1
|
Chen Q, Tan Z, Tang Y, Fung YME, Chen S, Chen Z, Li X. Comprehensive Glycomic and Glycoproteomic Analyses of Human Programmed Cell Death Protein 1 Extracellular Domain. J Proteome Res 2024; 23:3958-3973. [PMID: 39101792 DOI: 10.1021/acs.jproteome.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Human programmed cell death protein 1 (hPD-1) is an essential receptor in the immune checkpoint pathway. It has played an important role in cancer therapy. However, not all patients respond positively to the PD-1 antibody treatment, and the underlying mechanism remains unknown. PD-1 is a transmembrane glycoprotein, and its extracellular domain (ECD) is reported to be responsible for interactions and signal transduction. This domain contains 4 N-glycosylation sites and 25 potential O-glycosylation sites, which implicates the importance of glycosylation. The structure of hPD-1 has been intensively studied, but the glycosylation of this protein, especially the glycan on each glycosylation site, has not been comprehensively illustrated. In this study, hPD-1 ECD expressed by human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells was analyzed; not only N- and O-glycosylation sites but also the glycans on these sites were comprehensively analyzed using mass spectrometry. In addition, hPD-1 ECD binding to different anti-hPD-1 antibodies was tested, and N-glycans were found functioned differently. All of this glycan information will be beneficial for future PD-1 studies.
Collapse
Affiliation(s)
- Qiushi Chen
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, Shatin, Hong Kong SAR 999077, P. R. China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR 999077, P. R. China
| | - Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR 999077, PR. China
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Yuk Choi Road, Hong Kong SAR 999077, P. R. China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR 999077, P. R. China
| | - Xuechen Li
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, Shatin, Hong Kong SAR 999077, P. R. China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
2
|
Figueroa-Lozano S, de Vos P. Relationship Between Oligosaccharides and Glycoconjugates Content in Human Milk and the Development of the Gut Barrier. Compr Rev Food Sci Food Saf 2018; 18:121-139. [DOI: 10.1111/1541-4337.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Susana Figueroa-Lozano
- Immunoendocrinology, Div. of Medical Biology, Dept. of Pathology and Medical Biology; Univ. of Groningen and University Medical Center Groningen; Groningen The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Div. of Medical Biology, Dept. of Pathology and Medical Biology; Univ. of Groningen and University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
3
|
Monitoring of post-mortem changes of saliva N-glycosylation by nano LC/MS. Anal Bioanal Chem 2017; 410:45-56. [DOI: 10.1007/s00216-017-0702-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023]
|
4
|
Expression of LacdiNAc groups on N-glycans among human tumors is complex. BIOMED RESEARCH INTERNATIONAL 2014; 2014:981627. [PMID: 25003135 PMCID: PMC4066867 DOI: 10.1155/2014/981627] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/26/2014] [Indexed: 12/19/2022]
Abstract
Aberrant glycosylation of proteins and lipids is one of the characteristic features of malignantly transformed cells. The GalNAcβ1 → 4GlcNAc (LacdiNAc or LDN) group at the nonreducing termini of both N- and O-glycans is not generally found in mammalian cells. We previously showed that the expression level of the LacdiNAc group in N-glycans decreases dramatically during the progression of human breast cancer. In contrast, the enhanced expression of the LacdiNAc group has been shown to be associated with the progression of human prostate, ovarian, and pancreatic cancers. Therefore, the expression of the disaccharide group appears to be dependent on types of tumors. The mechanism of formation of the LacdiNAc group in human tumors and cancer cells has been studied, and two β4-N-acetylgalacto-saminyltransferases (β4GalNAcTs), β4GalNAcT3 and β4GalNAcT4, have been shown to be involved in the biosynthesis of this disaccharide group in a tissue-dependent manner. Transfection of the β4GalNAcT3 gene brought about significant changes in the malignant phenotypes of human neuroblastoma, indicating that this disaccharide group is important for suppressing the tumor growth.
