1
|
Tamaki Y, Harakuni T, Arakawa T. Shiga toxin type 2 B subunit protects mice against toxin challenge when leashed and bundled by a stable pentameric coiled-coil molecule. Vaccine 2024; 42:1757-1767. [PMID: 38365487 DOI: 10.1016/j.vaccine.2024.01.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Vaccines against Shiga toxin (Stx)-producing Escherichia coli (STEC) have not yet been developed. Two immunologically distinct serotypes of Stx (Stx1 and Stx2) are the main virulence factors of STEC. Thus, blocking their B subunits (StxB) from binding to the cell surface receptor globotriaosylceramide (Gb3) efficiently prevents the action of these toxins. We expressed Stx1B and Stx2B in E. coli inclusion bodies and reassembled them into pentamers by a stepwise dialysis. Stx1B pentamer fully protected mice against Stx1 challenge, but Stx2B pentamer failed to protect mice against Stx2 challenge. To explain those observations, we proposed that the pentamer of Stx2B readily dissociates into its constituent monomers, especially under in vivo conditions, thus being unable to induce pentamer-specific immunity. To increase pentamer stability, we fused the B subunit to a pentameric coiled-coil domain of the cartilage oligomeric matrix protein (COMP). This "five-to-five" fusion hybrid molecule (Stx2B-COMP) was shown to be protective against Stx2 challenge, demonstrating that the Stx2B subunit when leashed and bundled by a rigid pentameric coiled-coil domain mount a pentamer-specific immune response and efficiently neutralize the toxin both in vitro and in vivo. Our data strongly suggest that the Stx2B subunit moiety fluctuates between a pentameric and monomeric state within the fusion protein, which may increase the likelihood of the immune system recognizing the pentameric conformation for toxin neutralization.
Collapse
Affiliation(s)
- Yukihiro Tamaki
- Laboratory of Vaccine Research and Development, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Tetsuya Harakuni
- Laboratory of Vaccine Research and Development, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Takeshi Arakawa
- Laboratory of Vaccine Research and Development, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
2
|
Kundlacz T, Schmidt C. Deciphering Solution and Gas-Phase Interactions between Peptides and Lipids by Native Mass Spectrometry. Anal Chem 2023; 95:17292-17299. [PMID: 37956985 PMCID: PMC10688224 DOI: 10.1021/acs.analchem.3c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Many biological processes depend on the interactions between proteins and lipids. Accordingly, the analysis of protein-lipid complexes has become increasingly important. Native mass spectrometry is often used to identify and characterize specific protein-lipid interactions. However, it requires the transfer of the analytes into the gas phase, where electrostatic interactions are enhanced and hydrophobic interactions do not exist. Accordingly, the question remains whether interactions that are observed in the gas phase accurately reflect interactions that are formed in solution. Here, we systematically explore noncovalent interactions between the antimicrobial peptide LL-37 and glycerophospholipids containing different headgroups or varying in fatty acyl chain length. We observe differences in peak intensities for different peptide-lipid complexes, as well as their relative binding strength in the gas phase. Accordingly, we found that ion intensities and gas-phase stability correlate well for complexes formed by electrostatic interactions. Probing hydrophobic interactions by varying the length of fatty acyl chains, we detected differences in ion intensities based on hydrophobic interactions formed in solution. The relative binding strength of these peptide-lipid complexes revealed only minor differences originating from van der Waals interactions and different binding modes of lipid headgroups in solution. In summary, our results demonstrate that hydrophobic interactions are reflected by ion intensities, while electrostatic interactions, including van der Waals interactions, determine the gas-phase stability of complexes.
