1
|
Adhikari RP, Alem F, Kemboi D, Kanipakala T, Sherchand SP, Kailasan S, Purcell BK, Heine HS, Russell-Lodrigue K, Etobayeva I, Howell KA, Vu H, Shulenin S, Holtsberg FW, Roy CJ, Hakami RM, Nelson DC, Aman MJ. Engineered antibodies targeted to bacterial surface integrate effector functions with toxin neutralization to provide superior efficacy against bacterial infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24313920. [PMID: 39398995 PMCID: PMC11469364 DOI: 10.1101/2024.09.23.24313920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Anti-bacterial monoclonal antibody (mAb) therapies either rely on toxin neutralization or opsonophagocytic killing (OPK). Toxin neutralization protects the host from toxin-induced damage, while leaving the organism intact. OPK inducing antibodies clear the bacteria but leave the released toxins unencountered. Infection site targeted anti-toxin antibodies (ISTAbs) that we report here addresses this binary paradigm by combining both functionalities into a single molecule. ISTAbs consist of cell wall targeting (CWT) domains of bacteriophage endolysins fused to toxin neutralizing mAbs (IgG). CWT governs specific binding to the surface of bacteria while the IgG variable domain neutralizes the toxins as they are released. The complex is then cleared by phagocytic cells. As proof of concept, we generated several ISTAb prototypes targeting major toxins from two Gram-positive spore forming pathogens that have a high clinical significance; Clostridium difficile , causative agent of the most common hospital-acquired infection, and Bacillus anthracis , a Category A select agent pathogen. Both groups of ISTAbs exhibited potent toxin neutralization, binding to their respective bacterial cells, and induction of opsonophagocytosis. In mice infected with B. anthracis , ISTAbs exhibit significantly higher efficacy than parental IgG in both pre- and post-challenge models. Furthermore, ISTAbs fully protected against B. anthracis infection in a nonhuman primate (NHP) aerosol challenge model. These findings establish that as a platform technology, ISTAbs are broadly applicable for therapeutic intervention against several toxigenic bacterial pathogens.
Collapse
|
2
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
3
|
Alreja AB, Linden SB, Lee HR, Chao KL, Herzberg O, Nelson DC. Understanding the Molecular Basis for Homodimer Formation of the Pneumococcal Endolysin Cpl-1. ACS Infect Dis 2023; 9:1092-1104. [PMID: 37126660 PMCID: PMC10577085 DOI: 10.1021/acsinfecdis.2c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rise of multi-drug-resistant bacteria that cannot be treated with traditional antibiotics has prompted the search for alternatives to combat bacterial infections. Endolysins, which are bacteriophage-derived peptidoglycan hydrolases, are attractive tools in this fight. Several studies have already demonstrated the efficacy of endolysins in targeting bacterial infections. Endolysins encoded by bacteriophages that infect Gram-positive bacteria typically possess an N-terminal catalytic domain and a C-terminal cell-wall binding domain (CWBD). In this study, we have uncovered the molecular mechanisms that underlie formation of a homodimer of Cpl-1, an endolysin that targets Streptococcus pneumoniae. Here, we use site-directed mutagenesis, analytical size exclusion chromatography, and analytical ultracentrifugation to disprove a previous suggestion that three residues at the N-terminus of the CWBD are involved in the formation of a Cpl-1 dimer in the presence of choline in solution. We conclusively show that the C-terminal tail region of Cpl-1 is involved in formation of the dimer. Alanine scanning mutagenesis generated various tail mutant constructs that allowed identification of key residues that mediate Cpl-1 dimer formation. Finally, our results allowed identification of a consensus sequence (FxxEPDGLIT) required for choline-dependent dimer formation─a sequence that occurs frequently in pneumococcal autolysins and endolysins. These findings shed light on the mechanisms of Cpl-1 and related enzymes and can be used to inform future engineering efforts for their therapeutic development against S. pneumoniae.
