1
|
Krištić J, Lauc G. The importance of IgG glycosylation-What did we learn after analyzing over 100,000 individuals. Immunol Rev 2024. [PMID: 39364834 DOI: 10.1111/imr.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
All four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one-fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease-specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Manabe S, Iwamoto S, Nagatoishi S, Hoshinoo A, Mitani A, Sumiyoshi W, Kinoshita T, Yamaguchi Y, Tsumoto K. Systematic Preparation of a 66-IgG Library with Symmetric and Asymmetric Homogeneous Glycans and Their Functional Evaluation. J Am Chem Soc 2024; 146:23426-23436. [PMID: 39106493 PMCID: PMC11345770 DOI: 10.1021/jacs.4c06558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Immunoglobulin G (IgG) antibodies possess a conserved N-glycosylation site in the Fc domain. In FcγRIIIa affinity column chromatography, unglycosylated, hemiglycosylated, and fully glycosylated IgG retention times differ considerably. Using retention-time differences, 66 different trastuzumab antibodies with symmetric and asymmetric homogeneous glycans were prepared systematically, substantially expanding the scope of IgGs with homogeneous glycans. Using the prepared trastuzumab with homogeneous glycans, thermal stability and antibody-dependent cellular cytotoxicity were investigated. In some glycan series, a directly proportional relationship was observed between the thermal unfolding temperature (Tm) and the calorimetric unfolding heat (ΔHcal). Antibody function could be deduced from the combination of a pair of glycans in an intact form. Controlling glycan structure through the combination of a pair of glycans permits the precise tuning of stability and effector functions of IgG. Overall, our technology can be used to investigate the effects of glycans on antibody functions.
Collapse
Affiliation(s)
- Shino Manabe
- School
of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal
Chemistry, Hoshi University, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Research
Center for Pharmaceutical Development, Graduate School of Pharmaceutical
Sciences & Faculty of Pharmaceutical Sciences, Tohoku University, Aoba,
Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shogo Iwamoto
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Satoru Nagatoishi
- Medical
Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Bioengineering, School of Engineering,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asako Hoshinoo
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Ai Mitani
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Wataru Sumiyoshi
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Takashi Kinoshita
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Yoshiki Yamaguchi
- Institute
of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Komatsushima, Aoba-ku, Sendai, Miyagi 980-8558, Japan
| | - Kouhei Tsumoto
- Medical
Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Bioengineering, School of Engineering,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Palakollu V, Motabar L, Roberts CJ. Impact of Glycosylation on Protein-Protein Self-Interactions of Monoclonal Antibodies. Mol Pharm 2024; 21:1414-1423. [PMID: 38386020 DOI: 10.1021/acs.molpharmaceut.3c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Protein self-interactions measured via second osmotic virial coefficients (B22) and dynamic light scattering interaction parameter values (kD) are often used as metrics for assessing the favorability of protein candidates and different formulations during monoclonal antibody (MAb) product development. Model predictions of B22 or kD typically do not account for glycans, though glycosylation can potentially impact experimental MAb self-interactions. To the best of our knowledge, the impact of MAb glycosylation on the experimentally measured B22 and kD values has not yet been reported. B22 and kD values of two fully deglycosylated MAbs and their native (i.e., fully glycosylated) counterparts were measured by light scattering over a range of pH and ionic strength conditions. Significant differences between B22 and kD of the native and deglycosylated forms were observed at a range of low to high ionic strengths used to modulate the effect of electrostatic contributions. Differences were most pronounced at low ionic strength, indicating that electrostatic interactions are a contributing factor. Though B22 and kD values were statistically equivalent at high ionic strengths where electrostatics were fully screened, we observed protein-dependent qualitative differences, which indicate that steric interactions may also play a role in the observed B22 and kD differences. A domain-level coarse-grained molecular model accounting for charge differences was considered to potentially provide additional insight but was not fully predictive of the behavior across all of the solution conditions investigated. This highlights that both the level of modeling and lack of inclusion of glycans may limit existing models in making quantitatively accurate predictions of self-interactions.
Collapse
Affiliation(s)
- Veerabhadraiah Palakollu
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lily Motabar
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Mao L, Schneider JW, Robinson AS. Use of single analytic tool to quantify both absolute N-glycosylation and glycan distribution in monoclonal antibodies. Biotechnol Prog 2023; 39:e3365. [PMID: 37221987 DOI: 10.1002/btpr.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/22/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Recombinant proteins represent almost half of the top selling therapeutics-with over a hundred billion dollars in global sales-and their efficacy and safety strongly depend on glycosylation. In this study, we showcase a simple method to simultaneously analyze N-glycan micro- and macroheterogeneity of an immunoglobulin G (IgG) by quantifying glycan occupancy and distribution. Our approach is linear over a wide range of glycan and glycoprotein concentrations down to 25 ng/mL. Additionally, we present a case study demonstrating the effect of small molecule metabolic regulators on glycan heterogeneity using this approach. In particular, sodium oxamate (SOD) decreased Chinese hamster ovary (CHO) glucose metabolism and reduced IgG glycosylation by 40% through upregulating reactive oxygen species (ROS) and reducing the UDP-GlcNAc pool, while maintaining a similar glycan profile to control cultures. Here, we suggest glycan macroheterogeneity as an attribute should be included in bioprocess screening to identify process parameters that optimize culture performance without compromising antibody quality.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Beihammer G, König-Beihammer J, Kogelmann B, Ruocco V, Grünwald-Gruber C, D’Aoust MA, Lavoie PO, Saxena P, Gach JS, Steinkellner H, Strasser R. An oligosaccharyltransferase from Leishmania donovani increases the N-glycan occupancy on plant-produced IgG1. FRONTIERS IN PLANT SCIENCE 2023; 14:1233666. [PMID: 37615026 PMCID: PMC10442823 DOI: 10.3389/fpls.2023.1233666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
N-Glycosylation of immunoglobulin G1 (IgG1) at the heavy chain Fc domain (Asn297) plays an important role for antibody structure and effector functions. While numerous recombinant IgG1 antibodies have been successfully expressed in plants, they frequently display a considerable amount (up to 50%) of unglycosylated Fc domain. To overcome this limitation, we tested a single-subunit oligosaccharyltransferase from the protozoan Leishmania donovani (LdOST) for its ability to improve IgG1 Fc glycosylation. LdOST fused to a fluorescent protein was transiently expressed in Nicotiana benthamiana and confocal microscopy confirmed the subcellular location at the endoplasmic reticulum. Transient co-expression of LdOST with two different IgG1 antibodies resulted in a significant increase (up to 97%) of Fc glycosylation while leaving the overall N-glycan composition unmodified, as determined by different mass spectrometry approaches. While biochemical and functional features of "glycosylation improved" antibodies remained unchanged, a slight increase in FcγRIIIa binding and thermal stability was observed. Collectively, our results reveal that LdOST expression is suitable to reduce the heterogeneity of plant-produced antibodies and can contribute to improving their stability and effector functions.
