1
|
Shih Y, Chen S, Huang J, Chen Y, Zhu Z, Zhao Q, Zhao X, Xue F, Xiang J, Chen X, Zhu X, Pan M, Wu J, Zheng J, Li H, Cao H. Serum level of galectin-9 as a potential biomarker for high risk of malignancy in dermatomyositis. Rheumatology (Oxford) 2024; 63:251-258. [PMID: 37184873 DOI: 10.1093/rheumatology/kead222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVES Galectin-9, as immune checkpoint protein, plays a role in regulating autoimmunity and tumour immunity. Therefore, we explored the pathophysiological link between galectin-9 and malignancy in cancer-related DM (CRDM). METHODS Serum galectin-9 were quantified via enzyme-linked immunosorbent assay, and its association with serological indices was evaluated using Spearman analysis. Receiver operating characteristic (ROC) analysis was utilized to determine the cut-off value of galectin-9. RESULTS Serum levels of galectin-9 were significantly higher in DM patients [23.38 (13.85-32.57) ng/ml] than those in healthy controls (HCs) [6.81 (5.42-7.89) ng/ml, P < 0.0001], and were positively correlated with the cutaneous dermatomyositis disease area severity index activity (CDASI-A) scores (rs=0.3065, P = 0.0172). DM patients with new-onset and untreated cancer (new-CRDM) [31.58 (23.85-38.84) ng/ml] had higher levels of galectin-9 than those with stable and treated cancer (stable-CRDM) [17.49 (10.23-27.91) ng/ml, P = 0.0288], non-cancer-related DM (non-CRDM) [21.05 (11.97-28.02) ng/ml, P = 0.0258], and tumour patients without DM [7.46 (4.90-8.51) ng/ml, P < 0.0001]. Serum galectin-9 levels significantly decreased [27.79 (17.04-41.43) ng/ml vs 13.88 (5.15-20.37) ng/ml, P = 0.002] after anti-cancer treatment in CRDM patients. The combination of serum galectin-9 and anti-transcriptional intermediary factor 1-γ (anti-TIF1-γ) antibody (AUC = 0.889, 95% CI 0.803-0.977) showed the highest predictive value for the presence of cancer in DM. CONCLUSION Increased galectin-9 levels were related to tumor progression in CRDM, and galectin-9 was downregulated upon cancer treatment. Monitoring serum galectin-9 levels and anti-TIF1-γ antibodies might be an attractive strategy to achieve tumour diagnosis and predict CRDM outcome.
Collapse
Affiliation(s)
- Yanting Shih
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shile Chen
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Huang
- Department of Dermatology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongheng Chen
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zicong Zhu
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Zhao
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xue
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemei Zhu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Pan
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wu
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Cao
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Linge CP, Jern A, Tydén H, Gullstrand B, Yan H, Welinder C, Kahn R, Jönssen A, Semple JW, Bengtsson AA. Enrichment of complement, immunoglobulins and autoantibody targets in the proteome of platelets from patients with Systemic Lupus Erythematosus (SLE). Thromb Haemost 2022; 122:1486-1501. [PMID: 35419777 PMCID: PMC9420555 DOI: 10.1055/a-1825-2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background
Systemic lupus erythematosus (SLE) is a complex disease characterized by autoimmunity toward apoptotic cells, excessive amounts of circulating immune complexes, and complement activation. A decreased platelet size has been observed in SLE and their nonhemostatic functions may play an active role in the disease. The main objective of this study was to find clues that could explain their decreased size and functional role, analyzing the entire platelet proteome.
Methods
Platelets were isolated from 23 patients with SLE. The five individuals with the highest and lowest average platelet forward scatter were selected for further analysis. Platelet protein content was analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and compared with platelets from five healthy controls. Data are available via ProteomeXchange with identifier PXD031202.
Results
Out of 2,572 proteins identified, 396 had significantly different levels (ANOVA
q
-value ≤ 0.01). Forty proteins, including immunoglobulin-, complement- and phosphatidylserine-binding proteins had higher abundance in platelets from SLE patients, largely independent of size (fold difference of ≥1.5 and a
t
-test
p
-value of ≤0.05 as cut-off). Functional characterization revealed increased degranulation and skewed hemostatic balance in platelets from SLE patients. In the SLE proteome, immunoglobulin proteins were negatively correlated to serum complement C3 and C4 and the highest relative levels were detected in platelets of normal size.
Conclusion
Platelets from SLE patients shared a specific protein profile, including immunoglobulins, complement proteins, and autoantigens, largely independent of the platelet size and in agreement with an integrated role for platelets in SLE.