Collapse
Affiliation(s)
- Adit B Alreja
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biological Sciences Graduate Program - Molecular and Cellular Biology Concentration, University of Maryland, College Park, Maryland 20742, USA
| | - Sara B Linden
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Harrison R Lee
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Department of Biochemistry and Chemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
4
|
Schuch R, Cassino C, Vila-Farres X. Direct Lytic Agents: Novel, Rapidly Acting Potential Antimicrobial Treatment Modalities for Systemic Use in the Era of Rising Antibiotic Resistance. Front Microbiol 2022; 13:841905. [PMID: 35308352 PMCID: PMC8928733 DOI: 10.3389/fmicb.2022.841905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Direct lytic agents (DLAs) are novel antimicrobial compounds with unique mechanisms of action based on rapid cell wall destabilization and bacteriolysis. DLAs include two classes of purified polypeptides—lysins (peptidoglycan hydrolase enzymes) and amurins (outer membrane targeting peptides). Their intended use is to kill bacteria in a manner that is complimentary to and synergistic with traditional antibiotics without selection for DLA resistance. Lysins were originally described as having activity against Gram-positive pathogens and of those, exebacase, is the first to have advanced into Phase 3 of clinical development. Recently, both engineered and native DLAs have now been described with potent bactericidal activity against a range of Gram-negative pathogens, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Importantly, novel DLAs targeting Gram-negatives, including the lysin CF-370 and the amurin peptides, are active in biological matrices (blood/serum) and, as such, offer promise for therapeutic use as systemically administered agents for the treatment of life-threatening invasive infections. In this review, DLAs are discussed as potential new classes of antimicrobial biologics that can be used to treat serious systemic infections.
Collapse
|
5
|
Nakonieczna A, Rutyna P, Fedorowicz M, Kwiatek M, Mizak L, Łobocka M. Three Novel Bacteriophages, J5a, F16Ba, and z1a, Specific for Bacillus anthracis, Define a New Clade of Historical Wbeta Phage Relatives. Viruses 2022; 14:213. [PMID: 35215807 PMCID: PMC8878798 DOI: 10.3390/v14020213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus anthracis is a potent biowarfare agent, able to be highly lethal. The bacteria dwell in the soil of certain regions, as natural flora. Bacteriophages or their lytic enzymes, endolysins, may be an alternative for antibiotics and other antibacterials to fight this pathogen in infections and to minimize environmental contamination with anthrax endospores. Upon screening environmental samples from various regions in Poland, we isolated three new siphophages, J5a, F16Ba, and z1a, specific for B. anthracis. They represent new species related to historical anthrax phages Gamma, Cherry, and Fah, and to phage Wbeta of Wbetavirus genus. We show that the new phages and their closest relatives, phages Tavor_SA, Negev_SA, and Carmel_SA, form a separate clade of the Wbetavirus genus, designated as J5a clade. The most distinctive feature of J5a clade phages is their cell lysis module. While in the historical phages it encodes a canonical endolysin and a class III holin, in J5a clade phages it encodes an endolysin with a signal peptide and two putative holins. We present the basic characteristic of the isolated phages. Their comparative genomic analysis indicates that they encode two receptor-binding proteins, of which one may bind a sugar moiety of B. anthracis cell surface.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Paweł Rutyna
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Magdalena Fedorowicz
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Magdalena Kwiatek
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Lidia Mizak
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Hong W, Nyaruaba R, Li X, Liu H, Yang H, Wei H. In-situ and Real-Time Monitoring of the Interaction Between Lysins and Staphylococcus aureus Biofilm by Surface Plasmon Resonance. Front Microbiol 2021; 12:783472. [PMID: 34917062 PMCID: PMC8670000 DOI: 10.3389/fmicb.2021.783472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus can produce a multilayered biofilm embedded in extracellular polymeric matrix. This biofilm is difficult to remove, insensitive to antibiotics, easy to develop drug-resistant strains and causes enormous problems to environments and health. Phage lysin which commonly consists of a catalytic domain (CD) and a cell-wall binding domain (CBD) is a powerful weapon against bacterial biofilm. However, the real-time interaction between lysin and S. aureus biofilm is still not fully understood. In this study, we monitored the interactions of three lysins (ClyF, ClyC, PlySs2) against culture-on-chip S. aureus biofilm, in real-time, based on surface plasmon resonance (SPR). A typical SPR response curve showed that the lysins bound to the biofilm rapidly and the biofilm destruction started at a longer time. By using 1:1 binding model analysis, affinity constants (KD) for ClyF, ClyC, and PlySs2 were found to be 3.18 ± 0.127 μM, 1.12 ± 0.026 μM, and 15.5 ± 0.514 μM, respectively. The fact that ClyF and PlySs2 shared the same CBD but showed different affinity to S. aureus biofilm suggested that, not only CBD, but also CD affects the binding activity of the entire lysin. The SPR platform can be applied to improve our understanding on the complex interactions between lysins and bacterial biofilm including association (adsorption) and disassociation (destruction).