Collapse
Affiliation(s)
- Gernot Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | - Johannes S. Gach
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
6
|
Gstöttner C, Knaupp A, Vidarsson G, Reusch D, Schlothauer T, Wuhrer M, Domínguez-Vega E. Affinity capillary electrophoresis – mass spectrometry permits direct binding assessment of IgG and FcγRIIa in a glycoform-resolved manner. Front Immunol 2022; 13:980291. [PMID: 36159782 PMCID: PMC9494200 DOI: 10.3389/fimmu.2022.980291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of antibody glycoforms on FcγRIIa activation and immune responses is poorly understood. Yet, glycoform binding assessment remains one of the major analytical challenges requiring long enrichment or glycoengineering steps. Here, we developed and applied an affinity capillary electrophoresis-mass spectrometry approach to selectively assess the binding of different antibody glycoforms to the FcγIIa receptor without the need of glycoengineering. The approach required only low microgram amounts of antibody and receptor and enables assessing the binding of high and low-abundance glycoforms. The approach indicated clear differences in binging between doubly-, hemi-glycosylated and non-glycosylated antibodies as well as for mutated (Leu234Ala, Leu235Ala – Pro329-Gly (LALA-PG)) IgG1 antibodies silenced for Fcγ binding. The LALA-PG mutated antibody showed no binding to the FcγIIa receptor (excluding potential non-specific binding effects) while the non-glycosylated IgG1 showed a strongly reduced, but still minor binding. The highest binding affinity was for the antibody carrying two complex-type glycans. Man5 glycans resulted in decreased binding compared to complex-type glycans, with the lowest binding for the IgG containing two Man5. For complex-type glycans, galactosylation showed a subtle increase in binding to the FcγIIa receptor, and sialylation showed an increase in binding for lower sialylated species. Fucosylation did not influence binding to the FcγIIa receptor. Finally, the assay was evaluated for the two variants of the FcγRIIa receptor (allotypes H131 and R131) showing highly comparable glycoform selectivity. Overall, the proposed approach allows the direct comparison of binding affinities of different antibody species in mixtures promising a fast establishment of their structure-function relationships.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Elena Domínguez-Vega
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
- *Correspondence: Elena Domínguez-Vega,
| |
Collapse
|
7
|
Chen H, Chen Y, Deng M, John S, Gui X, Kansagra A, Chen W, Kim J, Lewis C, Wu G, Xie J, Zhang L, Huang R, Liu X, Arase H, Huang Y, Yu H, Luo W, Xia N, Zhang N, An Z, Zhang CC. Antagonistic anti-LILRB1 monoclonal antibody regulates antitumor functions of natural killer cells. J Immunother Cancer 2021; 8:jitc-2019-000515. [PMID: 32771992 PMCID: PMC7418854 DOI: 10.1136/jitc-2019-000515] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Current immune checkpoint blockade strategies have been successful in treating certain types of solid cancer. However, checkpoint blockade monotherapies have not been successful against most hematological malignancies including multiple myeloma and leukemia. There is an urgent need to identify new targets for development of cancer immunotherapy. LILRB1, an immunoreceptor tyrosine-based inhibitory motif-containing receptor, is widely expressed on human immune cells, including B cells, monocytes and macrophages, dendritic cells and subsets of natural killer (NK) cells and T cells. The ligands of LILRB1, such as major histocompatibility complex (MHC) class I molecules, activate LILRB1 and transduce a suppressive signal, which inhibits the immune responses. However, it is not clear whether LILRB1 blockade can be effectively used for cancer treatment. METHODS First, we measured the LILRB1 expression on NK cells from cancer patients to determine whether LILRB1 upregulated on NK cells from patients with cancer, compared with NK cells from healthy donors. Then, we developed specific antagonistic anti-LILRB1 monoclonal antibodies and studied the effects of LILRB1 blockade on the antitumor immune function of NK cells, especially in multiple myeloma models, in vitro and in vivo xenograft model using non-obese diabetic (NOD)-SCID interleukin-2Rγ-null mice. RESULTS We demonstrate that percentage of LILRB1+ NK cells is significantly higher in patients with persistent multiple myeloma after treatment than that in healthy donors. Further, the percentage of LILRB1+ NK cells is also significantly higher in patients with late-stage prostate cancer than that in healthy donors. Significantly, we showed that LILRB1 blockade by our antagonistic LILRB1 antibody increased the tumoricidal activity of NK cells against several types of cancer cells, including multiple myeloma, leukemia, lymphoma and solid tumors, in vitro and in vivo. CONCLUSIONS Our results indicate that blocking LILRB1 signaling on immune effector cells such as NK cells may represent a novel strategy for the development of anticancer immunotherapy.
Collapse
Affiliation(s)
- Heyu Chen
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yuanzhi Chen
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA.,School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Mi Deng
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology- Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ankit Kansagra
- Department of Hematology and Oncology, UT Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jaehyup Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Guojin Wu
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jingjing Xie
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lingbo Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryan Huang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoye Liu
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yang Huang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Hai Yu
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wenxin Luo
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cheng Cheng Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcγR Interactions. Int J Mol Sci 2021; 22:ijms22126616. [PMID: 34205578 PMCID: PMC8235063 DOI: 10.3390/ijms22126616] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.
Collapse
|
9
|
Lippold S, Nicolardi S, Domínguez-Vega E, Heidenreich AK, Vidarsson G, Reusch D, Haberger M, Wuhrer M, Falck D. Glycoform-resolved FcɣRIIIa affinity chromatography-mass spectrometry. MAbs 2019; 11:1191-1196. [PMID: 31276431 PMCID: PMC6748599 DOI: 10.1080/19420862.2019.1636602] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 01/20/2023] Open
Abstract
Determination of the impact of individual antibody glycoforms on FcɣRIIIa affinity, and consequently antibody-dependent cell-mediated cytotoxicity (ADCC) previously required high purity glycoengineering. We hyphenated FcɣRIIIa affinity chromatography to mass spectrometry, which allowed direct affinity comparison of glycoforms of intact monoclonal antibodies. The approach enabled reproduction and refinement of known glycosylation effects, and insights on afucosylation pairing as well as on low-abundant, unstudied glycoforms. Our method greatly improves the understanding of individual glycoform structure-function relationships. Thus, it is highly relevant for assessing Fc-glycosylation critical quality attributes related to ADCC.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Evans AR, Capaldi MT, Goparaju G, Colter D, Shi FF, Aubert S, Li LC, Mo J, Lewis MJ, Hu P, Alfonso P, Mehndiratta P. Using bispecific antibodies in forced degradation studies to analyze the structure-function relationships of symmetrically and asymmetrically modified antibodies. MAbs 2019; 11:1101-1112. [PMID: 31161859 PMCID: PMC6748611 DOI: 10.1080/19420862.2019.1618675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Forced degradation experiments of monoclonal antibodies (mAbs) aid in the identification of critical quality attributes (CQAs) by studying the impact of post-translational modifications (PTMs), such as oxidation, deamidation, glycation, and isomerization, on biological functions. Structure-function characterization of mAbs can be used to identify the PTM CQAs and develop appropriate analytical and process controls. However, the interpretation of forced degradation results can be complicated because samples may contain mixtures of asymmetrically and symmetrically modified mAbs with one or two modified chains. We present a process to selectively create symmetrically and asymmetrically modified antibodies for structure-function characterization using the bispecific DuoBody® platform. Parental molecules mAb1 and mAb2 were first stressed with peracetic acid to induce methionine oxidation. Bispecific antibodies were then prepared from a mixture of oxidized or unoxidized parental mAbs by a controlled Fab-arm exchange process. This process was used to systematically prepare four bispecific mAb products: symmetrically unoxidized, symmetrically oxidized, and both combinations of asymmetrically oxidized bispecific mAbs. Results of this study demonstrated chain-independent, 1:2 stoichiometric binding of the mAb Fc region to both FcRn receptor and to Protein A. The approach was also applied to create asymmetrically deamidated mAbs at the asparagine 330 residue. Results of this study support the proposed 1:1 stoichiometric binding relationship between the FcγRIIIa receptor and the mAb Fc. This approach should be generally applicable to study the potential impact of any modification on biological function.