Collapse
Affiliation(s)
- Carl Petrus Linge
- Department of Clinical Sciences Lund, Lund University Section for Molecular Skeletal Biology and Rheumatology, Lund, Sweden
| | - Andreas Jern
- Department of Clinical Sciences, Lund University Section for Molecular Skeletal Biology and Rheumatology, Lund, Sweden
| | - Helena Tydén
- Department of Clinical Sciences, Lund University Section for Molecular Skeletal Biology and Rheumatology, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Clinical Sciences, Lund University Section for Molecular Skeletal Biology and Rheumatology, Lund, Sweden
| | - Hong Yan
- BioMS, Swedish National Infrastructure for Biological Mass Spectrometry, Lund, Sweden
| | - Charlotte Welinder
- Department of Clinical Sciences Lund, Lund University Department of Oncology and Pathology, Lund, Sweden
| | - Robin Kahn
- Wallenberg Center for Molecular Medicin, Lund University Faculty of Medicine, Lund, Sweden.,Paediatrics, Lund University Faculty of Medicine, Lund, Sweden
| | - Andreas Jönssen
- Department of Clinical Sciences Lund, Lund University Section for Molecular Skeletal Biology and Rheumatology, Lund, Sweden
| | - John W Semple
- Transfusion Medicine, Lunds Universitet, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences, Lund University Section for Molecular Skeletal Biology and Rheumatology, Lund, Sweden
| |
Collapse
|
3
|
Huang X, Zhang Q, Zhang H, Lu Q. A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2022; 63:311-329. [DOI: 10.1007/s12016-021-08917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
|
4
|
LI J, LI Z, YU L, SU J. Maternal and neonatal outcomes of pregnancy complicated with Systemic Lupus Erythematosus. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.56921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jie LI
- Tianjin Medical University General Hospital, China
| | - Zengyan LI
- Tianjin Medical University General Hospital, China
| | - Limin YU
- Tianjin Medical University General Hospital, China
| | - Jing SU
- Tianjin Medical University General Hospital, China
| |
Collapse
|
5
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
6
|
Kobak S, Akyildiz M, Gokduman A, Atabay T, Vural H. Serum galectin-3 and TGF-beta levels in patients with sarcoidosis. REUMATOLOGIA CLINICA 2021; 17:562-565. [PMID: 34823821 DOI: 10.1016/j.reumae.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Sarcoidosis is a chronic granulomatous disease that develops with non-caseified granuloma formation. Galectin-3 is a multifunctional protein operating in biological processes such as fibrosis, angiogenesis, and immune activation. PURPOSE This study evaluates the levels of serum galectin-3 and TGF-beta in sarcoidosis patients to determine a possible correlation with clinical findings. MATERIAL AND METHOD Forty-four biopsy-proven sarcoidosis patients followed in a single centre and 41 age and sex-matched healthy volunteers were included in the study. The levels of serum galectin-3 and TGF-beta were evaluated by ELISA method. RESULTS Among the 44 sarcoidosis patients, 13(29.5%) were male and 31(70.5%) were female. The average patient age was 47.4 and the average disease duration was 3.2 years. The level of serum galectin-3 was found to be the same as in the control group and had no significance statistically (p=.977). No correlation was determined between the level of serum galectin-3 and clinical and laboratory findings of sarcoidosis (p>.05). The level of serum TGF-beta was found to be higher in the sarcoidosis patients when compared to that of the control group (p=.005). While a correlation was found between serum TGF-beta and enthesitis, sacroiliitis, and arthralgia (p=.006, p=.034, p=.02), no correlation was determined on the other clinical and laboratory findings (p>.05). CONCLUSION While the level of serum galectin-3 was determined to be normal in sarcoidosis patients, a high level of serum TGF-beta was found. These findings show that TGF-beta may play an important role in sarcoidosis pathogenesis and the formation of granuloma.
Collapse
Affiliation(s)
- Senol Kobak
- Istinye University Faculty of Medicine, Department of Internal Medicine and Rheumatology, WASOG Sarcoidosis Clinic, Turkey.
| | - Muhittin Akyildiz
- Sifa University Faculty of Medicine, Department of Biochemistry, Turkey
| | - Ayse Gokduman
- Sifa University Faculty of Medicine, Department of Biochemistry, Turkey
| | - Tennur Atabay
- Sifa University Faculty of Medicine, Department of Biochemistry, Turkey
| | - Huseyin Vural
- Sifa University Faculty of Medicine, Department of Biochemistry, Turkey
| |
Collapse
|
7
|
Xu WD, Wu Q, He YW, Huang AF, Lan YY, Fu L, Zhou J, Liu XY. Gene polymorphisms of LGALS2, LGALS3 and LGALS9 in patients with rheumatoid arthritis. Cell Immunol 2021; 368:104419. [PMID: 34371260 DOI: 10.1016/j.cellimm.2021.104419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/11/2021] [Accepted: 07/31/2021] [Indexed: 01/05/2023]
Abstract
Rheumatoid arthritis (RA) is a complicated rheumatic autoimmune disease. Lectin, galactoside-binding soluble, 2 (LGALS2), LGALS3 and LGALS9, three members of the galectin family, play potential roles in autoimmune diseases, including RA. However, association of genetic polymorphisms of LGALS2, LGALS3 and LGALS9 with RA risk in a Southern Chinese Han population has not been elucidated. A case-control study was conducted herein, including 500 RA patients and 650 healthy individuals of Southern Chinese Han origin. Twelve single nucleotide polymorphisms (SNPs), including rs7291467 for the LGALS2 gene, rs4644, rs4652, rs1009977, rs2274273 and rs17128183 for the LGALS3 gene, and rs4795835, rs3763959, rs4239242, rs3751093, rs732222 and rs4794976 for the LGALS9 gene, were genotyped. Polymorphisms were genotyped using the KASP method. Frequencies of rs1009977 genotype TG and rs3751093 genotype GA of LGALS3 gene were significantly different between RA patients and healthy controls (P = 0.049, P = 0.033). Allele T and genotypes TT and TT + TG of rs4794976 for LGALS9 gene were significantly correlated with RA risk (P = 0.017, P = 0.012, P = 0.041). Subgroup analysis revealed that rs1009977, rs2274273 and rs17128183 polymorphisms of LGALS3 gene and rs4795835 polymorphism of LGALS9 gene were correlated with several RA clinical manifestations (all P < 0.05). In addition, haplotype GCGTT showed an increased risk for RA (OR = 1.216, 95% CI: 1.028-1.438, P = 0.023), whereas haplotype GCGTG showed a reduced risk for RA susceptibility (OR = 0.779, 95% CI: 0.625-0.971, P = 0.026). In conclusion, LGALS3 and LGALS9 gene polymorphisms may associate with RA predisposition in a Southern Chinese Han population.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qian Wu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan-Wei He
- Department of Orthopaedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - You-Yu Lan
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Klein ML, Romero A, Kaltner H, Percec V, Gabius HJ. From examining the relationship between (corona)viral adhesins and galectins to glyco-perspectives. Biophys J 2020; 120:1031-1039. [PMID: 33248129 DOI: 10.1016/j.bpj.2020.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Glycan-lectin recognition is vital to processes that impact human health, including viral infections. Proceeding from crystallographical evidence of case studies on adeno-, corona-, and rotaviral spike proteins, the relationship of these adhesins to mammalian galectins was examined by computational similarity assessments. Intrafamily diversity among human galectins was in the range of that to these viral surface proteins. Our findings are offered to inspire the consideration of lectin-based approaches to thwart infection by present and future viral threats, also mentioning possible implications for vaccine development.