Collapse
Affiliation(s)
- Til Kundlacz
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Institute
of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Department
of Chemistry—Biochemistry, Johannes
Gutenberg University Mainz, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| |
Collapse
|
3
|
Kanemaru K, Goto T, Badr HA, Yokoigawa K. Determination of binding affinity of poly-γ-glutamate to Shiga toxin. J Food Biochem 2018. [DOI: 10.1111/jfbc.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kaori Kanemaru
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Faculty of Bioscience and Bioindustry; Tokushima University, 2-1 Minamijosanjima-cho; Tokushima , 770-8513 Japan
| | - Tsukie Goto
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Department of Science for Human Health; Junior College, Shikoku University, 123-1 Ebisuno, Furukawa, Ojin-cho; Tokushima 771-1192 Japan
| | - Hoida Ali Badr
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
| | - Kumio Yokoigawa
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Faculty of Bioscience and Bioindustry; Tokushima University, 2-1 Minamijosanjima-cho; Tokushima , 770-8513 Japan
| |
Collapse
|
4
|
Silva CJ. Food Forensics: Using Mass Spectrometry To Detect Foodborne Protein Contaminants, as Exemplified by Shiga Toxin Variants and Prion Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8435-8450. [PMID: 29860833 DOI: 10.1021/acs.jafc.8b01517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Food forensicists need a variety of tools to detect the many possible food contaminants. As a result of its analytical flexibility, mass spectrometry is one of those tools. Use of the multiple reaction monitoring (MRM) method expands its use to quantitation as well as detection of infectious proteins (prions) and protein toxins, such as Shiga toxins. The sample processing steps inactivate prions and Shiga toxins; the proteins are digested with proteases to yield peptides suitable for MRM-based analysis. Prions are detected by their distinct physicochemical properties and differential covalent modification. Shiga toxin analysis is based on detecting peptides derived from the five identical binding B subunits comprising the toxin. 15N-labeled internal standards are prepared from cloned proteins. These examples illustrate the power of MRM, in that the same instrument can be used to safely detect and quantitate protein toxins, prions, and small molecules that might contaminate our food.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service , United States Department of Agriculture , Albany , California 94710 , United States
| |
Collapse
|
5
|
Steil D, Pohlentz G, Legros N, Mormann M, Mellmann A, Karch H, Müthing J. Combining Mass Spectrometry, Surface Acoustic Wave Interaction Analysis, and Cell Viability Assays for Characterization of Shiga Toxin Subtypes of Pathogenic Escherichia coli Bacteria. Anal Chem 2018; 90:8989-8997. [PMID: 29939014 DOI: 10.1021/acs.analchem.8b01189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC) as a human pathogenic subgroup of STEC are characterized by releasing Stx AB5-toxin as the major virulence factor. Worldwide disseminated EHEC strains cause sporadic infections and outbreaks in the human population and swine pathogenic STEC strains represent greatly feared pathogens in pig breeding and fattening plants. Among the various Stx subtypes, Stx1a and Stx2a are of eminent clinical importance in human infections being associated with life-threatening hemorrhagic colitis and hemolytic uremic syndrome, whereas Stx2e subtype is associated with porcine edema disease with a generalized fatal outcome for the animals. Binding toward the glycosphingolipid globotriaosylceramide (Gb3Cer) is a common feature of all Stx subtypes analyzed so far. Here, we report on the development of a matched strategy combining (i) miniaturized one-step affinity purification of native Stx subtypes from culture supernatant of bacterial wild-type strains using Gb3-functionalized magnetic beads, (ii) structural analysis and identification of Stx holotoxins by electrospray ionization ion mobility mass spectrometry (ESI MS), (iii) functional Stx-receptor real-time interaction analysis employing the surface acoustic wave (SAW) technology, and (iv) Vero cell culture assays for determining Stx-caused cytotoxic effects. Structural investigations revealed diagnostic tryptic peptide ions for purified Stx1a, Stx2a, and Stx2e, respectively, and functional analysis resulted in characteristic binding kinetics of each Stx subtype. Cytotoxicity studies revealed differing toxin-mediated cell damage ranked with Stx1a > Stx2a > Stx2e. Collectively, this matched procedure represents a promising clinical application for the characterization of life-endangering Stx subtypes at the protein level.
Collapse
Affiliation(s)
- Daniel Steil
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Gottfried Pohlentz
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Nadine Legros
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Michael Mormann
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Alexander Mellmann
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| | - Helge Karch
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| | - Johannes Müthing
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| |
Collapse
|
6
|
Zhang P, Paszkiewicz E, Wang Q, Sadowska JM, Kitov PI, Bundle DR, Ling CC. Clustering of PK-trisaccharides on amphiphilic cyclodextrin reveals unprecedented affinity for the Shiga-like toxin Stx2. Chem Commun (Camb) 2017; 53:10528-10531. [DOI: 10.1039/c7cc06299k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphiphilic cyclodextrin-based PK-glycoarrays show remarkable binding avidity and selectivity for Stx2 in solid phase assay formats.
