1
|
Takeuchi T, Tamura M, Ishiwata K, Hamasaki M, Hamano S, Arata Y, Hatanaka T. Galectin-2 suppresses nematode development by binding to the invertebrate-specific galactoseβ1-4fucose glyco-epitope. Glycobiology 2019; 29:504-512. [DOI: 10.1093/glycob/cwz022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Tomoharu Takeuchi
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences, 1-1 Keyakidai, Sakado, Saitama, Japan
| | - Mayumi Tamura
- Teikyo University, Faculty of Pharma-Science, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Kenji Ishiwata
- The Jikei University School of Medicine, Department of Tropical Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Megumi Hamasaki
- Nagasaki University, Department of Parasitology, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - Shinjiro Hamano
- Nagasaki University, Department of Parasitology, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, Leading Program, Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - Yoichiro Arata
- Teikyo University, Faculty of Pharma-Science, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Tomomi Hatanaka
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences, 1-1 Keyakidai, Sakado, Saitama, Japan
- Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| |
Collapse
|
2
|
Affiliation(s)
- Tomoharu Takeuchi
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
3
|
Takeuchi T. Galectins in Invertebrates with a focus on <i>Caenorhabditis elegans</i>. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1735.1sj] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tomoharu Takeuchi
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
4
|
Takeuchi T, Arata Y, Kasai KI. Galactoseβ1-4fucose: A unique disaccharide unit found inN-glycans of invertebrates including nematodes. Proteomics 2016; 16:3137-3147. [DOI: 10.1002/pmic.201600001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yoichiro Arata
- Faculty of Pharmaceutical Sciences; Josai University; Saitama Japan
| | - Ken-ichi Kasai
- School of Pharmaceutical Sciences; Teikyo University; Tokyo Japan
| |
Collapse
|
5
|
Preparation of a polyclonal antibody that recognizes a unique galactoseβ1-4fucose disaccharide epitope. Carbohydr Res 2015; 412:50-5. [DOI: 10.1016/j.carres.2015.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 11/19/2022]
|
6
|
Takeuchi T, Tamura M, Ishii N, Ishikida H, Sugimoto S, Suzuki D, Nishiyama K, Takahashi H, Natsugari H, Arata Y. Purification of galectin-1 mutants using an immobilized Galactoseβ1-4Fucose affinity adsorbent. Protein Expr Purif 2015; 111:82-6. [PMID: 25858314 DOI: 10.1016/j.pep.2015.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/19/2022]
Abstract
Galectins are a family of lectins characterized by their carbohydrate recognition domains containing eight conserved amino acid residues, which allows the binding of galectin to β-galactoside sugars such as Galβ1-4GlcNAc. Since galectin-glycan interactions occur extracellularly, recombinant galectins are often used for the functional analysis of these interactions. Although it is relatively easy to purify galectins via affinity to Galβ1-4GlcNAc using affinity adsorbents such as asialofetuin-Sepharose, it could be difficult to do so with mutated galectins, which may have reduced affinity towards their endogenous ligands. However, this is not the case with Caenorhabditis elegans galectin LEC-6; binding to its endogenous recognition unit Galβ1-4Fuc, a unique disaccharide found only in invertebrates, is not necessarily affected by point mutations of the eight well-conserved amino acids. In this study, we constructed mutants of mouse galectin-1 carrying substitutions of each of the eight conserved amino acid residues (H44F, N46D, R48H, V59A, N61D, W68F, E71Q, and R73H) and examined their affinity for Galβ1-4GlcNAc and Galβ1-4Fuc. These mutants, except W68F, had very low affinity for asialofetuin-Sepharose; however, most of them (with the exception of H44F and R48H) could be purified using Galβ1-4Fuc-Sepharose. The affinity of the purified mutant galectins for glycans containing Galβ1-4Fuc or Galβ1-4GlcNAc moieties was quantitatively examined by frontal affinity chromatography, and the results indicated that the mutants retained the affinity only for Galβ1-4Fuc. Given that other mammalian galectins are known to bind Galβ1-4Fuc, our data suggest that immobilized Galβ1-4Fuc ligands could be generally used for easy one-step affinity purification of mutant galectins.
Collapse
Affiliation(s)
- Tomoharu Takeuchi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Mayumi Tamura
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Nobuaki Ishii
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hiroki Ishikida
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Saori Sugimoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Daichi Suzuki
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Kazusa Nishiyama
- Laboratory of Synthetic Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hideyo Takahashi
- Laboratory of Synthetic Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hideaki Natsugari
- Laboratory of Synthetic Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoichiro Arata
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
7
|
Hirabayashi J, Tateno H, Shikanai T, Aoki-Kinoshita KF, Narimatsu H. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules 2015; 20:951-73. [PMID: 25580689 PMCID: PMC6272529 DOI: 10.3390/molecules20010951] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 12/03/2022] Open
Abstract
Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms—from humans to microorganisms, including viruses—and while their functions are yet to be fully elucidated, their main underlying actions are thought to mediate cell-cell and cell-glycoconjugate interactions, which play important roles in an extensive range of biological processes. The basic feature of each lectin’s function resides in its specific sugar-binding properties. In this regard, it is beneficial for researchers to have access to fundamental information about the detailed oligosaccharide specificities of diverse lectins. In this review, the authors describe a publicly available lectin database named “Lectin frontier DataBase (LfDB)”, which undertakes the continuous publication and updating of comprehensive data for lectin-standard oligosaccharide interactions in terms of dissociation constants (Kd’s). For Kd determination, an advanced system of frontal affinity chromatography (FAC) is used, with which quantitative datasets of interactions between immobilized lectins and >100 fluorescently labeled standard glycans have been generated. The FAC system is unique in its clear principle, simple procedure and high sensitivity, with an increasing number (>67) of associated publications that attest to its reliability. Thus, LfDB, is expected to play an essential role in lectin research, not only in basic but also in applied fields of glycoscience.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Hiroaki Tateno
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Toshihide Shikanai
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
8
|
Biophysical characterization of lectin–glycan interactions for therapeutics, vaccines and targeted drug-delivery. Future Med Chem 2014; 6:2113-29. [DOI: 10.4155/fmc.14.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lectin–glycan interactions play a role in biological processes, host–pathogen interactions and in disease. A more detailed understanding of these interactions is not only useful for the elucidation of their biological function but can also be applied in immunology, drug development and delivery and diagnostics. We review some commonly used biophysical techniques for studying lectin–glycan interactions; namely: frontal affinity chromatography, glycan/lectin microarray, surface plasmon resonance, electrochemical impedance spectroscopy, isothermal titration calorimetry, fluorescent assays, enzyme linked lectin sorbent assay and saturation transfer difference nuclear magnetic resonance spectroscopy. Each method is evaluated on efficiency, cost and throughput. We also consider the advantages and limitations of each technique and provide examples of their application in biology, drug discovery and delivery, immunology, glycoprofiling and biosensing.
Collapse
|
9
|
KASAI K. Frontal affinity chromatography: a unique research tool for biospecific interaction that promotes glycobiology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:215-234. [PMID: 25169774 PMCID: PMC4237894 DOI: 10.2183/pjab.90.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described.
Collapse
|
10
|
Takeuchi T, Tamura M, Nishiyama K, Iwaki J, Hirabayashi J, Takahashi H, Natsugari H, Arata Y, Kasai KI. Mammalian galectins bind Galactoseβ1–4Fucose disaccharide, a unique structural component of protostomial N-type glycoproteins. Biochem Biophys Res Commun 2013; 436:509-13. [DOI: 10.1016/j.bbrc.2013.05.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022]
|