Collapse
|
5
|
Do SI. Generation of novel chimeric LacdiNAcS by gene fusion of alpha-lactalbumin and beta1,4-galactosyltransferase 1. Glycoconj J 2008; 26:567-75. [PMID: 19003527 DOI: 10.1007/s10719-008-9208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/29/2008] [Accepted: 10/24/2008] [Indexed: 11/25/2022]
Abstract
Novel chimeric lacdiNAc (GalNAc(beta1-4)GlcNAc) synthase (c-LacdiNAcS) was generated by gene fusion of alpha-lactalbumin (alpha-LA) and beta1,4-galactosyltransferase 1 (beta1,4-GalT1). c-LacdiNAcS was expressed in Lec8 Chinese hamster ovary (Lec8 CHO) cells and exhibited N-acetylgalactosaminyltransferase (GalNAcT) activity in the absence of exogenous alpha-LA as well as other glycosyltransferase activities including lactose synthase (LacS), and beta1,4-GalT. These glycosyltransferase activities of c-LacdiNAcS were compared to those activities induced in LacS system under the co-presence of bovine beta1,4-GalT1 and alpha-LA, indicating that each domain of alpha-LA and beta1,4-GalT1 on c-LacdiNAcS is not only folding correctly, but also interacting together. Furthermore, c-LacdiNAcS was found to be auto-lacdiNAcylated and can synthesize lacdiNAc structures on cellular glycoproteins, demonstrating that GalNAcT activity of c-LacdiNAcS is functional in Lec8 CHO cells.
Collapse
Affiliation(s)
- Su-Il Do
- Department of Life Science, Ajou University, Suwon City, Republic of Korea.
| |
Collapse
|
6
|
Monosialylated biantennary N-glycoforms containing GalNAc–GlcNAc antennae predominate when human EPO is expressed in goat milk. Arch Biochem Biophys 2008; 470:163-75. [DOI: 10.1016/j.abb.2007.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 11/22/2022]
|
7
|
Sánchez O, Montesino R, Toledo JR, Rodríguez E, Díaz D, Royle L, Rudd PM, Dwek RA, Gerwig GJ, Kamerling JP, Harvey DJ, Cremata JA. The goat mammary glandular epithelial (GMGE) cell line promotes polyfucosylation and N,N′-diacetyllactosediaminylation of N-glycans linked to recombinant human erythropoietin. Arch Biochem Biophys 2007; 464:322-34. [PMID: 17570337 DOI: 10.1016/j.abb.2007.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/20/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
We have established a continuous, non-transformed cell line from primary cultures from Capra hircus mammary gland. Low-density cultures showed a homogeneous epithelial morphology without detectable fibroblastic or myoepithelial cells. The culture was responsive to contact inhibition of proliferation and its doubling time was dependent on the presence of insulin and epidermal growth factor (EGF). GMGE cells secrete caseins regardless of the presence or absence of lactogenic hormones in the culture media. Investigation of the total N-glycan pool of human erythropoietin (rhEPO) expressed in GMGE cells by monosaccharide analysis, HPLC profiling, and mass spectrometry, indicated significant differences with respect to the same protein expressed in Chinese hamster ovary (CHO) cells. N-Glycans of rhEPO-GMGE are core-fucosylated, but fucosylation of outer arms was also found. Our results also revealed the presence of low levels of sialylation (>95% Neu5Ac), N,N'-diacetyllactosediamine units, and possibly Gal-Gal non-reducing terminal elements.
Collapse
Affiliation(s)
- O Sánchez
- Department of Animal Biotechnology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
van Veen HA, Geerts MEJ, Zoetemelk RAA, Nuijens JH, van Berkel PHC. Characterization of Bovine Neutrophil Gelatinase-Associated Lipocalin. J Dairy Sci 2006; 89:3400-7. [PMID: 16899672 DOI: 10.3168/jds.s0022-0302(06)72376-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A protein of relative molecular mass of approximately 25,000 was purified from bovine colostrum by cation-exchange and size-exclusion chromatography. The N-terminus of the protein matched the sequence predicted by the National Center for Biotechnology Information for the bovine homolog of human neutrophil gelatinase-associated lipocalin, a glycoprotein of relative molecular mass 25,000 belonging to the family of lipocalins. The protein was further designated as bovine neutrophil gelatinase-associated lipocalin (bNGAL). Sodium dodecyl sulfate-PAGE of enzymically deglycosylated bNGAL indicated that the intact protein bears one N-linked glycan. Monosaccharide and mass spectrometric analyses of released N-linked carbohydrates revealed the presences of complex- and hybrid-type glycans, with galactose substituted with N-acetylgalactosamine. This substitution is typical for glycoproteins expressed in the bovine mammary gland. A specific ELISA revealed bNGAL concentrations in plasma and mature milk of about 0.05 and 1 microg/mL, respectively, whereas values as high as 51 microg/mL were measured in colostrum. Thus, we have isolated and characterized a novel bovine (milk) protein that is a new member of the lipocalin family.