Collapse
Affiliation(s)
- Ping Zhang
- Alberta Glycomics Centre
- Department of Chemistry
- University of Calgary
- Calgary
- T2N 1N4 Canada
| | - Eugenia Paszkiewicz
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - Qifang Wang
- Alberta Glycomics Centre
- Department of Chemistry
- University of Calgary
- Calgary
- T2N 1N4 Canada
| | - Joanna M. Sadowska
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - Pavel I. Kitov
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - David R. Bundle
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - Chang-Chun Ling
- Alberta Glycomics Centre
- Department of Chemistry
- University of Calgary
- Calgary
- T2N 1N4 Canada
| |
Collapse
|
7
|
Ailte I, Lingelem ABD, Kavaliauskiene S, Bergan J, Kvalvaag AS, Myrann AG, Skotland T, Sandvig K. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding. Sci Rep 2016; 6:30336. [PMID: 27458147 PMCID: PMC4960542 DOI: 10.1038/srep30336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3.
Collapse
Affiliation(s)
- Ieva Ailte
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.,Department of Research and Innovation, Østfold Hospital, Sarpsborg, Norway
| | - Audun Sverre Kvalvaag
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Anne-Grethe Myrann
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
9
|
Silva CJ, Erickson-Beltran ML, Skinner CB, Patfield SA, He X. Mass Spectrometry-Based Method of Detecting and Distinguishing Type 1 and Type 2 Shiga-Like Toxins in Human Serum. Toxins (Basel) 2015; 7:5236-53. [PMID: 26633510 PMCID: PMC4690125 DOI: 10.3390/toxins7124875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023] Open
Abstract
Shiga-like toxins (verotoxins) are responsible for the virulence associated with a variety of foodborne bacterial pathogens. Direct detection of toxins requires a specific and sensitive technique. In this study, we describe a mass spectrometry-based method of analyzing the tryptic decapeptides derived from the non-toxic B subunits. A gene encoding a single protein that yields a set of relevant peptides upon digestion with trypsin was designed. The (15)N-labeled protein was prepared by growing the expressing bacteria in minimal medium supplemented with (15)NH₄Cl. Trypsin digestion of the (15)N-labeled protein yields a set of (15)N-labeled peptides for use as internal standards to identify and quantify Shiga or Shiga-like toxins. We determined that this approach can be used to detect, quantify and distinguish among the known Shiga toxins (Stx) and Shiga-like toxins (Stx1 and Stx2) in the low attomole range (per injection) in complex media, including human serum. Furthermore, Stx1a could be detected and distinguished from the newly identified Stx1e in complex media. As new Shiga-like toxins are identified, this approach can be readily modified to detect them. Since intact toxins are digested with trypsin prior to analysis, the handling of intact Shiga toxins is minimized. The analysis can be accomplished within 5 h.
Collapse
Affiliation(s)
- Christopher J Silva
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA.
| | | | - Craig B Skinner
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Stephanie A Patfield
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Xiaohua He
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA.
| |
Collapse
|
10
|
El-Hawiet A, Kitova EN, Klassen JS. Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology 2015; 25:845-54. [DOI: 10.1093/glycob/cwv025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
|
11
|
Han L, Tan M, Xia M, Kitova EN, Jiang X, Klassen JS. Gangliosides are ligands for human noroviruses. J Am Chem Soc 2014; 136:12631-7. [PMID: 25105447 PMCID: PMC4160279 DOI: 10.1021/ja505272n] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Human
noroviruses (NoVs) are known to recognize histo-blood group
antigens (HBGAs) as attachment factors. We report the first experimental
evidence that sialic acid-containing glycosphingolipids (gangliosides)
are also ligands for human NoVs. Electrospray ionization mass spectrometry-based
carbohydrate binding measurements performed on assemblies (P dimer,
P particle, and virus-like particle) of recombinant viral capsid proteins
of two NoV strains, VA387 (GII.4) and VA115 (GI.3), identified binding
to the oligosaccharides of mono-, di-, and trisialylated gangliosides.
The intrinsic (per binding site) affinities measured for these ligands
are similar in magnitude (102–103 M–1) to those of human HBGAs. Binding of NoV VLPs, P
particles, and glutathione S-transferase (GST)-P domain fusion proteins
to sialic acid-containing glycoconjugates, observed in enzyme-linked
immunosorbent assays, provided additional confirmation of the NoV–ganglioside
interactions.