Collapse
Affiliation(s)
- Adam R Evans
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Michael T Capaldi
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Geetha Goparaju
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - David Colter
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Frank F Shi
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Sarah Aubert
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Lian-Chao Li
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Jingjie Mo
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Michael J Lewis
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Ping Hu
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Pedro Alfonso
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA
| | - Promod Mehndiratta
- a Discovery and Manufacturing Sciences, Janssen Research and Development, LLC , Malvern , PA , USA.,b Analytical Development, Biologics Research and Development, Celgene Corporation , Summit , NJ , USA
| |
Collapse
|
11
|
Abstract
The glycome describes the complete repertoire of glycoconjugates composed of carbohydrate chains, or glycans, that are covalently linked to lipid or protein molecules. Glycoconjugates are formed through a process called glycosylation and can differ in their glycan sequences, the connections between them and their length. Glycoconjugate synthesis is a dynamic process that depends on the local milieu of enzymes, sugar precursors and organelle structures as well as the cell types involved and cellular signals. Studies of rare genetic disorders that affect glycosylation first highlighted the biological importance of the glycome, and technological advances have improved our understanding of its heterogeneity and complexity. Researchers can now routinely assess how the secreted and cell-surface glycomes reflect overall cellular status in health and disease. In fact, changes in glycosylation can modulate inflammatory responses, enable viral immune escape, promote cancer cell metastasis or regulate apoptosis; the composition of the glycome also affects kidney function in health and disease. New insights into the structure and function of the glycome can now be applied to therapy development and could improve our ability to fine-tune immunological responses and inflammation, optimize the performance of therapeutic antibodies and boost immune responses to cancer. These examples illustrate the potential of the emerging field of 'glycomedicine'.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, He L, Chen Y, Chen H, Luo W, Lu Z, Xie J, Churchill H, Xu Y, Zhou Z, Wu G, Yu C, John S, Hirayasu K, Nguyen N, Liu X, Huang F, Li L, Deng H, Tang H, Sadek AH, Zhang L, Huang T, Zou Y, Chen B, Zhu H, Arase H, Xia N, Jiang Y, Collins R, You MJ, Homsi J, Unni N, Lewis C, Chen GQ, Fu YX, Liao XC, An Z, Zheng J, Zhang N, Zhang CC. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature 2018; 562:605-609. [PMID: 30333625 PMCID: PMC6296374 DOI: 10.1038/s41586-018-0615-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Immune checkpoint blockade therapy has been successful in treating some types of cancer but has not shown clinical benefits for treating leukaemia1. This result suggests that leukaemia uses unique mechanisms to evade this therapy. Certain immune inhibitory receptors that are expressed by normal immune cells are also present on leukaemia cells. Whether these receptors can initiate immune-related primary signalling in tumour cells remains unknown. Here we use mouse models and human cells to show that LILRB4, an immunoreceptor tyrosine-based inhibition motif-containing receptor and a marker of monocytic leukaemia, supports tumour cell infiltration into tissues and suppresses T cell activity via a signalling pathway that involves APOE, LILRB4, SHP-2, uPAR and ARG1 in acute myeloid leukaemia (AML) cells. Deletion of LILRB4 or the use of antibodies to block LILRB4 signalling impeded AML development. Thus, LILRB4 orchestrates tumour invasion pathways in monocytic leukaemia cells by creating an immunosuppressive microenvironment. LILRB4 represents a compelling target for the treatment of monocytic AML.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/metabolism
- Arginase/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Movement
- Cell Proliferation
- Female
- Humans
- Immune Tolerance/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Membrane Glycoproteins
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic
- Receptors, Urokinase Plasminogen Activator/metabolism
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Escape/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jaehyup Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Xie
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zunling Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Taishan Immunology Program, Basic Medicine School, Binzhou Medical University, Yantai, China
| | - Licai He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yuanzhi Chen
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- School of Public Health, Xiamen University, Xiamen, China
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiguang Luo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Immunology, Xiangya Medical School, Central South University, Changsha, China
| | - Zhigang Lu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Institute of Biomedical Sciences and the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Taishan Immunology Program, Basic Medicine School, Binzhou Medical University, Yantai, China
| | - Hywyn Churchill
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Zhan Zhou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chenyi Yu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Xiangya Medical School, Central South University, Changsha, China
| | - Samuel John
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kouyuki Hirayasu
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nam Nguyen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fangfang Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Hematology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Haidong Tang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ali H Sadek
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lingbo Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Xiangya Medical School, Central South University, Changsha, China
| | - Tao Huang
- Immune-Onc Therapeutics, Inc., Palo Alto, CA, USA
| | - Yizhou Zou
- Department of Immunology, Xiangya Medical School, Central South University, Changsha, China
| | - Benjamin Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hong Zhu
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ningshao Xia
- School of Public Health, Xiamen University, Xiamen, China
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M James You
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jade Homsi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nisha Unni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Yang C, Gao X, Gong R. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics. Front Immunol 2018; 8:1860. [PMID: 29375551 PMCID: PMC5766897 DOI: 10.3389/fimmu.2017.01860] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023] Open
Abstract
Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo. However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa, which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo.
Collapse
Affiliation(s)
- Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Belov AM, Viner R, Santos MR, Horn DM, Bern M, Karger BL, Ivanov AR. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2614-2634. [PMID: 28875426 PMCID: PMC5709234 DOI: 10.1007/s13361-017-1781-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 05/04/2023]
Abstract
Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Arseniy M Belov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | - David M Horn
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | - Barry L Karger
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Washburn N, Meccariello R, Hu S, Hains M, Bhatnagar N, Sarvaiya H, Kapoor B, Schaeck J, Pino I, Manning A, Lansing JC, Bosques CJ. High-resolution physicochemical characterization of different intravenous immunoglobulin products. PLoS One 2017; 12:e0181251. [PMID: 28759653 PMCID: PMC5536303 DOI: 10.1371/journal.pone.0181251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/28/2017] [Indexed: 01/12/2023] Open
Abstract
Intravenous immunoglobulin (IVIg) is a complex mixture drug comprising diverse immunoglobulins and non-IgG proteins purified from the plasma of thousands of healthy donors. Approved IVIg products on the market differ regarding source of plasma, isolation process, and formulation. These products are used widely, and often interchangeably, for the treatment of immunodeficiency and autoimmune and inflammatory diseases, but their mechanisms of action in different indications are not well understood. A primary limitation to understanding the therapeutic relevance of specific components within IVIg has been the limited resolution of analytics historically implemented to characterize its complex mixture. In this study, high-resolution analytics were applied to better understand the composition of IVIg and product variations. We characterized three approved IVIg products: Gammagard®, Privigen®, and Octagam®. Differences in the distribution of molecular weight species, IgG sequence variants, isoforms, glycoforms, and the repertoire of previously reported antibody specificities were identified. We also compared the effect of aging on these products to identify changes in size distribution and posttranslational modifications. This type of characterization may provide insights into the specific factors and components of IVIg that may influence its activity and ultimately lead to optimization of IVIg products for use in autoimmune diseases.
Collapse
Affiliation(s)
- Nathaniel Washburn
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Robin Meccariello
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Shaohui Hu
- Research, CDI Laboratories, Baltimore, Maryland, United States of America
| | - Maurice Hains
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Naveen Bhatnagar
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Hetal Sarvaiya
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Bulbul Kapoor
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - John Schaeck
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Ignacio Pino
- Research, CDI Laboratories, Mayaguez, Puerto Rico
| | - Anthony Manning
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Jonathan C. Lansing
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Carlos J. Bosques
- Research, Momenta Pharmaceuticals, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor. Sci Rep 2017; 7:42989. [PMID: 28230186 PMCID: PMC5322398 DOI: 10.1038/srep42989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.
Collapse
|
17
|
Yang Y, Wang G, Song T, Lebrilla CB, Heck AJR. Resolving the micro-heterogeneity and structural integrity of monoclonal antibodies by hybrid mass spectrometric approaches. MAbs 2017; 9:638-645. [PMID: 28281873 PMCID: PMC5419080 DOI: 10.1080/19420862.2017.1290033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For therapeutic monoclonal antibodies (mAbs), detailed analysis of the structural integrity and heterogeneity, which results from multiple types of post-translational modifications (PTMs), is relevant to various processes, including product characterization, storage stability and quality control. Despite the recent rapid development of new bioanalytical techniques, it is still challenging to completely characterize the proteoform profile of a mAb. As a nearly indispensable tool in mAb analysis, mass spectrometry (MS) provides unique structural information at multiple levels. Here, we tested a hybrid strategy for the comprehensive characterization of micro-heterogeneity by integrating 2 state-of-the-art MS-based approaches, high-resolution native MS and targeted glycan profiling, to perform complementary analysis at the intact protein level and released glycan level, respectively. We compared the performance of these methods using samples of engineered half-body IgG4s and a panel of mAbs approved for human use. The glycosylation characterization data derived from these approaches were found to be mutually consistent in composition profiling, and complementary in identification and relative-quantitation of low-abundant uncommon glycoforms. In addition, multiple other sources of micro-heterogeneity, such as glycation, lack of glycosylation, and loss of light chains, could be detected by this approach, and the contribution of multiple types of modifications to the overall micro-heterogeneity could be assessed using our superposition algorithm. Our data demonstrate that the hybrid strategy allows reliable and thorough characterization of mAbs, revealing product characteristics that would easily be missed if only a single approach were used.