Collapse
Affiliation(s)
- H A van Veen
- Pharming, Archimedesweg 4, 2333 CN Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Kawar ZS, Van Die I, Cummings RD. Molecular cloning and enzymatic characterization of a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase from Caenorhabditis elegans. J Biol Chem 2002; 277:34924-32. [PMID: 12167666 DOI: 10.1074/jbc.m206112200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A common terminal structure in glycans from animal glycoproteins and glycolipids is the lactosamine sequence Gal(beta)4GlcNAc-R (LacNAc or LN). An alternative sequence that occurs in vertebrate as well as in invertebrate glycoconjugates is GalNAc(beta)4GlcNAc-R (LacdiNAc or LDN). Whereas genes encoding beta4GalTs responsible for LN synthesis have been reported, the beta4GalNAcT(s) responsible for LDN synthesis has not been identified. Here we report the identification of a gene from Caenorhabditis elegans encoding a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase (Ce(beta)4GalNAcT) that synthesizes the LDN structure. Ce(beta)4GalNAcT is a member of the beta4GalT family, and its cDNA is predicted to encode a 383-amino acid type 2 membrane glycoprotein. A soluble, epitope-tagged recombinant form of Ce(beta)4GalNAcT expressed in CHO-Lec8 cells was active using UDP-GalNAc, but not UDP-Gal, as a donor toward a variety of acceptor substrates containing terminal beta-linked GlcNAc in both N- and O-glycan type structures. The LDN structure of the product was verified by co-chromatography with authentic standards and (1)H NMR spectroscopy. Moreover, Chinese hamster ovary CHO-Lec8 and CHO-Lec2 cells expressing Ce(beta)4GalNAcT acquired LDN determinants on endogenous glycoprotein N-glycans, demonstrating that the enzyme is active in mammalian cells as an authentic beta4GalNAcT. The identification and availability of this novel enzyme should enhance our understanding of the structure and function of LDN-containing glycoconjugates.
Collapse
Affiliation(s)
- Ziad S Kawar
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
10
|
Ramakrishnan B, Qasba PK. Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J Biol Chem 2002; 277:20833-9. [PMID: 11916963 DOI: 10.1074/jbc.m111183200] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta1,4-Galactosyltransferase I (Gal-T1) normally transfers Gal from UDP-Gal to GlcNAc in the presence of Mn(2+) ion. In the presence of alpha-lactalbumin (LA), the Gal acceptor specificity is altered from GlcNAc to Glc. Gal-T1 also transfers GalNAc from UDP-GalNAc to GlcNAc, but with only approximately 0.1% of Gal-T activity. To understand this low GalNAc-transferase activity, we have carried out the crystal structure analysis of the Gal-T1.LA complex with UDP-GalNAc at 2.1-A resolution. The crystal structure reveals that the UDP-GalNAc binding to Gal-T1 is similar to the binding of UDP-Gal to Gal-T1, except for an additional hydrogen bond formed between the N-acetyl group of GalNAc moiety with the Tyr-289 side chain hydroxyl group. Elimination of this additional hydrogen bond by mutating Tyr-289 residue to Leu, Ile, or Asn enhances the GalNAc-transferase activity. Although all three mutants exhibit enhanced GalNAc-transferase activity, the mutant Y289L exhibits GalNAc-transferase activity that is nearly 100% of its Gal-T activity, even while completely retaining its Gal-T activity. The steady state kinetic analyses on the Leu-289 mutant indicate that the K(m) for GlcNAc has increased compared to the wild type. On the other hand, the catalytic constant (k(cat)) in the Gal-T reaction is comparable with the wild type, whereas it is 3-5-fold higher in the GalNAc-T reaction. Interestingly, in the presence of LA, these mutants also transfer GalNAc to Glc instead of to GlcNAc. The present study demonstrates that, in the Gal-T family, the Tyr-289/Phe-289 residue largely determines the sugar donor specificity.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section and Intramural Research Support Program-SAIC, Laboratory of Experimental and Computational Biology, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | |
Collapse
|
11
|
Ramakrishnan B, Boeggeman E, Qasba PK. Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices. Biochem Biophys Res Commun 2002; 291:1113-8. [PMID: 11883930 DOI: 10.1006/bbrc.2002.6506] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent structural investigations on the beta-1,4-galactosyltransferase-1 (Gal-T1) and lactose synthase (LS) have revealed that they are akin to an exquisite mechanical device with two well-coordinated flexible loops that are contained within the Gal-T1 catalytic domain. The smaller one has a Trp residue (Trp314) flanked by glycine residues. The larger one comprises amino acid residues 345 to 365. Upon substrate binding, the Trp314 side chain moves to lock the sugar nucleotide in the binding site, while the large loop undergoes a conformational change, masking the sugar nucleotide binding site, and creates (i) the oligosaccharide binding cavity; (ii) a protein-protein interacting site for the enzyme's partner, alpha-lactalbumin (LA); and (iii) a metal ion binding site. Only in conformation II do Gal-T1 and LA form the LS complex, enabling Gal-T1 to choose the new substrate glucose. LA holds and puts Glc right in the acceptor binding site of Gal-T1, which then maximizes the interactions with Glc, thereby making it a preferred acceptor for the LS reaction. The interaction of LA with Gal-T1 in conformation II also stabilizes the sugar-nucleotide-enzyme complex, kinetically enhancing the sugar transfer, even from the less preferred sugar nucleotides. The conformational change that masks the sugar nucleotide binding site can also be induced by the acceptor alone, thus making it possible for the protein to act as a specific lectin.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section, National Cancer Institute/NIH, Building 469, Frederick, MD 21702, USA
| | | | | |
Collapse
|
12
|
Salo H, Aitio O, Ilves K, Bencomo E, Toivonen S, Penttilä L, Niemelä R, Salminen H, Grabenhorst E, Renkonen R, Renkonen O. Several polylactosamine-modifying glycosyltransferases also use internal GalNAcbeta1-4GlcNAc units of synthetic saccharides as acceptors. Glycobiology 2002; 12:217-28. [PMID: 11971866 DOI: 10.1093/glycob/12.3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GalNAcbeta1-4GlcNAc determinant (LdN) occurs in some human and bovine glycoconjugates and also in lower vertebrates and invertebrates. It has been found in unsubstituted as well as terminally substituted forms at the distal end of conjugated glycans, but it has not been reported previously at truly internal positions of polylactosamine chains. Here, we describe enzyme-assisted conversion of LdNbeta1-OR oligosaccharides into GlcNAcbeta1-3GalNAcbeta1-4GlcNAcbeta1-OR. The extension reactions, catalyzed by human serum, were modeled after analogous beta3-GlcNAc transfer processes that generate GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-OR. The newly synthesized GlcNAcbeta1-3GalNAc linkages were unambiguously identified by nuclear magnetic resonance data, including the appropriate long-range correlations in heteronuclear multiple bond correlation spectra. The novel GlcNAcbeta1-3'LdN determinant proved to be a functional acceptor for several mammalian glycosyltransferases, suggesting that human polylactosamines may contain internal LdN units in many distinct forms. The GlcNAcbeta1-3'LdN determinant was unusually resistant toward jackbean beta-N-acetylhexosaminidase; the slow degradation should lead to a convenient method for the search of putative internal LdN determinants in natural polylactosamine chains.