Collapse
Affiliation(s)
- Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Shiga toxin (Stx) is one of the most potent bacterial toxins known. Stx is found in Shigella dysenteriae 1 and in some serogroups of Escherichia coli (called Stx1 in E. coli). In addition to or instead of Stx1, some E. coli strains produce a second type of Stx, Stx2, that has the same mode of action as Stx/Stx1 but is antigenically distinct. Because subtypes of each toxin have been identified, the prototype toxin for each group is now designated Stx1a or Stx2a. The Stxs consist of two major subunits, an A subunit that joins noncovalently to a pentamer of five identical B subunits. The A subunit of the toxin injures the eukaryotic ribosome and halts protein synthesis in target cells. The function of the B pentamer is to bind to the cellular receptor, globotriaosylceramide, Gb3, found primarily on endothelial cells. The Stxs traffic in a retrograde manner within the cell, such that the A subunit of the toxin reaches the cytosol only after the toxin moves from the endosome to the Golgi and then to the endoplasmic reticulum. In humans infected with Stx-producing E. coli, the most serious manifestation of the disease, hemolytic-uremic syndrome, is more often associated with strains that produce Stx2a rather than Stx1a, and that relative toxicity is replicated in mice and baboons. Stx1a and Stx2a also exhibit differences in cytotoxicity to various cell types, bind dissimilarly to receptor analogs or mimics, induce differential chemokine responses, and have several distinctive structural characteristics.
Collapse
Affiliation(s)
- Angela R. Melton-Celsa
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814,
| |
Collapse
|
13
|
Silva CJ, Erickson-Beltran ML, Skinner CB, Dynin I, Hui C, Patfield SA, Carter JM, He X. Safe and Effective Means of Detecting and Quantitating Shiga-Like Toxins in Attomole Amounts. Anal Chem 2014; 86:4698-706. [DOI: 10.1021/ac402930r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christopher J. Silva
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Melissa L. Erickson-Beltran
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Craig B. Skinner
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Irina Dynin
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Colleen Hui
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Stephanie A. Patfield
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - John Mark Carter
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Xiaohua He
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|
14
|
Jacobson JM, Yin J, Kitov PI, Mulvey G, Griener TP, James MNG, Armstrong G, Bundle DR. The crystal structure of shiga toxin type 2 with bound disaccharide guides the design of a heterobifunctional toxin inhibitor. J Biol Chem 2014; 289:885-94. [PMID: 24225957 PMCID: PMC3887212 DOI: 10.1074/jbc.m113.518886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/28/2013] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin type 2 (Stx2a) is clinically most closely associated with enterohemorrhagic E. coli O157:H7-mediated hemorrhagic colitis that sometimes progresses to hemolytic-uremic syndrome. The ability to express the toxin has been acquired by other Escherichia coli strains, and outbreaks of food poisoning have caused significant mortality rates as, for example, in the 2011 outbreak in northern Germany. Stx2a, an AB5 toxin, gains entry into human cells via the glycosphingolipid receptor Gb3. We have determined the first crystal structure of a disaccharide analog of Gb3 bound to the B5 pentamer of Stx2a holotoxin. In this Gb3 analog,-GalNAc replaces the terminal-Gal residue. This co-crystal structure confirms previous inferences that two of the primary binding sites identified in theB5 pentamer of Stx1 are also functional in Stx2a. This knowledge provides a rationale for the synthesis and evaluation of heterobifunctional antagonists for E. coli toxins that target Stx2a. Incorporation of GalNAc Gb3 trisaccharide in a heterobifunctional ligand with an attached pyruvate acetal, a ligand for human amyloid P component, and conjugation to poly[acrylamide-co-(3-azidopropylmethacrylamide)] produced a polymer that neutralized Stx2a in a mouse model of Shigatoxemia.