Collapse
Affiliation(s)
- Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania.
| | - Antonio Romero
- Department of Structural and Chemical Biology, CIB Margarita Salas, CSIC, Madrid, Spain
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
9
|
Kobak S, Akyildiz M, Gokduman A, Atabay T, Vural H. Serum Galectin-3 and TGF-Beta Levels in Patients With Sarcoidosis. REUMATOLOGIA CLINICA 2020; 17:S1699-258X(20)30204-7. [PMID: 33067139 DOI: 10.1016/j.reuma.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Sarcoidosis is a chronic granulomatous disease that develops with non-caseified granuloma formation. Galectin-3 is a multifunctional protein operating in biological processes such as fibrosis, angiogenesis, and immune activation. PURPOSE This study evaluates the levels of serum galectin-3 and TGF-beta in sarcoidosis patients to determine a possible correlation with clinical findings. MATERIAL AND METHOD Forty-four biopsy-proven sarcoidosis patients followed in a single centre and 41 age and sex-matched healthy volunteers were included in the study. The levels of serum galectin-3 and TGF-beta were evaluated by ELISA method. RESULTS Among the 44 sarcoidosis patients, 13(29.5%) were male and 31(70.5%) were female. The average patient age was 47.4 and the average disease duration was 3.2 years. The level of serum galectin-3 was found to be the same as in the control group and had no significance statistically (p=.977). No correlation was determined between the level of serum galectin-3 and clinical and laboratory findings of sarcoidosis (p>.05). The level of serum TGF-beta was found to be higher in the sarcoidosis patients when compared to that of the control group (p=.005). While a correlation was found between serum TGF-beta and enthesitis, sacroiliitis, and arthralgia (p=.006, p=.034, p=.02), no correlation was determined on the other clinical and laboratory findings (p>.05). CONCLUSION While the level of serum galectin-3 was determined to be normal in sarcoidosis patients, a high level of serum TGF-beta was found. These findings show that TGF-beta may play an important role in sarcoidosis pathogenesis and the formation of granuloma.
Collapse
Affiliation(s)
- Senol Kobak
- Istinye University Faculty of Medicine, Department of Internal Medicine and Rheumatology, WASOG Sarcoidosis Clinic, Turkey.
| | - Muhittin Akyildiz
- Sifa University Faculty of Medicine, Department of Biochemistry, Turkey
| | - Ayse Gokduman
- Sifa University Faculty of Medicine, Department of Biochemistry, Turkey
| | - Tennur Atabay
- Sifa University Faculty of Medicine, Department of Biochemistry, Turkey
| | - Huseyin Vural
- Sifa University Faculty of Medicine, Department of Biochemistry, Turkey
| |
Collapse
|
10
|
de Jong CGHM, Gabius HJ, Baron W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci 2020; 77:1289-1317. [PMID: 31628495 PMCID: PMC7113233 DOI: 10.1007/s00018-019-03327-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system with unknown etiology. Currently approved disease-modifying treatment modalities are immunomodulatory or immunosuppressive. While the applied drugs reduce the frequency and severity of the attacks, their efficacy to regenerate myelin membranes and to halt disease progression is limited. To achieve such therapeutic aims, understanding biological mechanisms of remyelination and identifying factors that interfere with remyelination in MS can give respective directions. Such a perspective is given by the emerging functional profile of galectins. They form a family of tissue lectins, which are potent effectors in processes as diverse as adhesion, apoptosis, immune mediator release or migration. This review focuses on endogenous and exogenous roles of galectins in glial cells such as oligodendrocytes, astrocytes and microglia in the context of de- and (re)myelination and its dysregulation in MS. Evidence is arising for a cooperation among family members so that timed expression and/or secretion of galectins-1, -3 and -4 result in modifying developmental myelination, (neuro)inflammatory processes, de- and remyelination. Dissecting the mechanisms that underlie the distinct activities of galectins and identifying galectins as target or tool to modulate remyelination have the potential to contribute to the development of novel therapeutic strategies for MS.
