Chemical Engineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| | | |
Collapse
|
36
|
Kaila N, Thomas BE. Design and synthesis of sialyl Lewis(x) mimics as E- and P-selectin inhibitors. Med Res Rev 2002; 22:566-601. [PMID: 12369089 DOI: 10.1002/med.10018] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The selectins are a family of cell-adhesion proteins that mediate the rolling of leukocytes on activated endothelial cells through the recognition of the carbohydrate epitope sialyl Lewis(x) (sLe(x)). Control of the leukocyte-endothelial cell adhesion process may prove useful in cases where excess recruitment of leukocytes can contribute to acute diseases such as stroke and reperfusion injury and chronic diseases such as psoriasis and rheumatoid arthritis. The development of molecules that block the interactions between sLe(x) and the selectins has become an active area of research. In this review, we will highlight the various approaches taken toward the development of sLe(x) mimetics as antagonists of E- and P-selectin, including the use of structural information about the selectins and their interactions with sLe(x) that have been revealed through the use of NMR, protein crystallography and molecular modeling.
Collapse
Affiliation(s)
- Neelu Kaila
- Department of Chemical Sciences and Biological Chemistry, WYETH, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, USA.
| | | |
Collapse
|
37
|
Schäkel K, Kannagi R, Kniep B, Goto Y, Mitsuoka C, Zwirner J, Soruri A, von Kietzell M, Rieber E. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity 2002; 17:289-301. [PMID: 12354382 DOI: 10.1016/s1074-7613(02)00393-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The monoclonal antibody M-DC8 defines a major subset of human blood dendritic cells (DCs). Here we identify the M-DC8 structure as 6-sulfo LacNAc, a novel carbohydrate modification of the P selectin glycoprotein ligand 1 (PSGL-1). In contrast to previously described blood DCs, M-DC8+ DCs lack the cutaneous lymphocyte antigen (CLA) on PSGL-1 and fail to bind P and E selectin. Yet they express anaphylatoxin receptors (C5aR and C3aR) and the Fcgamma receptor III (CD16), which recruit cells to inflammatory sites. While sharing with DC1 the expression of myeloid markers and a potent capacity to prime T cells in vitro, M-DC8+ DCs produce far more TNF-alpha in response to the bacterial endotoxin lipopolysaccharide (LPS). Thus, 6-sulfo LacNAc-expressing DCs appear as a novel proinflammatory DC subset.
Collapse
Affiliation(s)
- Knut Schäkel
- Institute of Immunology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Unger FM. The chemistry of oligosaccharide ligands of selectins: significance for the development of new immunomodulatory medicines. Adv Carbohydr Chem Biochem 2002; 57:207-435. [PMID: 11836943 DOI: 10.1016/s0065-2318(01)57018-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- F M Unger
- Institute of Chemistry and Center for Ultrastructure Research, Agricultural University, Vienna, Austria
| |
Collapse
|
39
|
Okamura A, Yazawa S, Morinaga N, Asao T, Kuwano H. Increased thermosensitivity of mouse colorectal carcinoma cells transfected with human FUT1 gene. Cancer Lett 2002; 180:203-10. [PMID: 12175553 DOI: 10.1016/s0304-3835(02)00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal responses of mouse colorectal carcinoma cells were investigated in the wild type cells and the transfected cells with human FUT1 gene which encodes alpha 1,2fucosyltransferase. The heat sensitivity was observed to increase in the FUT1 gene transfected cells and the effect of hyperthermia at 44 degrees C on these cells was demonstrated to be significant (P<0.001) to the wild type cells even though no remarkable difference in the expression of the heat shock protein, Hsp70 was found in these cells. Thus the expression of alpha 1,2fucosylated antigens seemed to increase the heat sensitivity in mouse colorectal carcinoma cells.
Collapse
Affiliation(s)
- Akihiko Okamura
- First Department of Surgery, Gunma University Faculty of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan.