Collapse
Affiliation(s)
- Jared M. Jacobson
- From the Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Pavel I. Kitov
- From the Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - George Mulvey
- Department of Microbiology, Immunology, and Infectious Diseases, Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Tom P. Griener
- Department of Microbiology, Immunology, and Infectious Diseases, Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Michael N. G. James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Glen Armstrong
- Department of Microbiology, Immunology, and Infectious Diseases, Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David R. Bundle
- From the Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
15
|
Lin H, Kitova EN, Klassen JS. Quantifying Protein–Ligand Interactions by Direct Electrospray Ionization-MS Analysis: Evidence of Nonuniform Response Factors Induced by High Molecular Weight Molecules and Complexes. Anal Chem 2013; 85:8919-22. [DOI: 10.1021/ac401936x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Lin
- Department
of Chemistry and
Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Department
of Chemistry and
Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S. Klassen
- Department
of Chemistry and
Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
16
|
Binding of Pk-trisaccharide analogs of globotriaosylceramide to Shiga toxin variants. Infect Immun 2013; 81:2753-60. [PMID: 23690406 DOI: 10.1128/iai.00274-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The two major forms of Shiga toxin, Stx1 and Stx2, use the glycolipid globotriaosylceramide (Gb3) as their cellular receptor. Stx1 primarily recognizes the Pk-trisaccharide portion and has three Pk binding sites per B monomer. The Stx2a subtype requires glycolipid residues in addition to Pk. We synthesized analogs of Pk to examine the binding preferences of Stx1 and Stx2 subtypes a to d. Furthermore, to determine how many binding sites must be engaged, the Pk analogues were conjugated to biotinylated mono- and biantennary platforms, allowing for the display of two to four Pk analogues per streptavidin molecule. Stx binding to Pk analogues immobilized on streptavidin-coated plates was assessed by enzyme-linked immunosorbent assay (ELISA). Stx1, but not the Stx2 subtypes, bound to native Pk. Stx2a and Stx2c bound to the Pk analog with a terminal GalNAc (NAc-Pk), while Stx1, Stx2b, and Stx2d did not bind to this analog. Interestingly, the purified Stx2d B subunit bound to NAc-Pk, suggesting that the A subunit of Stx2d interferes with binding. Disaccharide analogs (Galα1-4Gal, GalNAcα1-4Gal, and Galα1-4GalNAc) did not support the binding of any of the Stx forms, indicating that the trisaccharide is necessary for binding. Studies with monoantennary and biantennary analogs and mixtures suggest that Stx1, Stx2a, and Stx2c need to engage at least three Pk analogues for effective binding. To our knowledge, this is the first study examining the minimum number of Pk analogs required for effective binding and the first report documenting the role of the A subunit in influencing Stx2 binding.
Collapse
|
17
|
Zhang Y, Liu L, Daneshfar R, Kitova EN, Li C, Jia F, Cairo CW, Klassen JS. Protein–Glycosphingolipid Interactions Revealed Using Catch-and-Release Mass Spectrometry. Anal Chem 2012; 84:7618-21. [DOI: 10.1021/ac3023857] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yixuan Zhang
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Lan Liu
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Rambod Daneshfar
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Elena N. Kitova
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Caishun Li
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Feng Jia
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Christopher W. Cairo
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - John S. Klassen
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| |
Collapse
|
18
|
Bergan J, Dyve Lingelem AB, Simm R, Skotland T, Sandvig K. Shiga toxins. Toxicon 2012; 60:1085-107. [PMID: 22960449 DOI: 10.1016/j.toxicon.2012.07.016] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 02/03/2023]
Abstract
Shiga toxins are virulence factors produced by the bacteria Shigella dysenteriae and certain strains of Escherichia coli. There is currently no available treatment for disease caused by these toxin-producing bacteria, and understanding the biology of the Shiga toxins might be instrumental in addressing this issue. In target cells, the toxins efficiently inhibit protein synthesis by inactivating ribosomes, and they may induce signaling leading to apoptosis. To reach their cytoplasmic target, Shiga toxins are endocytosed and transported by a retrograde pathway to the endoplasmic reticulum, before the enzymatically active moiety is translocated to the cytosol. The toxins thereby serve as powerful tools to investigate mechanisms of intracellular transport. Although Shiga toxins are a serious threat to human health, the toxins may be exploited for medical purposes such as cancer therapy or imaging.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
19
|
El-Hawiet A, Kitova EN, Klassen JS. Quantifying Carbohydrate–Protein Interactions by Electrospray Ionization Mass Spectrometry Analysis. Biochemistry 2012; 51:4244-53. [DOI: 10.1021/bi300436x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| |
Collapse
|
20
|
Kitova EN, El-Hawiet A, Schnier PD, Klassen JS. Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:431-41. [PMID: 22270873 DOI: 10.1007/s13361-011-0311-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 05/11/2023]
Abstract
The association-dissociation of noncovalent interactions between protein and ligands, such as other proteins, carbohydrates, lipids, DNA, or small molecules, are critical events in many biological processes. The discovery and characterization of these interactions is essential to a complete understanding of biochemical reactions and pathways and to the design of novel therapeutic agents that may be used to treat a variety of diseases and infections. Over the last 20 y, electrospray ionization mass spectrometry (ESI-MS) has emerged as a versatile tool for the identification and quantification of protein-ligand interactions in vitro. Here, we describe the implementation of the direct ESI-MS assay for the determination of protein-ligand binding stoichiometry and affinity. Additionally, we outline common sources of error encountered with these measurements and various strategies to overcome them. Finally, we comment on some of the outstanding challenges associated with the implementation of the assay and highlight new areas where direct ESI-MS measurements are expected to make significant contributions in the future.