Collapse
Affiliation(s)
- Charlotte G H M de Jong
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
11
|
Galectin-8 Favors the Presentation of Surface-Tethered Antigens by Stabilizing the B Cell Immune Synapse. Cell Rep 2019; 25:3110-3122.e6. [PMID: 30540943 PMCID: PMC6302547 DOI: 10.1016/j.celrep.2018.11.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022] Open
Abstract
Complete activation of B cells relies on their capacity to extract tethered antigens from immune synapses by either exerting mechanical forces or promoting their proteolytic degradation through lysosome secretion. Whether antigen extraction can also be tuned by local cues originating from the lymphoid microenvironment has not been investigated. We here show that the expression of Galectin-8-a glycan-binding protein found in the extracellular milieu, which regulates interactions between cells and matrix proteins-is increased within lymph nodes under inflammatory conditions where it enhances B cell arrest phases upon antigen recognition in vivo and promotes synapse formation during BCR recognition of immobilized antigens. Galectin-8 triggers a faster recruitment and secretion of lysosomes toward the B cell-antigen contact site, resulting in efficient extraction of immobilized antigens through a proteolytic mechanism. Thus, extracellular cues can determine how B cells sense and extract tethered antigens and thereby tune B cell responses in vivo.
Collapse
|
12
|
Galectin-1, -4, and -7 Were Associated with High Activity of Disease in Patients with Rheumatoid Arthritis. Autoimmune Dis 2019; 2019:3081621. [PMID: 31428469 PMCID: PMC6681614 DOI: 10.1155/2019/3081621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 07/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background Due to the variety of functions that galectins (Gal) possess, it is clear that they participate in the pathogenesis of rheumatoid arthritis (RA). Although some studies demonstrate their functions, there is still no correlation with the clinical data of the disease, having the physiological meaning still unknown. Objectives To compare serum levels of Gal-1, -4, and -7 in patients with RA and healthy controls and to correlate them with clinical parameters. Methods Serum samples were collected from patients with RA and healthy donors to determine the serum levels of Gal-1, -4, and -7. Results Serum levels of Gal-1, -4, and -7 were significantly higher in RA patients compared to controls. We evaluated disease activity (CDAI) with serum levels of galectins and found that patients who were high in disease activity had high levels of galectin compared to the moderate activity group. Galectin-4 had higher levels in patients who were in high activity when compared to the group in remission or low activity. Evaluating the activity of the individual disease (DAS28), patients in high individual activity had high levels of Gal-4 when compared to the group in remission or low activity. We also found an association between positive rheumatoid factor and Gal-1 and Gal-4 levels. Conclusion Our results show for the first time the relationship between serum levels of galectin and the clinical parameters of patients with RA. Demonstrating their role in pathogenesis, new studies with galectins are needed to assess how they function as a biomarker in RA.
Collapse
|
13
|
Mendez-Huergo SP, Hockl PF, Stupirski JC, Maller SM, Morosi LG, Pinto NA, Berón AM, Musuruana JL, Nasswetter GG, Cavallasca JA, Rabinovich GA. Clinical Relevance of Galectin-1 and Galectin-3 in Rheumatoid Arthritis Patients: Differential Regulation and Correlation With Disease Activity. Front Immunol 2019; 9:3057. [PMID: 30687310 PMCID: PMC6333668 DOI: 10.3389/fimmu.2018.03057] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Galectins, a family of animal lectins, play central roles in immune system regulation, shaping both innate and adaptive responses in physiological and pathological processes. These include rheumatoid arthritis (RA), a chronic multifactorial autoimmune disease characterized by inflammatory responses that affects both articular and extra-articular tissues. Galectins have been reported to play central roles in RA and its experimental animal models. In this perspective article we present new data highlighting the regulated expression of galectin-1 (Gal-1) and galectin-3 (Gal-3) in sera from RA patients under disease-modifying anti-rheumatic drugs (DMARDs) and/or corticoid treatment in the context of a more comprehensive discussion that summarizes the roles of galectins in joint inflammation. We found that Gal-1 levels markedly increase in sera from RA patients and positively correlate with erythrocyte sedimentation rate (ERS) and disease activity score 28 (DAS-28) parameters. On the other hand, Gal-3 is downregulated in RA patients, but positively correlates with health assessment questionnaire parameter (HAQ). Finally, by generating receiver-operator characteristic (ROC) curves, we found that Gal-1 and Gal-3 serum levels constitute good parameters to discriminate patients with RA from healthy individuals. Our findings uncover a differential regulation of Gal-1 and Gal-3 which might contribute to the anti-inflammatory effects elicited by DMARDs and corticoid treatment in RA patients.