| | | | | | | | | |
Collapse
|
40
|
Eniola AO, Rodgers SD, Hammer DA. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes. Biomaterials 2002; 23:2167-77. [PMID: 11962658 DOI: 10.1016/s0142-9612(01)00349-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The site-specific expression of selectins (E- and P-selectin) on endothelial cells of blood vessels during inflammation provides an opportunity for the targeted delivery of anti-inflammatory drugs to inflammatory sites. Previous work in our laboratory has shown that artificial capsules with the adhesive properties of leukocytes can be made by attaching leukocyte adhesive ligands to polystyrene microspheres. In this work, we have adapted this technology to create a targeted delivery system using biodegradable, poly lactic-co-glycolic-acid (PLGA) microspheres. Biotinylated-Sialyl Lewis(x) (sLe(x)), a carbohydrate that serves as a ligand to selectins, was attached to the surface of avidin-linked PLGA microspheres. These carbohydrate-coated microspheres mimic the adhesive behavior of leukocytes on selectins in flow chambers, displaying slow rolling under flow. The rolling velocities displayed by sLe(x)-coated microspheres were similar to those displayed by leukocytes rolling on P- or E-selectin coated surfaces, and these rolling velocities, which relate to the residence time of the capsules, can be tuned by changing the density of carbohydrate residues on microsphere surfaces. We have also demonstrated that these microspheres will release model drugs on a time scale of several days. Therefore, we have made a targeted drug delivery vehicle that mimics the adhesive properties of leukocytes and is biodegradable.
Collapse
Affiliation(s)
- A Omolola Eniola
- Department of Chemical Engineering, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
41
|
Abstract
A potential tetrasaccharide ligand for E-selectin, (Na(+-)O(3)SO-3)Galbeta-(1-->4)[Fucalpha-(1-->3)]Glcbeta-(1-->6)Gal, an analogue of the ovarian cystadenoma glycoprotein tetrasaccharide fragment, was synthesized in a highly practical way.
Collapse
Affiliation(s)
- Zhi Hui Qin
- National Research Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100083, PR China
| | | | | | | | | |
Collapse
|
42
|
Listinsky JJ, Listinsky CM, Alapati V, Siegal GP. Cell surface fucose ablation as a therapeutic strategy for malignant neoplasms. Adv Anat Pathol 2001; 8:330-7. [PMID: 11707624 DOI: 10.1097/00125480-200111000-00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The sugar alpha-L-fucose is overexpressed in many human malignancies, especially on specific glycoproteins, glycolipids, certain mucins, and putative cell adhesion ligands found on cancer cell surfaces. Many of these molecules are known or suspected mediators of cell-cell adhesion, cell signaling, motility, or invasion. As knowledge of fucose metabolism evolves and specific mechanisms of its distribution and incorporation are more exactly documented, modulation of fucose expression in cancer is becoming increasingly more feasible. The authors propose that cancer cell surface alpha-L-fucose is a logical target for selective therapeutic ablation. Reduction of fucose content on the surfaces of malignant cells should effectively cripple the cells' physiologic functions by altering or dysregulating cell-cell or cell-matrix interactions, critical for maintaining the malignant phenotype. Significant therapeutic benefits might include modulation of adhesion abnormalities in the cancer cells, reduction of cancer cell motility or invasiveness, reexposure to immune surveillance, or a combination of these events.
Collapse
Affiliation(s)
- J J Listinsky
- Department of Radiology, University of Alabama at Birmingham, 35233, USA
| | | | | | | |
Collapse
|
43
|
Wild MK, Huang MC, Schulze-Horsel U, van der Merwe PA, Vestweber D. Affinity, kinetics, and thermodynamics of E-selectin binding to E-selectin ligand-1. J Biol Chem 2001; 276:31602-12. [PMID: 11404363 DOI: 10.1074/jbc.m104844200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E-selectin is an endothelial adhesion molecule, which mediates the tethering and rolling of leukocytes on vascular endothelium. It recognizes the glycoprotein E-selectin ligand-1 (ESL-1) as a major binding partner on mouse myeloid cells. Using surface plasmon resonance, we measured the kinetics and affinity of binding of monomeric E-selectin to ESL-1 isolated from mouse bone marrow cells. E-selectin bound to ESL-1 with a fast dissociation rate constant of 4.6 s(-1) and a calculated association rate constant of 7.4 x 10(4) m(-1) s(-1). We determined a dissociation constant (K(d)) of 62 microm, which resembles the affinity of L-selectin binding to glycosylation-dependent cell adhesion molecule-1. The affinity of the E-selectin-ESL-1 interaction did not change significantly when the temperature was varied from 5 degrees C to 37 degrees C, indicating that the enthalpic contribution to the binding is small at physiological temperatures, and that, in contrast to typical protein-carbohydrate interactions, binding is driven primarily by favorable entropic changes. Interestingly, surface plasmon resonance experiments with recombinant ESL-1 from alpha 1,3-fucosyltransferase IV-expressing Chinese hamster ovary cells showed a very similar K(d) of 66 microm, suggesting that this fucosyltransferase is sufficient to produce fully functional recombinant ESL-1. Following the recent description of the affinity and kinetics of the selectin-ligand pairs L-selectin-glycosylation-dependent cell adhesion molecule-1 and P-selectin-P-selectin glycoprotein ligand-1, this is the first determination of the parameters of E-selectin binding to one of its naturally occurring ligands.