Collapse
Affiliation(s)
- Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, Sanmukh S, El-Shibiny A. Phage-Encoded Endolysins. Antibiotics (Basel) 2021; 10:124. [PMID: 33525684 PMCID: PMC7912344 DOI: 10.3390/antibiotics10020124] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to the global emergence of antibiotic resistance, there has been an increase in research surrounding endolysins as an alternative therapeutic. Endolysins are phage-encoded enzymes, utilized by mature phage virions to hydrolyze the cell wall from within. There is significant evidence that proves the ability of endolysins to degrade the peptidoglycan externally without the assistance of phage. Thus, their incorporation in therapeutic strategies has opened new options for therapeutic application against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology sectors. While endolysins show promising results within the laboratory, it is important to document their resistance, safety, and immunogenicity for in-vivo application. This review aims to provide new insights into the synergy between endolysins and antibiotics, as well as the formulation of endolysins. Thus, it provides crucial information for clinical trials involving endolysins.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Tamil Nadu 626115, India
| | - Oluwasegun I Daramola
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Samar Ragab
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Stephanie Lynch
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tolulope J Oduselu
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Fazal Mehmood Khan
- Center for Biosafety Mega-Science, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Akomolafe Ayobami
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Fazal Adnan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 24090, Pakistan
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Swapnil Sanmukh
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
8
|
Chateau A, Van der Verren SE, Remaut H, Fioravanti A. The Bacillus anthracis Cell Envelope: Composition, Physiological Role, and Clinical Relevance. Microorganisms 2020; 8:E1864. [PMID: 33255913 PMCID: PMC7759979 DOI: 10.3390/microorganisms8121864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
Anthrax is a highly resilient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis. The bacterium presents a complex and dynamic composition of its cell envelope, which changes in response to developmental and environmental conditions and host-dependent signals. Because of their easy to access extracellular locations, B. anthracis cell envelope components represent interesting targets for the identification and development of novel therapeutic and vaccine strategies. This review will focus on the novel insights regarding the composition, physiological role, and clinical relevance of B. anthracis cell envelope components.
Collapse
Affiliation(s)
- Alice Chateau
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France;
| | - Sander E. Van der Verren
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Zhang H, Stevens RH. Intrinsic resistance of Enterococcus faecalis strains to ΦEf11 phage endolysin is associated with the presence of ΦEf11 prophage. Arch Virol 2020; 166:249-258. [PMID: 33165649 DOI: 10.1007/s00705-020-04861-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The use of bacteriophage-encoded murein hydrolases (endolysins) is being actively explored as a means of controlling multidrug-resistant pathogens. Previously, we isolated and characterized one such enzyme, the phage ΦEf11 ORF28 lysin, which demonstrated profound antimicrobial activity against many strains of Enterococcus faecalis. Although the lysin is eminently active against many vancomycin-resistant enterococal (VRE) strains, and displays lower minimum inhibitory concentrations than vancomycin against vancomycin-sensitive strains, there is a subset of E. faecalis strains that is not affected by the lysin. Currently, there is no explanation for the disparate sensitivity to ORF28 lysin among E. faecalis strains. In the present investigation, we show that the intrinsic insensitivity of the insusceptible strains to the lysin is associated with the presence of a ΦEf11 prophage. Of the strains harboring phage ΦEf11 genes (N = 28), 68% were insensitive to the lysin, whereas 91% of the strains (N = 75) lacking detectable ΦEf11 genes demonstrated lysin sensitivity. Furthermore, curing a lysin-resistant, lysogenic E. faecalis strain resulted in a lysin-sensitive derivative, whereas lysogenizing a wild-type non-lysogenic strain converted it from lysin sensitivity to lysin resistance. Our results suggest that lysin resistance comes about through lysogenic conversion of non-lysogenic, lysin-sensitive strains.