Collapse
Affiliation(s)
- Santiago P Mendez-Huergo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo F Hockl
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan C Stupirski
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián M Maller
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano G Morosi
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás A Pinto
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana M Berón
- División Reumatología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge L Musuruana
- Sección de Reumatología y Enfermedades Autoinmunes Sistémicas, Hospital "José Bernardo Iturraspe", Santa Fe, Argentina
| | - Gustavo G Nasswetter
- División Reumatología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier A Cavallasca
- Sección de Reumatología y Enfermedades Autoinmunes Sistémicas, Hospital "José Bernardo Iturraspe", Santa Fe, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Appelgren D, Dahle C, Knopf J, Bilyy R, Vovk V, Sundgren PC, Bengtsson AA, Wetterö J, Muñoz LE, Herrmann M, Höög A, Sjöwall C. Active NET formation in Libman–Sacks endocarditis without antiphospholipid antibodies: A dramatic onset of systemic lupus erythematosus. Autoimmunity 2018; 51:310-318. [DOI: 10.1080/08916934.2018.1514496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Appelgren
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rostyslav Bilyy
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Vovk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Pia C. Sundgren
- Department of Diagnostic Radiology, Lund University Center for Medical Imaging and Physiology Skåne University Hospital, Clinical Sciences Lund, Lund, Sweden
| | - Anders A. Bengtsson
- Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Rheumatology, Lund, Sweden
| | - Jonas Wetterö
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Luis E. Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anders Höög
- Department of Oncology-Pathology, Karolinska Institute Karolinska University Hospital Cancer Center Karolinska, Stockholm, Sweden
- Department of Pathology, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Salamanna F, Veronesi F, Frizziero A, Fini M. Role and translational implication of galectins in arthritis pathophysiology and treatment: A systematic literature review. J Cell Physiol 2018; 234:1588-1605. [DOI: 10.1002/jcp.27026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT Rizzoli Orthopedic Institute Bologna Italy
| | - Francesca Veronesi
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT Rizzoli Orthopedic Institute Bologna Italy
| | - Antonio Frizziero
- Department of Physical and Rehabilitation Medicine University of Padova Padova Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute Bologna Italy
| |
Collapse
|
16
|
Hornung Á, Monostori É, Kovács L. Systemic lupus erythematosus in the light of the regulatory effects of galectin-1 on T-cell function. Lupus 2017; 26:339-347. [PMID: 28100106 DOI: 10.1177/0961203316686846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Galectin-1 is an endogenous immunoregulatory lectin-type protein. Its most important effects are the inhibition of the differentiation and cytokine production of Th1 and Th17 cells, and the induction of apoptosis of activated T-cells. Galectin-1 has been identified as a key molecule in antitumor immune surveillance, and data are accumulating about the pathogenic role of its deficiency, and the beneficial effects of its administration in various autoimmune disease models. Initial animal and human studies strongly suggest deficiencies in both galectin-1 production and responsiveness in systemic lupus erythematosus (SLE) T-cells. Since lupus features widespread abnormalities in T-cell activation, differentiation and viability, in this review the authors wished to highlight potential points in T-cell signalling processes that may be influenced by galectin-1. These points include GM-1 ganglioside-mediated lipid raft aggregation, early activation signalling steps involving p56Lck, the exchange of the CD3 ζ-ZAP-70 to the FcRγ-Syk pathway, defective mitogen-activated protein kinase pathway activation, impaired regulatory T-cell function, the failure to suppress the activity of interleukin 17 (IL-17) producing T-cells, and decreased suppression of the PI3K-mTOR pathway by phosphatase and tensin homolog (PTEN). These findings place galectin-1 into the group of potential pathogenic molecules in SLE.
Collapse
Affiliation(s)
- Á Hornung
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| | - É Monostori
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - L Kovács
- 2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| |
Collapse
|
17
|
Si Y, Feng S, Gao J, Wang Y, Zhang Z, Meng Y, Zhou Y, Tai G, Su J. Human galectin-2 interacts with carbohydrates and peptides non-classically: new insight from X-ray crystallography and hemagglutination. Acta Biochim Biophys Sin (Shanghai) 2016; 48:939-947. [PMID: 27563008 DOI: 10.1093/abbs/gmw089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Galectin-2 (Gal-2) plays a role in cancer, myocardial infarction, immune response, and gastrointestinal tract diseases. The only reported crystal structure of Gal-2 shows that it is a dimer in which the monomer subunits have almost identical structures, each binding with one molecule of lactose. In this study, we crystallized Gal-2 under new conditions that produced three crystal structures. In each Gal-2 dimer structure, lactose was shown to be bound to only one of the carbohydrate recognition domain subunits. In solution studies, the thermal shift assay demonstrated that inequivalent monomer subunits in the Gal-2 dimer become equivalent upon ligand binding. In addition, galectin-mediated erythrocyte agglutination assays using lactose and larger complex polysaccharides as inhibitors showed the structural differences between Gal-1 and Gal-2. Overall, our results reveal some novel aspects to the structural differentiation in Gal-2 and expand the potential for different types of molecular interactions that may be specific to this lectin.
Collapse
Affiliation(s)
- Yunlong Si
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Shiqiong Feng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jin Gao
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhongyu Zhang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Meng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
18
|
Saccon F, Gatto M, Ghirardello A, Iaccarino L, Punzi L, Doria A. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun Rev 2016; 16:34-47. [PMID: 27666815 DOI: 10.1016/j.autrev.2016.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
Galectins are evolutionary conserved β-galactoside binding proteins with a carbohydrate-recognition domain (CRD) of approximately 130 amino acids. In mammals, 15 members of the galectin family have been identified and classified into three subtypes according to CRD organization: prototype, tandem repeat-type and chimera-type galectins. Galectin-3 (gal-3) is the only chimera type galectin in vertebrates containing one CRD linked to an unusual long N-terminal domain which displays non-lectin dependent activities. Although recent studies revealed unique, pleiotropic and context-dependent functions of gal-3 in both extracellular and intracellular space, gal-3 specific pathways and its ligands have not been clearly defined yet. In the kidney gal-3 is involved in later stages of nephrogenesis as well as in renal cell cancer. However, gal-3 has recently been associated with lupus glomerulonephritis, with Familial Mediterranean Fever-induced proteinuria and renal amyloidosis. Gal-3 has been studied in experimental acute kidney damage and in the subsequent regeneration phase as well as in several models of chronic kidney disease, including nephropathies induced by aging, ischemia, hypertension, diabetes, hyperlipidemia, unilateral ureteral obstruction and chronic allograft injury. Because of the pivotal role of gal-3 in the modulation of immune system, wound repair, fibrosis and tumorigenesis, it is not surprising that gal-3 can be an intriguing prognostic biomarker as well as a promising therapeutic target in a great variety of diseases, including chronic kidney disease, chronic heart failure and cardio-renal syndrome. This review summarizes the functions of gal-3 in kidney pathophysiology focusing on the reported role of gal-3 in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Saccon
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Mariele Gatto
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Anna Ghirardello
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Luca Iaccarino
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Leonardo Punzi
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy.