Collapse
Affiliation(s)
- M K Wild
- Institute of Cell Biology, Zentrum für Molekularbiologie der Entzündung, University of Muenster, 48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
44
|
Bruehl RE, Dasgupta F, Katsumoto TR, Tan JH, Bertozzi CR, Spevak W, Ahn DJ, Rosen SD, Nagy JO. Polymerized Liposome Assemblies: Bifunctional Macromolecular Selectin Inhibitors Mimicking Physiological Selectin Ligands. Biochemistry 2001; 40:5964-74. [PMID: 11352731 DOI: 10.1021/bi002921s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monomeric sialyl Lewis(X) (sLe(x)) and sLe(x)-like oligosaccharides are minimal structures capable of supporting selectin binding in vitro. However, their weak binding interactions do not correlate with the high-affinity binding interactions witnessed in vivo. The polyvalent display of carbohydrate groups found on cell surface glycoprotein structures may contribute to the enhanced binding strength of selectin-mediated adhesion. Detailed biochemical analyses of physiological selectin ligands have revealed a complicated composition of molecules that bind to the selectins in vivo and suggest that there are other requirements for tight binding beyond simple carbohydrate multimerization. In an effort to mimic the high-affinity binding, polyvalent scaffolds that contain multicomponent displays of selectin-binding ligands have been synthesized. Here, we demonstrate that the presentation of additional anionic functional groups in the form of sulfate esters, on a polymerized liposome surface containing a multimeric array of sLe(x)-like oligosaccharides, generates a highly potent, bifunctional macromolecular assembly. This assembly inhibits L-, E-, and P-selectin binding to GlyCAM-1, a physiological ligand better than sLe(x)-like liposomes without additional anionic charge. These multivalent arrays are 4 orders of magnitude better than the monovalent carbohydrate. Liposomes displaying 3'-sulfo Lewis(X)-like oligosaccharides, on the other hand, show slight loss of binding with introduction of additional anionic functional groups for E- and P-selectin and negligible change for L-selectin. The ability to rapidly and systematically vary the composition of these assemblies is a distinguishing feature of this methodology and may be applied to the study of other systems where composite binding determinants are important for high-affinity binding.
Collapse
Affiliation(s)
- R E Bruehl
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- A P May
- Department of Structural Biology, Stanford University School of Medicine, Fairchild Building, Stanford, CA 94305, USA
| | | |
Collapse
|
46
|
Sliedregt LA, van Rossenberg SM, Autar R, Valentijn AR, van der Marel GA, van Boom JH, Piperi C, van der Merwe PA, Kuiper J, van Berkel TJ, Biessen EA. Design and synthesis of a multivalent homing device for targeting to murine CD22. Bioorg Med Chem 2001; 9:85-97. [PMID: 11197350 DOI: 10.1016/s0968-0896(00)00224-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CD22 is a cell-surface glycoprotein uniquely located on mature B-cells and B-cell derived tumour cells. Current evidence suggests that binding of endogenous ligands to CD22 leads to modulation of B-cell activation by antigen. Incidentally, however, B-cell activation may derail. and lead to an undesired immune response, for example in cases of allergy, rheumatoid arthritis and Crohn's disease. In this situation, synthetic high-affinity ligands for CD22 may be of therapeutic value as inhibitors of B-cell activation. Recent studies have revealed that natural ligands for CD22 contain the trisaccharide NeuAc alpha-2,6-Lac as the basic binding motif. In addition, it has been demonstrated that binding to CD22 is strongly enhanced by multivalent presentation of the basic binding motif (cluster effect). In this paper. the stepwise development of a novel multivalent high-affinity ligand for CD22 is described. In the first stage, a series of monovalent NeuAc alpha-2,6-Glc(Y)X type binding motifs was prepared, and their affinity for murine CD22 was monitored, to obtain more insight into the effect of separate structure elements on ligand recognition. In the second stage, we prepared a trivalent cluster, based on the monovalent motif that displayed the highest affinity for CD22, NeuAc alpha-2,6-GlcNBzNO2OMe (7). This cluster, TRIS(NeuAc alpha-2,6-GlcNBzNO2)3 (52), displayed a more than 58-fold higher affinity for CD22 than the reference structure NeuAc alpha-2,6-LacOMe (10). To our knowledge, the cluster 52 is one of the most potent antagonists for CD22 yet synthesised.