Collapse
Affiliation(s)
- Hongming Zhang
- Laboratory of Oral Infectious Diseases, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Roy H Stevens
- Laboratory of Oral Infectious Diseases, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
10
|
Shen Y, Kalograiaki I, Prunotto A, Dunne M, Boulos S, Taylor NMI, Sumrall ET, Eugster MR, Martin R, Julian-Rodero A, Gerber B, Leiman PG, Menéndez M, Peraro MD, Cañada FJ, Loessner MJ. Structural basis for recognition of bacterial cell wall teichoic acid by pseudo-symmetric SH3b-like repeats of a viral peptidoglycan hydrolase. Chem Sci 2020; 12:576-589. [PMID: 34163788 PMCID: PMC8179006 DOI: 10.1039/d0sc04394j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endolysins are bacteriophage-encoded peptidoglycan hydrolases targeting the cell wall of host bacteria via their cell wall-binding domains (CBDs). The molecular basis for selective recognition of surface carbohydrate ligands by CBDs remains elusive. Here, we describe, in atomic detail, the interaction between the Listeria phage endolysin domain CBD500 and its cell wall teichoic acid (WTA) ligands. We show that 3′O-acetylated GlcNAc residues integrated into the WTA polymer chain are the key epitope recognized by a CBD binding cavity located at the interface of tandem copies of beta-barrel, pseudo-symmetric SH3b-like repeats. This cavity consists of multiple aromatic residues making extensive interactions with two GlcNAc acetyl groups via hydrogen bonds and van der Waals contacts, while permitting the docking of the diastereomorphic ligands. Our multidisciplinary approach tackled an extremely challenging protein–glycopolymer complex and delineated a previously unknown recognition mechanism by which a phage endolysin specifically recognizes and targets WTA, suggesting an adaptable model for regulation of endolysin specificity. Combining genetic, biochemical and computational approaches, we elucidated the molecular mechanisms underlying the recognition of Listeria wall teichoic acid by bacteriophage-encoded SH3b repeats.![]()
Collapse
Affiliation(s)
- Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Ioanna Kalograiaki
- Centro de Investigaciones Biológicas, Margarita Salas, Consejo Superior de Investigaciones Científicas Ramiro de Maeztu 9 28040 Madrid Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES) Avenida de Monforte de Lemos 3-5 28029 Madrid Spain
| | - Alessio Prunotto
- Laboratory for Biomolecular Modeling, EPFL IBI-SV Station 19 1015 Lausanne Switzerland
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Samy Boulos
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen Blegdamsvej 3B Copenhagen 2200 Denmark
| | - Eric T Sumrall
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Marcel R Eugster
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Rebecca Martin
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Alicia Julian-Rodero
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Benjamin Gerber
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Petr G Leiman
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics 301 University Blvd Galveston TX 77555-0647 USA
| | - Margarita Menéndez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES) Avenida de Monforte de Lemos 3-5 28029 Madrid Spain.,Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Cientificas Serrano 119 28006 Madrid Spain
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, EPFL IBI-SV Station 19 1015 Lausanne Switzerland
| | - Francisco Javier Cañada
- Centro de Investigaciones Biológicas, Margarita Salas, Consejo Superior de Investigaciones Científicas Ramiro de Maeztu 9 28040 Madrid Spain.,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBERES) Avenida de Monforte de Lemos 3-5 28029 Madrid Spain
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| |
Collapse
|
11
|
Chateau A, Oh SY, Tomatsidou A, Brockhausen I, Schneewind O, Missiakas D. Distinct Pathways Carry Out α and β Galactosylation of Secondary Cell Wall Polysaccharide in Bacillus anthracis. J Bacteriol 2020; 202:e00191-20. [PMID: 32457049 PMCID: PMC7348550 DOI: 10.1128/jb.00191-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is required for the retention of surface layer (S-layer) and S-layer homology (SLH) domain proteins. Genetic disruption of the SCWP biosynthetic pathway impairs growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats composed of one ManNAc and two GlcNAc residues with O-3-α-Gal and O-4-β-Gal substitutions. UDP-Gal, synthesized by GalE1, is the substrate of galactosyltransferases that modify the SCWP repeat. Here, we show that the gtsE gene, which encodes a predicted glycosyltransferase with a GT-A fold, is required for O-4-β-Gal modification of trisaccharide repeats. We identify a DXD motif critical for GtsE activity. Three distinct genes, gtsA, gtsB, and gtsC, are required for O-3-α-Gal modification of trisaccharide repeats. Based on the similarity with other three-component glycosyltransferase systems, we propose