| |
Collapse
|
19
|
Moroni G, Ponticelli C. Pregnancy in women with systemic lupus erythematosus (SLE). Eur J Intern Med 2016; 32:7-12. [PMID: 27142327 DOI: 10.1016/j.ejim.2016.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/18/2016] [Accepted: 04/10/2016] [Indexed: 12/20/2022]
Abstract
For many years pregnancy has been contraindicated in patients with SLE, particularly when kidney involvement was present. Today, pregnancy is no longer considered impossible in women with lupus. Yet, lupus pregnancies are still considered high-risk. The prognosis has considerably improved for pregnant women but the fetal risk, although progressively reduced, is still higher in pregnancies of patients with SLE than in pregnancies of healthy women. Miscarriage, premature delivery, and preeclampsia, as well as heart problems in the baby are the major complications that can occur. In this paper we will review the outcome of pregnant women with SLE, the influence of lupus on fetal outcome, the effects of pregnancy on lupus, and the management of pregnant lupus patients based on our personal experience and the revision of the most recent and significant papers on the subject.
Collapse
Affiliation(s)
- Gabriella Moroni
- Nephrology Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Milano, Italy.
| | - Claudio Ponticelli
- Nephrology Unit, Clinical and Research Center Humanitas, Rozzano, Milano, Italy
| |
Collapse
|
20
|
Toegel S, Weinmann D, André S, Walzer SM, Bilban M, Schmidt S, Chiari C, Windhager R, Krall C, Bennani-Baiti IM, Gabius HJ. Galectin-1 Couples Glycobiology to Inflammation in Osteoarthritis through the Activation of an NF-κB-Regulated Gene Network. THE JOURNAL OF IMMUNOLOGY 2016; 196:1910-21. [PMID: 26792806 DOI: 10.4049/jimmunol.1501165] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/09/2015] [Indexed: 01/15/2023]
Abstract
Osteoarthritis is a degenerative joint disease that ranks among the leading causes of adult disability. Mechanisms underlying osteoarthritis pathogenesis are not yet fully elucidated, putting limits to current disease management and treatment. Based on the phenomenological evidence for dysregulation within the glycome of chondrocytes and the network of a family of adhesion/growth-regulatory lectins, that is, galectins, we tested the hypothesis that Galectin-1 is relevant for causing degeneration. Immunohistochemical analysis substantiated that Galectin-1 upregulation is associated with osteoarthritic cartilage and subchondral bone histopathology and severity of degeneration (p < 0.0001, n = 29 patients). In vitro, the lectin was secreted and it bound to osteoarthritic chondrocytes inhibitable by cognate sugar. Glycan-dependent Galectin-1 binding induced a set of disease markers, including matrix metalloproteinases and activated NF-κB, hereby switching on an inflammatory gene signature (p < 10(-16)). Inhibition of distinct components of the NF-κB pathway using dedicated inhibitors led to dose-dependent impairment of Galectin-1-mediated transcriptional activation. Enhanced secretion of effectors of degeneration such as three matrix metalloproteinases underscores the data's pathophysiological relevance. This study thus identifies Galectin-1 as a master regulator of clinically relevant inflammatory-response genes, working via NF-κB. Because inflammation is critical to cartilage degeneration in osteoarthritis, this report reveals an intimate relation of glycobiology to osteoarthritic cartilage degeneration.
Collapse
Affiliation(s)
- Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Sonja M Walzer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Catharina Chiari
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Krall
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University Vienna, 1090 Vienna, Austria; and
| | | | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| |
Collapse
|
21
|
Dema B, Charles N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies (Basel) 2016; 5:antib5010002. [PMID: 31557984 PMCID: PMC6698872 DOI: 10.3390/antib5010002] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by a wide spectrum of auto-antibodies which recognize several cellular components. The production of these self-reactive antibodies fluctuates during the course of the disease and the involvement of different antibody-secreting cell populations are considered highly relevant for the disease pathogenesis. These cells are developed and stimulated through different ways leading to the secretion of a variety of isotypes, affinities and idiotypes. Each of them has a particular mechanism of action binding to a specific antigen and recognized by distinct receptors. The effector responses triggered lead to a chronic tissue inflammation. DsDNA autoantibodies are the most studied as well as the first in being characterized for its pathogenic role in Lupus nephritis. However, others are of growing interest since they have been associated with other organ-specific damage, such as anti-NMDAR antibodies in neuropsychiatric clinical manifestations or anti-β2GP1 antibodies in vascular symptomatology. In this review, we describe the different auto-antibodies reported to be involved in SLE. How autoantibody isotypes and affinity-binding to their antigen might result in different pathogenic responses is also discussed.
Collapse
Affiliation(s)
- Barbara Dema
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris 75018, France.
| | - Nicolas Charles
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris 75018, France.
| |
Collapse
|
22
|
de Oliveira FL, Gatto M, Bassi N, Luisetto R, Ghirardello A, Punzi L, Doria A. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med (Maywood) 2015; 240:1019-28. [PMID: 26142116 DOI: 10.1177/1535370215593826] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell-cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte-macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Felipe L de Oliveira
- Coimbra Group Fellowship for Latin American Professors, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-902, Brazil Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Mariele Gatto
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Nicola Bassi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Roberto Luisetto
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Anna Ghirardello
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| |
Collapse
|
23
|
Galectin 2 (gal-2) expression is downregulated on protein and mRNA level in placentas of preeclamptic (PE) patients. Placenta 2015; 36:438-45. [DOI: 10.1016/j.placenta.2015.01.198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/15/2022]
|
24
|
Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol 2015; 93:727-34. [PMID: 25776846 PMCID: PMC4575951 DOI: 10.1038/icb.2015.33] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Exosomes are nano-sized vesicles released by cells into the extracellular space and have been shown to be present in thymic tissue both in mice and in humans. The source of thymic exosomes is however still an enigma and hence it is not known whether thymic epithelial cells (TECs) are able to produce exosomes. In this work, we have cultured human TECs and isolated exosomes. These exosomes carry tissue-restricted antigens (TRAs), for example, myelin basic protein and desmoglein 3. The presence of TRAs indicates a possible role for thymic epithelium-derived exosomes in the selection process of thymocytes. The key contribution of these exosomes could be to disseminate self-antigens from the thymic epithelia, thus making them more accessible to the pool of maturing thymocytes. This would increase the coverage of TRAs within the thymus, and facilitate the process of positive and negative selection.