Collapse
Affiliation(s)
- Yang Yang
- a Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht , The Netherlands.,b Netherlands Proteomics Center , Utrecht , The Netherlands
| | - Guanbo Wang
- a Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht , The Netherlands.,b Netherlands Proteomics Center , Utrecht , The Netherlands
| | - Ting Song
- c Department of Chemistry , University of California , Davis , CA , USA
| | | | - Albert J R Heck
- a Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht , The Netherlands.,b Netherlands Proteomics Center , Utrecht , The Netherlands
| |
Collapse
|
18
|
Krahn N, Spearman M, Meier M, Dorion-Thibaudeau J, McDougall M, Patel TR, De Crescenzo G, Durocher Y, Stetefeld J, Butler M. Inhibition of glycosylation on a camelid antibody uniquely affects its FcγRI binding activity. Eur J Pharm Sci 2017; 96:428-439. [DOI: 10.1016/j.ejps.2016.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 11/27/2022]
|
19
|
Liu L, Jacobsen FW, Everds N, Zhuang Y, Yu YB, Li N, Clark D, Nguyen MP, Fort M, Narayanan P, Kim K, Stevenson R, Narhi L, Gunasekaran K, Bussiere JL. Biological Characterization of a Stable Effector Functionless (SEFL) Monoclonal Antibody Scaffold in Vitro. J Biol Chem 2016; 292:1876-1883. [PMID: 27994063 DOI: 10.1074/jbc.m116.748707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/11/2016] [Indexed: 01/23/2023] Open
Abstract
The stable effector functionLess (SEFL) antibody was designed as an IgG1 antibody with a constant region that lacks the ability to interact with Fcγ receptors. The engineering and stability and pharmacokinetic assessments of the SEFL scaffold is described in the accompanying article (Jacobsen, F. W., Stevenson, R., Li, C., Salimi-Moosavi, H., Liu, L., Wen, J., Luo, Q., Daris, K., Buck, L., Miller, S., Ho, S-Y., Wang, W., Chen, Q., Walker, K., Wypych, J., Narhi, L., and Gunasekaran, K. (2017) J. Biol. Chem 292). The biological properties of these SEFL antibodies were assessed in a variety of human and cynomolgus monkey in vitro assays. Binding of parent molecules and their SEFL variants to human and cynomolgus monkey FcγRs were evaluated using flow cytometry-based binding assays. The SEFL variants tested showed decreased binding affinity to human and cynomolgus FcγRs compared with the wild-type IgG1 antibody. In addition, SEFL variants demonstrated no antibody-dependent cell-mediated cytotoxicity in vitro against Daudi cells with cynomolgus monkey peripheral blood mononuclear cells, and had minimal complement-dependent cytotoxicity activity similar to that of the negative control IgG2 in a CD20+ human Raji lymphoma cell line. SEFL mutations eliminated off-target antibody-dependent monocyte phagocytosis of cynomolgus monkey platelets, and cynomolgus platelet activation in vitro These experiments demonstrate that the SEFL modifications successfully eliminated Fc-associated effector binding and functions.
Collapse
Affiliation(s)
- Ling Liu
- From the Department of Biologic Optimization, Thousand Oaks, California 91320.
| | | | - Nancy Everds
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Yao Zhuang
- Department of Clinical Immunology, Thousand Oaks, California 91320
| | - Yan Bin Yu
- Department of Clinical Immunology, Thousand Oaks, California 91320
| | - Nianyu Li
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Darcey Clark
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Mai Phuong Nguyen
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Madeline Fort
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Padma Narayanan
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Kei Kim
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Riki Stevenson
- Process Development, Amgen Inc., Thousand Oaks, California 91320
| | - Linda Narhi
- Process Development, Amgen Inc., Thousand Oaks, California 91320
| | - Kannan Gunasekaran
- From the Department of Biologic Optimization, Thousand Oaks, California 91320
| | - Jeanine L Bussiere
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| |
Collapse
|
20
|
Grugan KD, Dorn K, Jarantow SW, Bushey BS, Pardinas JR, Laquerre S, Moores SL, Chiu ML. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs 2016; 9:114-126. [PMID: 27786612 PMCID: PMC5240640 DOI: 10.1080/19420862.2016.1249079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.
Collapse
Affiliation(s)
- Katharine D Grugan
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Keri Dorn
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Stephen W Jarantow
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Barbara S Bushey
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Jose R Pardinas
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Sylvie Laquerre
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Sheri L Moores
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Mark L Chiu
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| |
Collapse
|
21
|
Calow J, Behrens AJ, Mader S, Bockau U, Struwe WB, Harvey DJ, Cormann KU, Nowaczyk MM, Loser K, Schinor D, Hartmann MWW, Crispin M. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs 2016; 8:1498-1511. [PMID: 27594301 PMCID: PMC5098438 DOI: 10.1080/19420862.2016.1228504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibody glycosylation is a key parameter in the optimization of antibody therapeutics. Here, we describe the production of the anti-cancer monoclonal antibody rituximab in the unicellular ciliate, Tetrahymena thermophila. The resulting antibody demonstrated enhanced antibody-dependent cell-mediated cytotoxicity, which we attribute to unusual N-linked glycosylation. Detailed chromatographic and mass spectrometric analysis revealed afucosylated, oligomannose-type glycans, which, as a whole, displayed isomeric structures that deviate from the typical human counterparts, but whose branches were equivalent to fragments of metabolic intermediates observed in human glycoproteins. From the analysis of deposited crystal structures, we predict that the ciliate glycans adopt protein-carbohydrate interactions with the Fc domain that closely mimic those of native complex-type glycans. In addition, terminal glucose structures were identified that match biosynthetic precursors of human glycosylation. Our results suggest that ciliate-based expression systems offer a route to large-scale production of monoclonal antibodies exhibiting glycosylation that imparts enhanced cell killing activity.
Collapse
Affiliation(s)
| | - Anna-Janina Behrens
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | | | | | - Weston B Struwe
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | - David J Harvey
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | - Kai U Cormann
- c Plant Biochemistry, Ruhr University Bochum , Bochum , Germany
| | - Marc M Nowaczyk
- c Plant Biochemistry, Ruhr University Bochum , Bochum , Germany
| | - Karin Loser
- d Department of Dermatology , University of Münster , Münster , Germany
| | - Daniel Schinor
- e Wessling GmbH, Pharmaanalytik Münster , Münster , Germany
| | | | - Max Crispin
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| |
Collapse
|
22
|
Alt N, Zhang TY, Motchnik P, Taticek R, Quarmby V, Schlothauer T, Beck H, Emrich T, Harris RJ. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals 2016; 44:291-305. [PMID: 27461239 DOI: 10.1016/j.biologicals.2016.06.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/06/2023] Open
Abstract
Quality by design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody. This chapter describes the identification of critical quality attributes (CQAs) as an important first step for QbD development of biopharmaceuticals. A systematic scientific based risk ranking and filtering approach allows a thorough understanding of quality attributes and an assignment of criticality for their impact on drug safety and efficacy. To illustrate the application of the approach and tools, a few examples from monoclonal antibodies are shown. The identification of CQAs is a continuous process and will further drive the structure and function characterization of therapeutic proteins.
Collapse
Affiliation(s)
- Nadja Alt
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Taylor Y Zhang
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | - Paul Motchnik
- Biologics Quality Control, Genentech, South San Francisco, CA 94080, USA
| | - Ron Taticek
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | - Valerie Quarmby
- Research and Early Development, Genentech, South San Francisco, CA 94080 USA
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Hermann Beck
- Pharma Technical Development Biotech Europe, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Thomas Emrich
- Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Reed J Harris
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
23
|
Dong Q, Yan X, Liang Y, Stein SE. In-Depth Characterization and Spectral Library Building of Glycopeptides in the Tryptic Digest of a Monoclonal Antibody Using 1D and 2D LC–MS/MS. J Proteome Res 2016; 15:1472-86. [DOI: 10.1021/acs.jproteome.5b01046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian Dong
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Xinjian Yan
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Yuxue Liang
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Stephen E. Stein
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
24
|
Comparison of surface plasmon resonance binding curves for characterization of protein interactions and analysis of screening data. Anal Biochem 2016; 502:53-63. [PMID: 27019155 DOI: 10.1016/j.ab.2016.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/05/2016] [Accepted: 03/15/2016] [Indexed: 11/21/2022]
Abstract
Label-free technologies, such as surface plasmon resonance, are typically used for characterization of protein interactions and in screening for selection of antibodies or small molecules with preferred binding properties. In characterization, complete binding curves are normally fitted to defined interaction models to provide affinity and rate constants, whereas report points indicative of binding and stability of binding are often used for analysis of screening data. As an alternative to these procedures, here we describe how the analysis, in certain cases, can be simplified by comparison with upper and lower limit binding curves that represent expected or wanted binding profiles. The use of such profiles is applied to the analysis of kinetically complex IgG-Fc receptor interactions and for selection of antibody candidates. The comparison procedure described may be particularly useful in batch-to-batch comparisons and in comparability and biosimilar studies of biotherapeutic medicines. In screening, more informed selections may become possible as entire binding profiles and not a few report points are used in the analysis and as each new sample is directly compared with a predefined outcome.