Collapse
Affiliation(s)
- L A Sliedregt
- Leiden/Amsterdam Center for Drug Research, Division of Biopharmaceutics, Sylvius Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Design and synthesis of cyclic sialyl Lewis X mimetics: a remarkable enhancement of inhibition by pre-organizing all essential functional groups. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)01653-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Bruehl RE, Bertozzi CR, Rosen SD. Minimal sulfated carbohydrates for recognition by L-selectin and the MECA-79 antibody. J Biol Chem 2000; 275:32642-8. [PMID: 10938267 DOI: 10.1074/jbc.m001703200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sulfated forms of sialyl-Le(X) containing Gal-6-SO(4) or GlcNAc-6-SO(4) have been implicated as potential recognition determinants on high endothelial venule ligands for L-selectin. The optimal configuration of sulfate esters on the N-acetyllactosamine (Galbeta1-->4GlcNAc) core of sulfosialyl-Le(X), however, remains unsettled. Using a panel of sulfated lactose (Galbeta1-->4Glc) neoglycolipids as substrates in direct binding assays, we found that 6',6-disulfolactose was the preferred structure for L-selectin, although significant binding to 6'- and 6-sulfolactose was observed as well. Binding was EDTA-sensitive and blocked by L-selectin-specific monoclonal antibodies. Surprisingly, 6', 6-disulfolactose was poorly recognized by MECA-79, a carbohydrate- and sulfate-dependent monoclonal antibody that binds competitively to L-selectin ligands. Instead, MECA-79 bound preferentially to 6-sulfolactose. The difference in preferred substrates between L-selectin and MECA-79 may explain the variable activity of MECA-79 as an inhibitor of lymphocyte adhesion to high endothelial venules in lymphoid organs. Our results suggest that both Gal-6-SO(4) and GlcNAc-6-SO(4) may contribute to L-selectin recognition, either as components of sulfosialyl-Le(X) capping groups or in internal structures. By contrast, only GlcNAc-6-SO(4) appears to contribute to MECA-79 binding.
Collapse
Affiliation(s)
- R E Bruehl
- Department of Anatomy, Programs in Immunology and Biomedical Sciences, and the Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
49
|
Vyas SP, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery. Adv Drug Deliv Rev 2000; 43:101-64. [PMID: 10967224 DOI: 10.1016/s0169-409x(00)00067-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Targeted drug delivery has gained recognition in modern therapeutics and attempts are being made to explore the potentials and possibilities of cell biology related bioevents in the development of specific, programmed and target oriented systems. The components which have been recognized to be tools include receptors and ligands, where the receptors act as molecular targets or portals, and ligands, with receptor specificity and selectivity, are trafficked en route to the target site. Although ligands of exogenous or synthetic origin contribute to the selectivity component of carrier constructs, they may impose immunological manifestations of different magnitudes. The latter may entail a continual quest for bio-compatible, non-immunogenic and target orientated delivery. Endogenous serum, cellular and extracellular bio-ligands interact with the colloidal carrier constructs and influence their bio-fate. However, these endogenous bio-ligands can themselves serve as targeting modules either in their native form or engineered as carrier cargo. Bio-regulatory, nutrient and immune ligands are sensitive, specific and effective site directing handles which add to targeted drug delivery. The present review provides an exhaustive account of the identified bio-ligands, which are not only non-immunogenic in nature but also site-specific. The cell-related bioevents which are instrumental in negotiating the uptake of bio-ligands are discussed. Further, a brief account of ligand-receptor interactions and the set of biological events which ensures ligand-driven trafficking of the ligand-receptor complex to the cellular interior is also presented. Since ligand-receptor interaction is a critical pre-requisite for negotiating cellular uptake of endogenous ligands and anchored carrier cargo, an attempt has been made to identify differential expression of receptors and bio-ligands under normal and etiological conditions. Studies which judiciously utilized bio-ligands or their analogs in negotiating site-specific drug delivery have been reviewed and presented. Targeted delivery of bioactives using endogenous bio-ligands offers enormous options and opportunities through carrier construct engineering and could become a future reality in clinical practice.
Collapse
Affiliation(s)
- S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H.S. Gour Vishwavidyalaya, M.P. 470003, Sagar, India.
| | | |
Collapse
|
50
|
Affiliation(s)
- Gábor I. Csonka
- Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Carlos P. Sosa
- Cray Research/Silicon Graphics Inc., 655 F Lone Oak Dr., Eagan, Minnesota 55123
| |
Collapse
|