Collapse
|
25
|
Chlamydophila psittaci-negative ocular adnexal marginal zone lymphomas express self polyreactive B-cell receptors. Leukemia 2015; 29:1587-99. [DOI: 10.1038/leu.2015.39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/27/2022]
|
26
|
Biermann MHC, Veissi S, Maueröder C, Chaurio R, Berens C, Herrmann M, Munoz LE. The role of dead cell clearance in the etiology and pathogenesis of systemic lupus erythematosus: dendritic cells as potential targets. Expert Rev Clin Immunol 2014; 10:1151-64. [DOI: 10.1586/1744666x.2014.944162] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Human osteoarthritic knee cartilage: fingerprinting of adhesion/growth-regulatory galectins in vitro and in situ indicates differential upregulation in severe degeneration. Histochem Cell Biol 2014; 142:373-88. [DOI: 10.1007/s00418-014-1234-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 12/31/2022]
|
28
|
Duray A, De Maesschalck T, Decaestecker C, Remmelink M, Chantrain G, Neiveyans J, Horoi M, Leroy X, Gabius HJ, Saussez S. Galectin fingerprinting in naso-sinusal diseases. Oncol Rep 2014; 32:23-32. [PMID: 24859692 PMCID: PMC4067427 DOI: 10.3892/or.2014.3213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022] Open
Abstract
Galectins, a family of endogenous lectins, are multifunctional effectors that act at various sites and can be used in immunohistochemical localization studies of diseased states. Since they form a potentially cooperative and antagonistic network, we tested the hypothesis that histopathological fingerprinting of galectins could refine the molecular understanding of naso-sinusal pathologies. Using non-cross-reactive antibodies against galectin-1, -3, -4, -7, -8 and -9, we characterized the galectin profiles in chronic rhinosinusitis, nasal polyposis, inverted papillomas and squamous cell carcinomas. The expression, signal location and quantitative parameters describing the percentage of positive cells and labeling intensity were assessed for various cases. We discovered that inverted papillomas showed a distinct galectin immunohistochemical profile. Indeed, epithelial overexpression of galectin-3 (P=0.0002), galectin-4 (P<10−6), galectin-7 (P<10−6) and galectin-9 (P<10−6) was observed in inverted papillomas compared to non-malignant diseases. Regarding carcinomas, we observed increased expression of galectin-9 (P<10−6) in epithelial cells compared to non-tumor pathologies. Our results suggest that galectin-3, -4, -7 and -9 could be involved in the biology of inverted papillomas. In addition, we observed that the expression of galectin in naso-sinusal diseases seems to be affected by tumor progression and not inflammatory or allergic phenomena.
Collapse
Affiliation(s)
- Anaëlle Duray
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Thibault De Maesschalck
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Decaestecker
- Laboratory of Image, Signal Processing and Acoustics (LISA), Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Myriam Remmelink
- Department of Pathology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilbert Chantrain
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Jennifer Neiveyans
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Mihaela Horoi
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Xavier Leroy
- Department of Pathology, Faculty of Medicine, Hôpital Claude Huriez and Centre de Biologie-Pathologie, CHRU, Lille, France
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sven Saussez
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| |
Collapse
|
29
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
30
|
Possible novel biomarkers of organ involvement in systemic lupus erythematosus. Clin Rheumatol 2014; 33:1025-31. [DOI: 10.1007/s10067-014-2560-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/17/2014] [Accepted: 02/23/2014] [Indexed: 01/17/2023]
|
31
|
Ruiz FM, Scholz BA, Buzamet E, Kopitz J, André S, Menéndez M, Romero A, Solís D, Gabius HJ. Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells. FEBS J 2014; 281:1446-1464. [DOI: 10.1111/febs.12716] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Federico M. Ruiz
- Departamento de Biología Físico-Química; Centro de Investigaciones Biológicas; Madrid Spain
| | - Barbara A. Scholz
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Germany
| | - Eliza Buzamet
- Departamento de Química-Física Biológica; Instituto de Química Física Rocasolano; CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - Jürgen Kopitz
- Abteilung Angewandte Tumorbiologie; Universitätsklinikum Heidelberg; Germany
| | - Sabine André
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Germany
| | - Margarita Menéndez
- Departamento de Química-Física Biológica; Instituto de Química Física Rocasolano; CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - Antonio Romero
- Departamento de Biología Físico-Química; Centro de Investigaciones Biológicas; Madrid Spain
| | - Dolores Solís
- Departamento de Química-Física Biológica; Instituto de Química Física Rocasolano; CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Germany
| |
Collapse
|
32
|
Kübler D, Seidler J, André S, Kumar S, Schwartz-Albiez R, Lehmann WD, Gabius HJ. Phosphorylation of multifunctional galectins by protein kinases CK1, CK2, and PKA. Anal Biochem 2013; 449:109-17. [PMID: 24333252 DOI: 10.1016/j.ab.2013.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/21/2013] [Accepted: 12/03/2013] [Indexed: 02/07/2023]
Abstract
Phosphorylation is known to have a strong impact on protein functions. We analyzed members of the lectin family of multifunctional galectins as targets of the protein kinases CK1, CK2, and PKA. Galectins are potent growth regulators able to bind both glycan and peptide motifs at intra- and extracellular sites. Performing in vitro kinase assays, galectin phosphorylation was detected by phosphoprotein staining and autoradiography. The insertion of phosphoryl groups varied to a large extent depending on the type of kinase applied and the respective galectin substrate. Sites of phosphorylation observed in the recombinant galectins were determined by a strategic combination of phosphopeptide enrichment and nano-ultra-performance liquid chromatography tandem mass spectrometry (nanoUPLC-MS/MS). By in silico modeling, phosphorylation sites were visualized three-dimensionally. Our results reveal galectin-type-specific Ser-/Thr-dependent phosphorylation beyond the known example of galectin-3. These data are the basis for functional studies and also illustrate the analytical sensitivity of the applied methods for further work on human lectins.