Collapse
|
25
|
Production, Characterization, and Biological Evaluation of Well-Defined IgG1 Fc Glycoforms as a Model System for Biosimilarity Analysis. J Pharm Sci 2016; 105:559-574. [PMID: 26869419 DOI: 10.1016/j.xphs.2015.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Abstract
Four different well-defined IgG1 Fc glycoforms are proposed as a model system to examine important biological and physicochemical features for protein drug biosimilar analyses. The IgG1 Fc glycoforms were produced by yeast expression combined with in vitro enzymatic synthesis as a series of sequentially truncated high-mannose IgG1 Fc glycoforms with an anticipated range of biological activity and structural stability. Initial characterization with mass spectrometry, SDS-PAGE, size exclusion HPLC, and capillary isoelectric focusing confirmed that the glycoproteins are overall highly similar with the only major difference being glycosylation state. Binding to the activating Fc receptor, FcγRIIIa was used to evaluate the potential biological activity of the IgG1 Fc glycoproteins. Two complementary methods using biolayer interferometry, 1 with protein G-immobilized IgG1 Fc and the other with streptavidin-immobilized FcγRIIIa, were developed to assess FcγRIIIa affinity in kinetic binding studies. The high-mannose IgG1 Fc and Man5-IgG1 Fc glycoforms were highly similar to one another with high affinity for FcγRIIIa, whereas GlcNAc-Fc had weak affinity, and the nonglycosylated N297Q-Fc had no measurable affinity for FcγRIIIa. These 4 IgG1 Fc glycoforms were also evaluated in terms of physical and chemical stability profiles and then used as a model system to mathematically assess overall biosimilarity, as described in a series of companion articles.
Collapse
|
26
|
Ramadhany R, Hirai I, Sasaki T, Ono KI, Ramasoota P, Ikuta K, Kurosu T. Antibody with an engineered Fc region as a therapeutic agent against dengue virus infection. Antiviral Res 2015; 124:61-8. [PMID: 26522769 DOI: 10.1016/j.antiviral.2015.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 08/28/2015] [Accepted: 10/10/2015] [Indexed: 11/19/2022]
Abstract
Antibody-dependent enhancement (ADE) of dengue virus (DENV) infectivity is thought to play a crucial role in severe dengue disease. It occurs when pre-existing sub-neutralizing anti-DENV antibody (Ab) produced from a primary infection encounters a DENV serotype different from that of the initial infection and forms immune complexes, which enable the efficient infection of Fcγ receptor-bearing cells. However, the exact role played by Abs during a secondary infection of patients remains unknown. We previously obtained a broadly cross-reactive neutralizing IgG1 human monoclonal anti-DENV envelope (E) Ab (HuMAb) D23-1G7C2-IgG1 from a DENV-infected patient; however, D23-1G7C2-IgG1 had ADE activity. With the aim of being able to reduce the ADE activity, we exchanged the Fc region of D23-1G7C2 to generate Abs bearing each of the three other IgG subclasses (IgG2-4). In addition, N297A, a mutation known to reduce the affinity of the IgG1 Fc region for Fcγ receptors, was introduced into D23-1G7C2-IgG1. Swapping D23-1G7C2-IgG1 to IgG2 or IgG4 subclasses reduced ADE activity in FcγRI and FcγRII-bearing THP-1 cells. By contrast, in FcγRII-bearing K562 cells, the change to IgG2 increased ADE activity. Introducing the N297A mutation into D23-1G7C2-IgG1 resulted in a marked reduction in ADE activity in both cell types. Compared to D23-1G7C2-IgG1, D23-1G7C2-IgG1-N297A was less protective in IFN-α/β/γ receptor knockout mice infected with a lethal dose of recombinant chimeric DENV, carrying prME of DENV-2 in Japanese encephalitis virus (80% vs. 40% survival, respectively). These observations provide valuable information regarding the use of recombinant Abs as therapeutics.
Collapse
Affiliation(s)
- Ririn Ramadhany
- Research Institute of Microbial Disease, Osaka University, Japan
| | - Itaru Hirai
- Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Tadahiro Sasaki
- Research Institute of Microbial Disease, Osaka University, Japan
| | - Ken-ichiro Ono
- Medical and Biological Laboratories Corporation Ltd., Japan
| | - Pongrama Ramasoota
- Center of Excellence of Antibody Research, Department of Social and Environment Medicine, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Kazuyoshi Ikuta
- Research Institute of Microbial Disease, Osaka University, Japan
| | - Takeshi Kurosu
- Research Institute of Microbial Disease, Osaka University, Japan.
| |
Collapse
|
27
|
Ju MS, Na JH, Yu YG, Kim JY, Jeong C, Jung ST. Structural consequences of aglycosylated IgG Fc variants evolved for FcγRI binding. Mol Immunol 2015; 67:350-6. [DOI: 10.1016/j.molimm.2015.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
28
|
Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, Yang J, Stafford RL, Steiner AR, Sato AK, Hallam TJ, Yin G. Production of bispecific antibodies in "knobs-into-holes" using a cell-free expression system. MAbs 2015; 7:231-42. [PMID: 25427258 PMCID: PMC4623329 DOI: 10.4161/19420862.2015.989013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a “knob” or a “hole” in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer.
Collapse
Key Words
- BiTE, bispecific T-cell engager
- BiTE-KIH
- CHO, Chinese hamster ovary
- ELISA, enzyme-linked immunosorbent assay
- EpCAM, epithelial cell adhesion molecule
- FACS, fluorescence-activated cell sorting
- Fab, antigen-binding fragment
- Fc, fragment crystallizable
- FcR, Fc receptor
- HC, immunoglobulin heavy chain
- HER2, human epidermal growth factor receptor 2
- IgG, immunoglobulin G
- KIH, knob-into-hole
- LC, immunoglobulin light chain
- LC-MS, liquid chromatography-mass spectrometry
- PK, pharmacokinetics
- bispecific antibody
- cell-free protein expression
- knob-into-hole
- prefabrication
- scFv, single-chain fragment variable
- scFv-KIH
Collapse
Affiliation(s)
- Yiren Xu
- a Sutro Biopharma, Inc. ; South San Francisco , CA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 2015; 25:1325-34. [PMID: 26263923 PMCID: PMC4634315 DOI: 10.1093/glycob/cwv065] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022] Open
Abstract
Critical quality attributes (CQA) are physical, chemical, biological or microbiological properties or characteristics that must be within an appropriate limit, range or distribution to ensure the desired product quality, safety and efficacy. For monoclonal antibody therapeutics that rely on fraction crystalizable (Fc)-mediated effector function for their clinical activity, the terminal sugars of Fc glycans have been shown to be critical for safety or efficacy. Different glycosylation variants have also been shown to influence the pharmacodynamic and pharmacokinetic behavior while other Fc glycan structural elements may be involved in adverse immune reactions. This review focuses on the role of Fc glycans as CQAs. Fc glycan information from the published literature is summarized and evaluated for impact on patient safety, immunogenicity, bioactivity and pharmacodynamics/pharmacokinetics.
Collapse
Affiliation(s)
- Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Max L Tejada
- Biological Technologies, Genentech, CA 94080, USA
| |
Collapse
|
30
|
Kurogochi M, Mori M, Osumi K, Tojino M, Sugawara SI, Takashima S, Hirose Y, Tsukimura W, Mizuno M, Amano J, Matsuda A, Tomita M, Takayanagi A, Shoda SI, Shirai T. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities. PLoS One 2015. [PMID: 26200113 PMCID: PMC4511734 DOI: 10.1371/journal.pone.0132848] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.