Collapse
Affiliation(s)
- Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | | | | |
Collapse
|
21
|
Gallegos KM, Conrady DG, Karve SS, Gunasekera TS, Herr AB, Weiss AA. Shiga toxin binding to glycolipids and glycans. PLoS One 2012; 7:e30368. [PMID: 22348006 PMCID: PMC3278406 DOI: 10.1371/journal.pone.0030368] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable. METHODOLOGY We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells. RESULTS By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells. CONCLUSIONS Stx1 binds primarily to the glycan, but Stx2 binding is influenced by residues in the ceramide portion of Gb3 and the lipid environment. Nanomolar affinities were obtained for both toxins to immobilized glycolipids mixtures, while the effective dose for 50% inhibition (ED(50)) of protein synthesis was about 10(-11) M. The failure of preincubation with Gb3 to protect cells from Stx2 suggests that in addition to glycolipid expression, other cellular components contribute to toxin potency.
Collapse
Affiliation(s)
- Karen M. Gallegos
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Deborah G. Conrady
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sayali S. Karve
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Thusitha S. Gunasekera
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Andrew B. Herr
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Alison A. Weiss
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Dybvik AI, Norberg AL, Schute V, Soltwisch J, Peter-Katalinić J, Vårum KM, Eijsink VGH, Dreisewerd K, Mormann M, Sørlie M. Analysis of noncovalent chitinase-chito-oligosaccharide complexes by infrared-matrix assisted laser desorption ionization and nanoelectrospray ionization mass spectrometry. Anal Chem 2011; 83:4030-6. [PMID: 21473578 DOI: 10.1021/ac1031308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transferring noncovalently bound complexes from the condensed phase into the gas phase represents a challenging task due to weak intermolecular bonds that have to be maintained during the phase transition. Currently, electrospray ionization (ESI) is the standard mass spectrometric (MS) technique to analyze noncovalent complexes. Although infrared matrix-assisted laser desorption ionization (IR-MALDI)-MS also provides particular soft desorption/ionization conditions, this method has so far hardly been applied for the analysis of noncovalent complexes. In this study, we employed IR-MALDI orthogonal time-of-flight (o-TOF)-MS in combination with the liquid matrix glycerol to characterize the specific complex formation of chito-oligosaccharide (CHOS) ligands with two variants of Chitinase A (ChiA) from Serratia marcescens, the inactive E315Q mutant and the active W167A mutant, respectively. The IR-MALDI-o-TOF-MS results were compared to those obtained using nano-ESI-quadrupole (q)-TOF-MS and ultraviolet (UV)-MALDI-o-TOF-MS. Using IR-MALDI-o-TOF-MS, specific noncovalent complexes between ChiA and CHOS were detected with distributions between enzymes with bound oligosaccharides vs free enzymes that were essentially identical to those obtained by nano-ESI-q-TOF-MS. Chitinase-CHOS complexes were not detected when UV-MALDI was employed for desorption/ionization. The results show that IR-MALDI-MS can be a valuable tool for fast and simple screening of noncovalent enzyme-ligand interactions.