Collapse
Affiliation(s)
- Dieter Kübler
- Biomolecular Interactions, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, 80539 Munich, Germany
| | - Sonu Kumar
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | - Wolf-Dieter Lehmann
- Core Facility Molecular Structural Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, 80539 Munich, Germany
| |
Collapse
|
33
|
Toegel S, Bieder D, André S, Altmann F, Walzer SM, Kaltner H, Hofstaetter JG, Windhager R, Gabius HJ. Glycophenotyping of osteoarthritic cartilage and chondrocytes by RT-qPCR, mass spectrometry, histochemistry with plant/human lectins and lectin localization with a glycoprotein. Arthritis Res Ther 2013; 15:R147. [PMID: 24289744 PMCID: PMC3978707 DOI: 10.1186/ar4330] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION This study aimed to characterize the glycophenotype of osteoarthritic cartilage and human chondrocytes. METHODS Articular knee cartilage was obtained from nine osteoarthritis (OA) patients. mRNA levels for 27 glycosyltransferases were analyzed in OA chondrocytes using RT-qPCR. Additionally, N- and O-glycans were quantified using mass-spectrometry. Histologically, two cartilage areas with Mankin scores (MS) either ≤ 4 or ≥ 9 were selected from each patient representing areas of mild and severe OA, respectively. Tissue sections were stained with (1) a selected panel of plant lectins for probing into the OA glycophenotype, (2) the human lectins galectins-1 and -3, and (3) the glycoprotein asialofetuin (ASF) for visualizing β-galactoside-specific endogenous lectins. RESULTS We found that OA chondrocytes expressed oligomannosidic structures as well as non-, mono- and disialylated complex-type N-glycans, and core 2 O-glycans. Reflecting B4GALNT3 mRNA presence in OA chondrocytes, LacdiNAc-terminated structures were detected. Staining profiles for plant and human lectins were dependent on the grade of cartilage degeneration, and ASF-positive cells were observed in significantly higher rates in areas of severe degeneration. CONCLUSIONS In summary, distinct aspects of the glycome in OA cartilage are altered with progressing degeneration. In particular, the alterations measured by galectin-3 and the pan-galectin sensor ASF encourage detailed studies of galectin functionality in OA.
Collapse
|
34
|
Kaltner H, Raschta AS, Manning JC, Gabius HJ. Copy-number variation of functional galectin genes: studying animal galectin-7 (p53-induced gene 1 in man) and tandem-repeat-type galectins-4 and -9. Glycobiology 2013; 23:1152-63. [PMID: 23840039 DOI: 10.1093/glycob/cwt052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Galectins are potent adhesion/growth-regulatory effectors with characteristic expression profiles. Understanding the molecular basis of gene regulation in each case requires detailed information on copy number of genes and sequence(s) of their promoter(s). Our report reveals plasticity in this respect between galectins and species. We here describe occurrence of a two-gene constellation for human galectin (Gal)-7 and define current extent of promoter-sequence divergence. Interestingly, cross-species genome analyses also detected single-copy display. Because the regulatory potential will then be different, extrapolations of expression profiles are precluded between respective species pairs. Gal-4 coding in chromosomal vicinity was found to be confined to one gene, whereas copy-number variation also applied to Gal-9. The example of rat Gal-9 teaches the lesson that the presence of multiple bands in Southern blotting despite a single-copy gene constellation is attributable to two pseudogenes. The documented copy-number variability should thus be taken into consideration when studying regulation of galectin genes, in a species and in comparison between species.
Collapse
Affiliation(s)
- Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
Rheumatoid arthritis (RA) is a complex and common systemic autoimmune disease characterized by synovial inflammation and hyperplasia. Multiple proteins, cells, and pathways have been identified to contribute to the pathogenesis of RA. Galectins are a group of lectins that bind to β-galactoside carbohydrates on the cell surface and in the extracellular matrix. They are expressed in a wide variety of tissues and organs with the highest expression in the immune system. Galectins are potent immune regulators and modulate a range of pathological processes, such as inflammation, autoimmunity, and cancer. Accumulated evidence shows that several family members of galectins play positive or negative roles in the disease development of RA, through their effects on T and B lymphocytes, myeloid lineage cells, and fibroblast-like synoviocytes. In this review, we will summarize the function of different galectins in immune modulation and their distinct roles in RA pathogenesis.
Collapse
Affiliation(s)
- Song Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher D Koehn
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhixin Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; The Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA ; The Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|