Collapse
Affiliation(s)
- Hanna Salo
- Institute of Biotechnology, Laboratory of Glycobiology, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chandrasekaran EV, Chawda R, Piskorz C, Locke RD, Ta A, Sharad G, Odunsi K, Lele S, Matta KL. Human ovarian cancer, lymphoma spleen, and bovine milk GlcNAc:beta1,4Gal/GalNAc transferases: two molecular species in ovarian tumor and induction of GalNAcbeta1,4Glc synthesis by alpha-lactalbumin. Carbohydr Res 2001; 334:105-18. [PMID: 11502266 DOI: 10.1016/s0008-6215(01)00150-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Affinity Gel-UDP was utilized to purify GlcNAc:beta1,4Gal/GalNAc transferases (Ts) from human lymphoma spleen, ovarian tumor, and ovarian cancer sera. Mn(2+) was found to be an absolute requirement for activity. Two molecular species containing both beta1,4Gal/GalNAc-T activities were discernible when the purified ovarian tumor microsomal enzyme was subjected to Sephacryl S-100 HR column chromatography as well as native polyacylamide gel-electrophoresis. Acceptor specificity studies of the affinity-purified lymphoma spleen and ovarian tumor microsomal enzymes and the conventionally purified, as well as the cloned, bovine milk GlcNAc:beta1,4Gal-Ts using a number of synthetic acceptors showed that the beta(1,6)-linked GlcNAc moiety to alpha-GalNAc was the most efficient acceptor. As compared to the purified milk enzyme, the recombinant form exhibited sixfold GlcNAc:beta1,4 GalNAc-T activity and up to eightfold GlcNAc6SO3beta-:beta1,4Gal-T activity. Further, the recombinant enzyme catalyzed the transfer of GalNAc to the terminal beta-linked GlcNAc6SO3 moiety. Alpha-lactalbumin (alpha-LA) inhibited up to 85%, the transfer of Gal to the GlcNAc moiety linked either to Man or GlcNAc. On the contrary, alpha-LA had no significant influence on the transfer of GalNAc to the above acceptors. alpha-LA had no appreciable effect on the recombinant enzyme, except for the transfer of Gal or GalNAc to Glc. Both alpha- and beta-glucosides, as well as alpha-N-acetylglucosaminide, did not serve as acceptors.
Collapse
Affiliation(s)
- E V Chandrasekaran
- Department of Molecular and Cellular Biophysics, Roswell Park Cancer Institute, Elm and Carton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
van den Nieuwenhof IM, Renardel de Lavalette C, Diaz N, van Die I, van den Berg TK. Differential galactosylation of neuronal and haematopoietic signal regulatory protein-(α) determines its cellular binding-specificity. J Cell Sci 2001; 114:1321-9. [PMID: 11256998 DOI: 10.1242/jcs.114.7.1321] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal regulatory protein-(α) (SIRP(α)) is a member of the Ig superfamily selectively expressed by neuronal and myeloid cells. The molecule mediates functional interactions with CD47/integrin-associated protein. Here we provide evidence for the tissue-specific glycosylation of neuronal and haematopoietic SIRP(α). We demonstrate a major difference in the galactosylation of N-linked glycans isolated from neuronal (i.e. brain-derived) SIRP(α) as compared to myeloid (i.e. spleen-derived) SIRP(α), with neuronal SIRP(α) almost completely lacking galactose. (β)4-galactosyltransferase assays demonstrated that this is most likely due to a low galactosylation capacity of the brain. In order to investigate the role of galactosylation of SIRP(α) in cellular interactions, soluble recombinant SIRP(α) glycoforms containing galactose (SIRP(α)-Fc) or lacking galactose (SIRP(α)((Δ)Gal)-Fc) were produced. Binding studies demonstrated superior binding of SIRP(α)((Δ)Gal)-Fc to cerebellar neurons and isolated lymphocytes. In contrast, SIRP(α)-Fc bound relatively strong to macrophages. These data show that the galactosylation of SIRP(α) determines its cellular binding specificity.
Collapse
Affiliation(s)
- I M van den Nieuwenhof
- Department of Medical Chemistry, Research Institute Immunology and Inflammatory diseases, Vrije Universiteit, Van der Boechorststraat 7, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Furukawa K, Kitamura N, Sato T, Hiraizumi S. Differentiation-Associated Expression of ß-N-Acetylgalactosaminylated N-Linked Oligosaccharides in Mammary Epithelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:313-23. [PMID: 14533805 DOI: 10.1007/978-1-4615-1267-7_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Not only mammalian pituitary glycoprotein hormones but also many glycoproteins from a variety of animal species have been shown to contain N-linked oligosacchardies with the GalNAcbeta1 --> 4GlcNAc structure. Two types of beta-1,4-GalNAcT were found; one transfers N-acetylgalactosamine to acceptor oligosaccharides, which is stimulated by the hormone peptide and the other simply transfers sugar without such activation. In the case of bovine mammary membrane glycoproteins, the expression of beta-N-acetylgalactosaminylated N-linked oligosaccharides was associated with the functional differentiation of the epithelial cells. In contrast, the expression level of such oligosaccharides was much reduced in glycoprotein samples from human breast tumors compared with those from the unaffected regions. These results strongly suggest that the beta-N-acetylgalactosaminylation is one which is regulated under cellular differentiation and dedifferentiation of the mammary gland. Whether or not beta-N-acetylgalactosaminylated N-linked oligosaccharides have unique functions in addition to clearance of the hormone from the circulation remains to be elucidated.