Collapse
Affiliation(s)
- Anette I Dybvik
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælandsvei 6-8, N-7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Purified Shiga toxin (Stx) alone is capable of producing systemic complications, including hemolytic-uremic syndrome (HUS), in animal models of disease. Stx includes two major antigenic forms (Stx1 and Stx2), with minor variants of Stx2 (Stx2a to -h). Stx2a is more potent than Stx1. Epidemiologic studies suggest that Stx2 subtypes also differ in potency, but these differences have not been well documented for purified toxin. The relative potencies of five purified Stx2 subtypes, Stx2a, Stx2b, Stx2c, Stx2d, and activated (elastase-cleaved) Stx2d, were studied in vitro by examining protein synthesis inhibition using Vero monkey kidney cells and inhibition of metabolic activity (reduction of resazurin to fluorescent resorufin) using primary human renal proximal tubule epithelial cells (RPTECs). In both RPTECs and Vero cells, Stx2a, Stx2d, and elastase-cleaved Stx2d were at least 25 times more potent than Stx2b and Stx2c. In vivo potency in mice was also assessed. Stx2b and Stx2c had potencies similar to that of Stx1, while Stx2a, Stx2d, and elastase-cleaved Stx2d were 40 to 400 times more potent than Stx1.
Collapse
|
24
|
Mayer PM, Martineau E. Gas-phase binding energies for non-covalent Aβ-40 peptide/small molecule complexes from CID mass spectrometry and RRKM theory. Phys Chem Chem Phys 2011; 13:5178-86. [DOI: 10.1039/c0cp02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Flagler MJ, Mahajan SS, Kulkarni AA, Iyer SS, Weiss AA. Comparison of binding platforms yields insights into receptor binding differences between shiga toxins 1 and 2. Biochemistry 2010; 49:1649-57. [PMID: 20092352 DOI: 10.1021/bi902084y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-glycan interactions are typically very weak, and avid binding is achieved when proteins express multiple glycan binding sites. Shiga toxin (Stx) uses glycan receptors to enter cells. Stx has five identical binding subunits, each with three nonidentical glycan binding sites. Previous studies examined binding to biantennary glycans expressing Pk trisaccharide mimics immobilized on streptavidin, resulting in display of four trisaccharides per streptavidin face. Stx1 preferred the Pk trisaccharide of its native receptor, globotriaosylceramide (Gb3), while the more potent and clinically relevant variant, Stx2, preferred the Pk trisaccharide with the terminal galactose replaced with N-acetylgalactosamine (NHAc-Pk). In the present study, binding of Stxs to Pk analogues was examined using two experimental platforms, ELISA and surface plasmon resonance (SPR). ELISA was more sensitive than SPR. Sensitivity in the ELISA was due to high streptavidin density, suggesting that avid binding may require engagement of more than four trisaccharides. Selectivity for the Pk analogues was maintained in both experimental platforms. Glycan preference was mapped to binding site 2, since reciprocal mutation of a single amino acid (asparagine 32 of Stx1 B-subunit/serine 31 of Stx2 B-subunit) reversed binding preference. However, native Stx1 bound well to plates loaded with a 50:50 mixture of Pk-NHAc-Pk, while Stx2 bound less efficiently, suggesting that one of the Stx1 binding sites may only engage Pk, while another may tolerate either Pk or NHAc-Pk. Varying glycan structure and density across different in vitro binding platforms revealed important differences in receptor binding properties between Stx1 and Stx2.
Collapse
Affiliation(s)
- Michael J Flagler
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
26
|
Sun N, Soya N, Kitova EN, Klassen JS. Nonspecific interactions between proteins and charged biomolecules in electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:472-481. [PMID: 20089416 DOI: 10.1016/j.jasms.2009.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 05/28/2023]
Abstract
An investigation of the nonspecific association of small charged biomolecules and proteins in electrospray ionization mass spectrometry (ES-MS) is described. Aqueous solutions containing pairs of proteins and a small acidic or basic biomolecule that does not interact specifically with either of the proteins were analyzed by ES-MS and the distributions of the biomolecules bound nonspecifically to each pair of proteins compared. For the basic amino acid arginine and the peptide RGVFRR, nonequivalent distributions were measured in positive ion mode, but equivalent distributions were measured in negative ion mode. In the case of uridine 5'-diphosphate, nonequivalent distributions were measured in negative ion mode, but equivalent distributions observed in positive ion mode. The results of dissociation experiments performed on the gaseous ions of the nonspecific complexes suggest that the nonequivalent distributions result from differences in the extent to which the nonspecific complexes undergo in-source dissociation. To test this hypothesis, the distributions of nonspecifically bound basic molecules measured in the presence of imidazole, which protects complexes from in-source dissociation, were compared. In all cases, equivalent distributions were obtained. The results indicate that nonspecific binding of charged molecules to proteins during ES is a statistical process, independent of protein structure and size. However, the kinetic stabilities of the nonspecific interactions are sensitive to the nature of the protein ions. It is concluded that the reference protein method for correcting ES mass spectra for nonspecific ligand-protein binding can be applied to the analysis of ionic ligands, provided that in-source dissociation of the nonspecific interactions is minimized.