Collapse
Affiliation(s)
- Masaki Kurogochi
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Masako Mori
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Kenji Osumi
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Mami Tojino
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Shu-ichi Sugawara
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Yuriko Hirose
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Wataru Tsukimura
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Junko Amano
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Akio Matsuda
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Masahiro Tomita
- Immuno-Biological Laboratories Co., Ltd., 1091-1 Naka, Fujioka-shi, Gunma, Japan
| | - Atsushi Takayanagi
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shin-Ichiro Shoda
- Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Japan
| | - Takashi Shirai
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
31
|
Maksymowych WP, Boire G, van Schaardenburg D, Wichuk S, Turk S, Boers M, Siminovitch KA, Bykerk V, Keystone E, Tak PP, van Kuijk AW, Landewé R, van der Heijde D, Murphy M, Marotta A. 14-3-3η Autoantibodies: Diagnostic Use in Early Rheumatoid Arthritis. J Rheumatol 2015; 42:1587-94. [DOI: 10.3899/jrheum.141385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 11/22/2022]
Abstract
Objective.To describe the expression and diagnostic use of 14-3-3η autoantibodies in early rheumatoid arthritis (RA).Methods.14-3-3η autoantibody levels were measured using an electrochemiluminescent multiplexed assay in 500 subjects (114 disease-modifying antirheumatic drug-naive patients with early RA, 135 with established RA, 55 healthy, 70 autoimmune, and 126 other non-RA arthropathy controls). 14-3-3η protein levels were determined in an earlier analysis. Two-tailed Student t tests and Mann-Whitney U tests compared differences among groups. Receiver-operator characteristic (ROC) curves were generated and diagnostic performance was estimated by area under the curve (AUC), as well as specificity, sensitivity, and likelihood ratios (LR) for optimal cutoffs.Results.Median serum 14-3-3η autoantibody concentrations were significantly higher (p < 0.0001) in patients with early RA (525 U/ml) when compared with healthy controls (235 U/ml), disease controls (274 U/ml), autoimmune disease controls (274 U/ml), patients with osteoarthritis (259 U/ml), and all controls (265 U/ml). ROC curve analysis comparing early RA with healthy controls demonstrated a significant (p < 0.0001) AUC of 0.90 (95% CI 0.85–0.95). At an optimal cutoff of ≥ 380 U/ml, the ROC curve yielded a sensitivity of 73%, a specificity of 91%, and a positive LR of 8.0. Adding 14-3-3η autoantibodies to 14-3-3η protein positivity enhanced the identification of patients with early RA from 59% to 90%; addition of 14-3-3η autoantibodies to anticitrullinated protein antibodies (ACPA) and/or rheumatoid factor (RF) increased identification from 72% to 92%. Seventy-two percent of RF- and ACPA-seronegative patients were positive for 14-3-3η autoantibodies.Conclusion.14-3-3η autoantibodies, alone and in combination with the 14-3-3η protein, RF, and/or ACPA identified most patients with early RA.
Collapse
|
32
|
Abstract
While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The hyper-IgE syndromes have been recognized as a group of primary immunodeficiencies characterized by eczema, recurrent skin and lung infections, and elevated serum IgE. Recently, mutations in phosphoglucomutase 3 (encoding PGM3, which is involved in the protein glycosylation pathway) have been identified in autosomal recessive forms of hyper-IgE syndromes. RECENT FINDINGS Autosomal recessive, hypomorphic PGM3 mutations cause a multisystem disorder, characterized by both a congenital glycosylation disease and a hyper-IgE syndrome. The reported mutations in PGM3 led to an impaired biosynthesis of UDP-GlcNAc and impaired tri-antennary and tetra-antennary N-glycan structures. Laboratory results in patients showed eosinophilia, a T-cell proliferation defect, and a reversed CD4/CD8 ratio. The impaired glycosylation in PGM3-mutant patients will not only affect proteins involved in the immune system, and thus causes a multisystem phenotype. SUMMARY The identification of hyper-IgE syndromes-associated mutations in PGM3 provides the basis for future studies on the pathophysiology and the molecular mechanisms of eczema, IgE dysregulation, and increased susceptibility to infections.
Collapse
|
34
|
Hayes JM, Frostell A, Cosgrave EFJ, Struwe WB, Potter O, Davey GP, Karlsson R, Anneren C, Rudd PM. Fc gamma receptor glycosylation modulates the binding of IgG glycoforms: a requirement for stable antibody interactions. J Proteome Res 2014; 13:5471-85. [PMID: 25345863 DOI: 10.1021/pr500414q] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FcγRs play a critical role in the immune response following recognition of invading particles and tumor associated antigens by circulating antibodies. In the present study we investigated the role of FcγR glycosylation in the IgG interaction and observed a stabilizing role for receptor N-glycans. We performed a complete glycan analysis of the recombinant FcγRs (FcγRIa, FcγRIIa, FcγRIIb, FcγRIIIa(Phe158/Val158), and FcγRIIIb) expressed in human cells and demonstrate that receptor glycosylation is complex and varied between receptors. We used surface plasmon resonance to establish binding patterns between rituximab and all receptors. Complex binding was observed for FcγRIa and FcγRIIIa. The IgG-FcγR interaction was further investigated using a combination of kinetic experiments and enzymatically deglycosylated FcγRIa and FcγRIIIa(Phe158/Val158) receptors in an attempt to determine the underlying binding mechanism. We observed that antibody binding levels decreased for deglycosylated receptors, and at the same time, binding kinetics were altered and showed a more rapid approach to steady state, followed by an increase in the antibody dissociation rate. Binding of rituximab to deglycosylated FcγRIIIa(Phe158) was now consistent with a 1:1 binding mechanism, while binding of rituximab to FcγRIIIa(Val158) remained heterogeneous. Kinetic data support a complex binding mechanism, involving heterogeneity in both antibody and receptor, where fucosylated and afucosylated antibody forms compete in receptor binding and in receptor molecules where heterogeneity in receptor glycosylation plays an important role. The exact nature of receptor glycans involved in IgG binding remains unclear and determination of rate and affinity constants are challenging. Here, the use of more extended competition experiments appear promising and suggest that it may be possible to determine dissociation rate constants for high affinity afucosylated antibodies without the need to purify or express such variants. The data described provide further insight into the complexity of the IgG-FcγR interaction and the influence of FcγR glycosylation.
Collapse
Affiliation(s)
- Jerrard M Hayes
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College , Pearse St. Dublin 2, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang YY, Kannan A, Nunn KL, Murphy MA, Subramani DB, Moench T, Cone R, Lai SK. IgG in cervicovaginal mucus traps HSV and prevents vaginal herpes infections. Mucosal Immunol 2014; 7:1036-44. [PMID: 24496316 PMCID: PMC4122653 DOI: 10.1038/mi.2013.120] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
IgG is the predominant immunoglobulin in cervicovaginal mucus (CVM), yet how immunoglobulin G (IgG) in mucus can protect against infections is not fully understood. IgG diffuses rapidly through cervical mucus, slowed only slightly by transient adhesive interactions with mucins. We hypothesize that this almost unhindered diffusion allows IgG to accumulate rapidly on pathogen surfaces, and the resulting IgG array forms multiple weak adhesive crosslinks to mucus gel that effectively trap (immobilize) pathogens, preventing them from initiating infections. Here, we report that herpes simplex virus serotype 1 (HSV-1) readily penetrated fresh, pH-neutralized ex vivo samples of CVM with low or no detectable levels of anti-HSV-1 IgG but was trapped in samples with even modest levels of anti-HSV-1 IgG. In samples with little or no endogenous anti-HSV-1 IgG, addition of exogenous anti-HSV-1 IgG, affinity-purified from intravenous immunoglobulin, trapped virions at concentrations below those needed for neutralization and with similar potency as endogenous IgG. Deglycosylating purified anti-HSV-1 IgG, or removing its Fc component, markedly reduced trapping potency. Finally, a non-neutralizing IgG against HSV-gG significantly protected mice against vaginal infection, and removing vaginal mucus by gentle lavage abolished protection. These observations suggest that IgG-Fc has a glycan-dependent "muco-trapping" effector function that may provide exceptionally potent protection at mucosal surfaces.