Collapse
Affiliation(s)
- K Furukawa
- Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | |
Collapse
|
16
|
Van den Nieuwenhof IM, Koistinen H, Easton RL, Koistinen R, Kämäräinen M, Morris HR, Van Die I, Seppälä M, Dell A, Van den Eijnden DH. Recombinant glycodelin carrying the same type of glycan structures as contraceptive glycodelin-A can be produced in human kidney 293 cells but not in chinese hamster ovary cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4753-62. [PMID: 10903509 DOI: 10.1046/j.1432-1327.2000.01528.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have produced human recombinant glycodelin in human kidney 293 cells and in Chinese hamster ovary (CHO) cells. Structural analyses by lectin immunoassays and fast atom bombardment mass spectrometry showed that recombinant human glycodelin produced in CHO cells contains only typical CHO-type glycans and is devoid of any of the N, N'-diacetyllactosediamine (lacdiNAc)-based chains previously identified in glycodelin-A (GdA). By contrast, human kidney 293 cells produced recombinant glycodelin with the same type of carbohydrate structures as GdA. The presence of a beta1-->4-N-acetylgalactosaminyltransferase functioning in the synthesis of lacdiNAc-based glycans in human kidney 293 cells is concluded to be the cause of the occurrence of lacdiNAc-based glycans on glycodelin produced in these cells. Furthermore, human kidney 293 cells were found to be particularly suited for the production of recombinant glycodelin when they were cultured in high glucose media. Lowering the glucose concentration and the addition of glucosamine resulted in higher relative amounts of oligomannosidic-type glycans and complex glycans with truncated antennae. Human glycodelin is an attractive candidate for the development of a contraceptive agent, and this study gives valuable information for selecting the proper expression system and cell culture conditions for the production of a correctly glycosylated recombinant form.
Collapse
Affiliation(s)
- I M Van den Nieuwenhof
- Department of Medical Chemistry, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van Die I, Cummings RD, van Tetering A, Hokke CH, Koeleman CA, van den Eijnden DH. Identification of a novel UDP-Glc:GlcNAc beta1-->4-glucosyltransferase in Lymnaea stagnalis that may be involved in the synthesis of complex-type oligosaccharide chains. Glycobiology 2000; 10:263-71. [PMID: 10704525 DOI: 10.1093/glycob/10.3.263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Several studies suggest, that the snail Lymnaea stagnalis contains glycoproteins whose oligosaccharide side chains have structural features not commonly found in mammalian glycoproteins. In this study, prostate glands of L. stagnalis were incubated in media containing either [(3)H]-mannose, [(3)H]-glucosamine, or [(3)H]-galactose, and the metabolically radiolabeled protein-bound oligosaccharides were analyzed. The newly synthesized diantennary-like complex-type asparagine-linked chains contained a considerable amount of glucose, next to mannose, GlcNAc, fucose, galactose, and traces of GalNAc. Since glucose has not been found before as a constituent of diantennary N-linked glycans as far as we know, we assayed the prostate gland of L. stagnalis for a potential glucosyltransferase activity involved in the biosynthesis of such structures. We report here, that the prostate gland of L. stagnalis contains a beta1-->4-glucosyltransferase activity that transfers glucose from UDP-glucose to acceptor substrates carrying a terminal N-acetylglucosamine. The enzyme prefers substrates carrying a terminal GlcNAc that is beta6 linked to a Gal or a GalNAc, structures occurring in O-linked glycans, or a GlcNAc that is beta2 linked to mannose, as is present in N-linked glycans. Based on combined structural and enzymatic data, we propose that the novel beta1-->4-gluco-syltransferase present in the prostate gland may be involved in the biosynthesis of Glcbeta1-->4GlcNAc units in complex-type glycans, in particular in N-linked diantennary glycans.