Collapse
Affiliation(s)
- Nian Sun
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
27
|
Deng L, Sun N, Kitova EN, Klassen JS. Direct Quantification of Protein−Metal Ion Affinities by Electrospray Ionization Mass Spectrometry. Anal Chem 2010; 82:2170-4. [DOI: 10.1021/ac902633d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu Deng
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Nian Sun
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S. Klassen
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
28
|
Kulkarni AA, Weiss AA, Iyer SS. Glycan-based high-affinity ligands for toxins and pathogen receptors. Med Res Rev 2010; 30:327-93. [DOI: 10.1002/med.20196] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Kitova EN, Mulvey GL, Dingle T, Sinelnikov I, Wee S, Griener TP, Armstrong GD, Klassen JS. Assembly and stability of the shiga toxins investigated by electrospray ionization mass spectrometry. Biochemistry 2009; 48:5365-74. [PMID: 19400587 DOI: 10.1021/bi9003155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A systematic investigation into the assembly and stability of native and modified subunits of the Shiga toxins (Stx) in vitro is described. Analysis of the assembly of native and modified B subunits of Stx1 and Stx2 in solution, carried out using electrospray ionization mass spectrometry (ES-MS), suggests that the lower thermodynamic stability of the B subunit homopentamer of Stx2, compared to that of Stx1, is due to the presence of a repulsive interaction involving Asp70 of the Stx2 B subunit. In Stx1 B, the corresponding (spatially) residue is Arg. Using temperature-controlled ES-MS, it is shown that the Stx1 and Stx2 holotoxins exhibit differences in their resistance to temperature- and acid-induced dissociation. However, both Stx1 and Stx2 are fully assembled at pH >3.5 and 37 degrees C. This finding has several important biological implications. First, it argues against the likelihood that the difference in Stx1 and Stx2 toxicity arises from differential dissociation of the toxins during the intracellular trafficking steps of the cellular intoxication process. Second, it implies that the activation of the A subunits of Stx1 and Stx2 by enzymatic cleavage must occur while the A subunit is assembled with the B subunit homopentamer. It is, therefore, proposed that the differential toxicities of Stx1 and Stx2 reflect the relative efficiencies of intracellular activation of the A subunits.
Collapse
Affiliation(s)
- Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun N, Sun J, Kitova EN, Klassen JS. Identifying nonspecific ligand binding in electrospray ionization mass spectrometry using the reporter molecule method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1242-1250. [PMID: 19321359 DOI: 10.1016/j.jasms.2009.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
The application of the reporter molecule (M(rep)) method for identifying nonspecific complexes in the ES-MS analysis of protein-ligand and DNA-ligand interactions in vitro is described. To test the reliability of the method, it was applied to the ES-MS analysis of protein-carbohydrate complexes originating from specific interactions in solution and from nonspecific interactions in the ES process. These control experiments confirm the basic assumptions underlying the M(rep) method, namely that nonspecific ligand binding is a random process, and that the ES droplet histories for specific and nonspecific complexes are distinct. The application of the M(rep) method to the ES-MS analysis of the sequential binding of the ethidium cation, a DNA intercalator, to single and double strand oligodeoxynucleotides is also described, and highlights the general utility of the method.
Collapse
Affiliation(s)
- Nian Sun
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
31
|
Grandori R, Santambrogio C, Brocca S, Invernizzi G, Lotti M. Electrospray-ionization mass spectrometry as a tool for fast screening of protein structural properties. Biotechnol J 2009; 4:73-87. [DOI: 10.1002/biot.200800250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Kale R, McGannon C, Fuller-Schaefer C, Hatch D, Flagler M, Gamage S, Weiss A, Iyer S. Differentiation between Structurally Homologous Shiga 1 and Shiga 2 Toxins by Using Synthetic Glycoconjugates. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200703680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Kale R, McGannon C, Fuller-Schaefer C, Hatch D, Flagler M, Gamage S, Weiss A, Iyer S. Differentiation between Structurally Homologous Shiga 1 and Shiga 2 Toxins by Using Synthetic Glycoconjugates. Angew Chem Int Ed Engl 2008; 47:1265-8. [DOI: 10.1002/anie.200703680] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|