Collapse
Affiliation(s)
- Ying-Ying Wang
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Arthi Kannan
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenetta L. Nunn
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael A. Murphy
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA
| | - Durai B. Subramani
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Richard Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Samuel K. Lai
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA,UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Ju MS, Jung ST. Aglycosylated full-length IgG antibodies: steps toward next-generation immunotherapeutics. Curr Opin Biotechnol 2014; 30:128-39. [PMID: 25035939 DOI: 10.1016/j.copbio.2014.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/17/2014] [Accepted: 06/15/2014] [Indexed: 12/17/2022]
Abstract
Albeit the removal of Asn297 glycans of IgG perturbs the overall conformation and flexibility of the IgG CH2 domain, resulting in the loss of Fc-ligand interactions and therapeutically critical immune effector functions, aglycosylated full-length IgG antibodies are nearly identical to the glycosylated counterparts in terms of antigen binding, stability at physiological or low temperature conditions, pharmacokinetics, and biodistribution. To bypass the drawbacks of glycosylated antibodies that include glycan heterogeneity and requirement of high capital investment for biomanufacturing, aglycosylated antibodies have been developed and several are under clinical trials. Comprehensive cellular and bioprocess engineering has enabled to produce highly complex aglycosylated IgGs in a simple bacterial cultivation with comparable production level as that of mammalian cells. Moreover, extensive engineering of aglycosylated Fc has converted the aglycosylated IgG antibodies into a new class of effector functional human immunotherapeutics.
Collapse
Affiliation(s)
- Man-Seok Ju
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | - Sang Taek Jung
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Republic of Korea.
| |
Collapse
|
37
|
Dorion-Thibaudeau J, Raymond C, Lattová E, Perreault H, Durocher Y, De Crescenzo G. Towards the development of a surface plasmon resonance assay to evaluate the glycosylation pattern of monoclonal antibodies using the extracellular domains of CD16a and CD64. J Immunol Methods 2014; 408:24-34. [PMID: 24810583 DOI: 10.1016/j.jim.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 01/22/2023]
Abstract
We here report the production and purification of the extracellular domains of two Fcγ receptors, namely CD16a and CD64, by transient transfection in mammalian cells. The use of these two receptor ectodomains for the development of quantitative assays aiming at controlling the quality of monoclonal antibody production lots is then discussed. More specifically, the development of surface plasmon resonance-based biosensor assays for the evaluation of the glycosylation pattern and the aggregation state of monoclonal antibodies is presented. Our biosensor approach allows discriminating between antibodies harboring different galactosylation profiles as well as to detect low levels (i.e., less than 2%) of monoclonal antibody aggregates.
Collapse
Affiliation(s)
- July Dorion-Thibaudeau
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montreal, QC H3C 3A7, Canada; Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Céline Raymond
- Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC H4P 2R2, Canada; Biochemistry Department, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Erika Lattová
- Chemistry Department, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Helene Perreault
- Chemistry Department, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Yves Durocher
- Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC H4P 2R2, Canada; Biochemistry Department, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
38
|
Alsenaidy MA, Okbazghi SZ, Kim JH, Joshi SB, Middaugh CR, Tolbert TJ, Volkin DB. Physical stability comparisons of IgG1-Fc variants: effects of N-glycosylation site occupancy and Asp/Gln residues at site Asn 297. J Pharm Sci 2014; 103:1613-1627. [PMID: 24740840 DOI: 10.1002/jps.23975] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/01/2023]
Abstract
The structural integrity and conformational stability of various IgG1-Fc proteins produced from the yeast Pichia pastoris with different glycosylation site occupancy (di-, mono-, and nonglycosylated) were determined. In addition, the physical stability profiles of three different forms of nonglycosylated Fc molecules (varying amino-acid residues at site 297 in the CH 2 domain due to the point mutations and enzymatic digestion of the Fc glycoforms) were also examined. The physical stability of these IgG1-Fc glycoproteins was examined as a function of pH and temperature by high-throughput biophysical analysis using multiple techniques combined with data visualization tools (three index empirical phase diagrams and radar charts). Across the pH range of 4.0-6.0, the di- and monoglycosylated forms of the IgG1-Fc showed the highest and lowest levels of physical stability, respectively, with the nonglycosylated forms showing intermediate stability depending on solution pH. In the aglycosylated Fc proteins, the introduction of Asp (D) residues at site 297 (QQ vs. DN vs. DD forms) resulted in more subtle changes in structural integrity and physical stability depending on solution pH. The utility of evaluating the conformational stability profile differences between the various IgG1-Fc glycoproteins is discussed in the context of analytical comparability studies.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - Solomon Z Okbazghi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - Jae Hyun Kim
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - Thomas J Tolbert
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
39
|
Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M, Mellouli F, Patiroglu T, Unal E, Ozdemir MA, Jouhadi Z, Khadir K, Ben-Khemis L, Ben-Ali M, Ben-Mustapha I, Borchani L, Pfeifer D, Jakob T, Khemiri M, Asplund AC, Gustafsson MO, Lundin KE, Falk-Sörqvist E, Moens LN, Gungor HE, Engelhardt KR, Dziadzio M, Stauss H, Fleckenstein B, Meier R, Prayitno K, Maul-Pavicic A, Schaffer S, Rakhmanov M, Henneke P, Kraus H, Eibel H, Kölsch U, Nadifi S, Nilsson M, Bejaoui M, Schäffer AA, Smith CIE, Dell A, Barbouche MR, Grimbacher B. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol 2014; 133:1410-9, 1419.e1-13. [PMID: 24698316 DOI: 10.1016/j.jaci.2014.02.025] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. OBJECTIVE We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. METHODS After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. RESULTS Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p.Glu340del and p.Leu83Ser). A third homozygous mutation (p.Asp502Tyr) and the p.Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. CONCLUSION Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.
Collapse
Affiliation(s)
- Atfa Sassi
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Sandra Lazaroski
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Fethi Mellouli
- Pediatrics Department, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Turkan Patiroglu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Akif Ozdemir
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases, CHU IBN ROCHD, Hassan II University, Casablanca, Morocco
| | - Khadija Khadir
- Department of Pediatric Infectious Diseases, CHU IBN ROCHD, Hassan II University, Casablanca, Morocco
| | - Leila Ben-Khemis
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben-Ali
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Lamia Borchani
- Laboratory of Venoms and Therapeutic Molecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Dietmar Pfeifer
- Department of Medicine I, Specialties: Hematology, Oncology, and Stem-Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | - Thilo Jakob
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Monia Khemiri
- Pediatrics Department A, Children's Hospital of Tunis, Tunis, Tunisia
| | - A Charlotta Asplund
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Manuela O Gustafsson
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Karin E Lundin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Elin Falk-Sörqvist
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Lotte N Moens
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Hatice Eke Gungor
- Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Karin R Engelhardt
- Royal Free Hospital, Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - Magdalena Dziadzio
- Royal Free Hospital, Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - Hans Stauss
- Royal Free Hospital, Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - Bernhard Fleckenstein
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca Meier
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Khairunnadiya Prayitno
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Andrea Maul-Pavicic
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Sandra Schaffer
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Mirzokhid Rakhmanov
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Helene Kraus
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Uwe Kölsch
- Division of Immunology, Labor Berlin and Institute of Medical Immunology, Charité, Campus Virchow Klinikum, Berlin, Germany
| | - Sellama Nadifi
- Department of Genetics, Hassan II University, Casablanca, Morocco
| | - Mats Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Mohamed Bejaoui
- Pediatrics Department, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - C I Edvard Smith
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mohamed-Ridha Barbouche
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany; Royal Free Hospital, Institute of Immunity & Transplantation, University College London, London, United Kingdom.