Collapse
Affiliation(s)
- I van Die
- Department of Medical Chemistry, Vrije Universiteit, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Amado M, Almeida R, Schwientek T, Clausen H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:35-53. [PMID: 10580128 DOI: 10.1016/s0304-4165(99)00168-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enzymatic glycosylation of proteins and lipids is an abundant and important biological process. A great diversity of oligosaccharide structures and types of glycoconjugates is found in nature, and these are synthesized by a large number of glycosyltransferases. Glycosyltransferases have high donor and acceptor substrate specificities and are in general limited to catalysis of one unique glycosidic linkage. Emerging evidence indicates that formation of many glycosidic linkages is covered by large homologous glycosyltransferase gene families, and that the existence of multiple enzyme isoforms provides a degree of redundancy as well as a higher level of regulation of the glycoforms synthesized. Here, we discuss recent cloning strategies enabling the identification of these large glycosyltransferase gene families and exemplify the implication this has for our understanding of regulation of glycosylation by discussing two galactosyltransferase gene families.
Collapse
Affiliation(s)
- M Amado
- Faculty of Health Sciences, School of Dentistry, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
19
|
Van den Nieuwenhof IM, Schiphorst WE, Van den Eijnden DH. The lactose analog GalNAcbeta1-->4Glc is present in bovine colostrum. Enzymatic basis for its occurrence. FEBS Lett 1999; 459:377-80. [PMID: 10526168 DOI: 10.1016/s0014-5793(99)01284-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have isolated from bovine colostrum the lactose analog GalNAcbeta1-->4Glc. The enzymatic basis for its occurrence was studied by assaying the activities of GlcNAcbeta-R beta4-N-acetylgalactosaminyltransferase (beta4-GalNAcT) and GlcNAcbeta-R beta4-galactosyltransferase (beta4-GalT) in primary milk and several lactating bovine mammary gland fractions. As the beta4-GalNAcT, which appears to be tightly membrane bound, is induced by the milk protein alpha-lactalbumin (alpha-LA) to act on Glc, it is concluded that beta4-GalNAcT is responsible for the synthesis of GalNAcbeta1-->4Glc in the gland. The comparatively low level (15-20 mg/l) at which this disaccharide is produced may be due to the relatively poor interaction of beta4-GalNAcT with alpha-LA as well as to the fact that alpha-LA does not inhibit the action of the enzyme on N-acetylglucosaminides.
Collapse
Affiliation(s)
- I M Van den Nieuwenhof
- Department of Medical Chemistry, Faculty of Medicine, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
20
|
van Die I, van Tetering A, Schiphorst WE, Sato T, Furukawa K, van den Eijnden DH. The acceptor substrate specificity of human beta4-galactosyltransferase V indicates its potential function in O-glycosylation. FEBS Lett 1999; 450:52-6. [PMID: 10350056 DOI: 10.1016/s0014-5793(99)00462-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In order to assess the function of the different human UDP-Gal:GlcNAc beta4-galactosyltransferases, the cDNAs of two of them, beta4-GalT I and beta4-GalT V, were expressed in the baculovirus/insect cell expression system. The soluble recombinant enzymes produced were purified from the medium and used to determine their in vitro substrate specificities. The specific activity of the recombinant beta4-GalT V was more than 15 times lower than that of beta4-GalT I, using GlcNAc beta-S-pNP as an acceptor. Whereas beta4-GalT I efficiently acts on all substrates having a terminal beta-linked GlcNAc, beta4-GalT V appeared to be far more restricted in acceptor usage. Beta4-GalT V acts with high preference on acceptors that contain the GlcNAc beta1-->6GalNAc structural element, as found in O-linked core 2-, 4- and 6-based glycans, but not on substrates related to V-linked or blood group I-active oligosaccharides. These results suggest that beta4-GalT V may function in the synthesis of lacNAc units on O-linked chains, particularly in tissues which do not express beta4-GalT I, such as brain.
Collapse
Affiliation(s)
- I van Die
- Department of Medical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|