| |
Collapse
|
40
|
Alsenaidy MA, Kim JH, Majumdar R, Weis DD, Joshi SB, Tolbert TJ, Middaugh CR, Volkin DB. High-throughput biophysical analysis and data visualization of conformational stability of an IgG1 monoclonal antibody after deglycosylation. J Pharm Sci 2013; 102:3942-56. [PMID: 24114789 DOI: 10.1002/jps.23730] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/20/2013] [Accepted: 08/29/2013] [Indexed: 12/29/2022]
Abstract
The structural integrity and conformational stability of an IgG1 monoclonal antibody (mAb), after partial or complete enzymatic removal of the N-linked Fc glycan, were compared with the untreated mAb over a wide range of temperature (10°C-90°C) and solution pH (3-8) using circular dichroism, fluorescence spectroscopy, and static light scattering combined with data visualization employing empirical phase diagrams. Subtle-to-larger stability differences between the different glycoforms were observed. Improved detection of physical stability differences was then demonstrated over narrower pH range (4.0-6.0) using smaller temperature increments, especially when combined with an alternative data visualization method (radar plots). Differential scanning calorimetry and differential scanning fluorimetry were then utilized and also showed an improved ability to detect differences in the physical stability of a mAb glycoform. On the basis of these results, a two-step methodology was used in which conformational stability of a mAb glycoform is first screened with a wide variety of instruments and environmental stresses, followed by a second evaluation with optimally sensitive experimental conditions, analytical techniques, and data visualization methods. With this approach, a high-throughput biophysical analysis to assess relatively subtle conformational stability differences in protein glycoforms is demonstrated.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shatz W, Chung S, Li B, Marshall B, Tejada M, Phung W, Sandoval W, Kelley RF, Scheer JM. Knobs-into-holes antibody production in mammalian cell lines reveals that asymmetric afucosylation is sufficient for full antibody-dependent cellular cytotoxicity. MAbs 2013; 5:872-81. [PMID: 23995614 PMCID: PMC3896601 DOI: 10.4161/mabs.26307] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Knobs-into-holes is a well-validated heterodimerization technology for the third constant domain of an antibody. This technology has been used to produce a monovalent IgG for clinical development (onartuzumab) and multiple bispecific antibodies.1,2 The most advanced uses of this approach, however, have been limited to E. coli as an expression host to produce non-glycosylated antibodies. Here, we applied the technology to mammalian host expression systems to produce glycosylated, effector-function competent heterodimeric antibodies. In our mammalian host system, each arm is secreted as a heavy chain-light chain (H-L) fragment with either the knob or hole mutations to allow for preferential heterodimer formation in vitro with low levels of homodimer contaminants. Like full antibodies, the secreted H-L fragments undergo Fc glycosylation in the endoplasmic reticulum. Using a monospecific anti-CD20 antibody, we show that full antibody-dependent cell-mediated cytotoxicity (ADCC) activity can be retained in the context of a knobs-into-holes heterodimer. Because the knobs-into-holes mutations convert the Fc into an asymmetric heterodimer, this technology was further used to systematically explore asymmetric recognition of the Fc. Our results indicate that afucosylation of half the heterodimer is sufficient to produce ADCC-enhancement similar to that observed for a fully afucosylated antibody with wild-type Fc. However, the most dramatic effect on ADCC activity is observed when two carbohydrate chains are present rather than one, regardless of afucosylation state.
Collapse
Affiliation(s)
- Whitney Shatz
- Department of Protein Chemistry; Genentech, Inc; San Francisco, CA USA
| | - Shan Chung
- Department of BioAnalytical Sciences; Genentech, Inc; San Francisco, CA USA
| | - Bing Li
- Department of Antibody Engineering; Genentech, Inc; San Francisco, CA USA
| | - Brett Marshall
- Department of Biological Technologies; Genentech, Inc; San Francisco, CA USA
| | - Max Tejada
- Department of Biological Technologies; Genentech, Inc; San Francisco, CA USA
| | - Wilson Phung
- Department of Protein Chemistry; Genentech, Inc; San Francisco, CA USA
| | - Wendy Sandoval
- Department of Protein Chemistry; Genentech, Inc; San Francisco, CA USA
| | - Robert F Kelley
- Department of Antibody Engineering; Genentech, Inc.; San Francisco, CA USA
| | - Justin M Scheer
- Department of Protein Chemistry; Genentech, Inc; San Francisco, CA USA
| |
Collapse
|
42
|
Tailoring immunoglobulin Fc for highly potent and serum-stable therapeutic antibodies. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0711-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Xue J, Zhu LP, Wei Q. IgG-Fc N-glycosylation at Asn297 and IgA O-glycosylation in the hinge region in health and disease. Glycoconj J 2013; 30:735-45. [PMID: 23783413 DOI: 10.1007/s10719-013-9481-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 01/21/2023]
Abstract
Immunoglobulins (Igs) are the major molecules secreted by B lymphocytes during an adaptive immune response. They are glycoproteins with distinctive glycosylation patterns, resulting in wide variations in the number, type and location of their oligosaccharides in each isotype and subclass. The sugars play specific structural roles, maintaining and modulating effector functions of Igs. Aberrant glycosylation might contribute to disease pathogenesis. This review will focus on the glycosylation of IgG and IgA because they have been studied more extensively than other immunoglobulins. Rheumatoid arthritis and IgA nephritis are used to describe the association of glycosylation aberration and disease pathogenesis.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, No 5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | | |
Collapse
|
44
|
Dall’Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 2013; 12:685-98. [PMID: 22353383 DOI: 10.1016/j.arr.2012.02.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/24/2012] [Accepted: 02/06/2012] [Indexed: 01/31/2023]
Abstract
Glycosylation is a frequent co/post-translational modification of proteins which modulates a variety of biological functions. The analysis of N-glycome, i.e. the sugar chains N-linked to asparagine, identified new candidate biomarkers of aging such as N-glycans devoid of galactose residues on their branches, in a variety of human and experimental model systems, such as healthy old people, centenarians and their offspring and caloric restricted mice. These agalactosylated biantennary structures mainly decorate Asn297 of Fc portion of IgG (IgG-G0), and are present also in patients affected by progeroid syndromes and a variety of autoimmune/inflammatory diseases. IgG-G0 exert a pro-inflammatory effect through different mechanisms, including the lectin pathway of complement, binding to Fcγ receptors and formation of autoantibody aggregates. The age-related accumulation of IgG-G0 can contribute to inflammaging, the low-grade pro-inflammatory status that characterizes elderly, by creating a vicious loop in which inflammation is responsible for the production of aberrantly glycosylated IgG which, in turn, would activate the immune system, exacerbating inflammation. Moreover, recent data suggest that the N-glycomic shift observed in aging could be related not only to inflammation but also to alteration of important metabolic pathways. Thus, altered N-glycans are both powerful markers of aging and possible contributors to its pathogenesis.
Collapse
|
45
|
Zhang N, Klegerman ME, Deng H, Shi Y, Golunski E, An Z. Trastuzumab-Doxorubicin Conjugate Provides Enhanced Anti-Cancer Potency and Reduced Cardiotoxicity. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.41038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Chen G, Ha S, Rustandi RR. Characterization of glycoprotein biopharmaceutical products by Caliper LC90 CE-SDS gel technology. Methods Mol Biol 2013; 988:199-209. [PMID: 23475721 DOI: 10.1007/978-1-62703-327-5_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the last decade, science has greatly improved in the area of protein sizing and characterization. Efficient high-throughput methods are now available to substitute for the traditional labor-intensive SDS-PAGE methods, which alternatively take days to analyze a very limited number of samples. Currently, PerkinElmer(®) (Caliper) has designed an automated chip-based fluorescence detection method capable of analyzing proteins in minutes with sensitivity similar to standard SDS-PAGE. Here, we describe the use and implementation of this technology to characterize and screen a large number of formulations of target glycoproteins in the 14-200 kDa molecular weight range.
Collapse
Affiliation(s)
- Grace Chen
- Vaccine Analytical Development, Merck Research Laboratories, West Point, PA, USA
| | | | | |
Collapse
|
47
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|
48
|
Ha S, Wang Y, Rustandi RR. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs 2011; 3:453-60. [PMID: 22048694 DOI: 10.4161/mabs.3.5.16891] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The first full length IgG produced in Pichia pastoris was reported in late 1980. However, use of a wild-type Pichia expression system to produce IgGs with human-like N-linked glycans was not possible until recently. Advances in glycoengineering have enabled organisms such as Pichia to mimic human N-glycan biosynthesis and produce IgGs with human glycans on an industrial scale. Since there are only a few reports of the analytical characterization of Pichia-produced IgG, we summarize the results known in this field, and provide additional characterization data generated in our laboratories. The data suggest that Pichia-produced IgG has the same stability as that produced in Chinese hamster ovary (CHO) cells. It has similar aggregation profiles, charge variant distribution and oxidation levels as those for a CHO IgG. It contains human N-linked glycans and O-linked single mannose. Because of the comparable biophysical and biochemical characteristics, glycoengineered Pichia pastoris is an attractive expression system for therapeutic IgG productions.
Collapse
Affiliation(s)
- Sha Ha
- Department of Bioprocess Analytical and Formulation Sciences, Merck Research Laboratories, West Point, PA, USA
| | | | | |
Collapse
|