that GtsA transfers Gal from cytosolic UDP-Gal to undecaprenyl phosphate (C55-P), GtsB flips the C55-P-Gal intermediate to the trans side of the membrane, and GtsC transfers Gal onto trisaccharide repeats. The deletion of galE1 does not affect growth in vitro, suggesting that galactosyl modifications are dispensable for the function of SCWP. The deletion of gtsA, gtsB, or gtsC leads to a loss of viability, yet gtsA and gtsC can be deleted in strains lacking galE1 or gtsE We propose that the loss of viability is caused by the accumulation of undecaprenol-bound precursors and present an updated model for SCWP assembly in B. anthracis to account for the galactosylation of repeat units.IMPORTANCE Peptidoglycan is a conserved extracellular macromolecule that protects bacterial cells from turgor pressure. Peptidoglycan of Gram-positive bacteria serves as a scaffold for the attachment of polymers that provide defined bacterial interactions with their environment. One such polymer, B. anthracis SCWP, is pyruvylated at its distal end to serve as a receptor for secreted proteins bearing the S-layer homology domain. Repeat units of SCWP carry three galactoses in B. anthracis Glycosylation is a recurring theme in nature and often represents a means to mask or alter conserved molecular signatures from intruders such as bacteriophages. Several glycosyltransferase families have been described based on bioinformatics prediction, but few have been studied. Here, we describe the glycosyltransferases that mediate the galactosylation of B. anthracis SCWP.
Collapse
Affiliation(s)
- Alice Chateau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - So Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Anastasia Tomatsidou
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Swietnicki W, Brzozowska E. In silico analysis of bacteriophage tail tubular proteins suggests a putative sugar binding site and a catalytic mechanism. J Mol Graph Model 2019; 92:8-16. [PMID: 31302501 DOI: 10.1016/j.jmgm.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Bacteriophage base tailplate proteins were recently discovered to have hydrolytic activity towards disaccharides. The putative assignment of sugar binding sites was based on known lectin structures and identified residues a.a. 40-120 as the potential binding region for disaccharides [1]. To help verify the prediction, an in silico analysis was performed on the structure of a base tailplate protein gp31 from Klebsiella pneumoniae bacteriophage KP32 (PDB: 5MU4) which shows activity towards maltose but not trehalose [1]. Based on the information, a full surface docking was performed for both sugars which identified 2 regions different than originally predicted. The first region clearly favored maltose during the docking phase while the second one allowed for the energetically-equivalent binding of trehalose. To verify the assignment, a molecular dynamics simulation was performed to assess the stability of the docked substrates. MD simulations suggested that the first site included residues D131, D133, and E134, and was also superior for maltose binding while clearly disfavoring trehalose. Analysis of the putative catalytic mechanism suggested residues D131, D133 and E134 as critical for substrate binding. The residue D133 did participate in a stable substrate binding and was positioned near the scissile bond, potentially making it a catalytic residue. Catalytic residues were most likely D131 and D133, one of the two options proposed by Pyra et al. [1]. A comparison with known hydrolase mechanisms suggested that the enzyme most likely retains configuration during hydrolysis of maltose. The findings are discussed for other bacteriophage proteins regarding their potential specificities and catalytic mechanisms.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- L. Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology and Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, PL, Poland.
| | - Ewa Brzozowska
- L. Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology and Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, PL, Poland
| |
Collapse
|
13
|
Abstract
Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
14
|
Hu B, Shen Y, Adamcik J, Fischer P, Schneider M, Loessner MJ, Mezzenga R. Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS NANO 2018; 12:3385-3396. [PMID: 29553709 DOI: 10.1021/acsnano.7b08969] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adaptable hydrogel networks with reversible connectivity have emerged as a promising platform for biomedical applications. Synthetic copolymers and low-molecular-weight gelators (LMWG) have been shown to form reversible hydrogels through self-assembly of the molecules driven by self-complementary hydrophobic interaction and hydrogen bonding. Here, inspired by the adhesive proteins secreted by mussels, we found that simply adding natural polyphenols, such as epigallocatechin gallate (EGCG) to amyloid fibrils present in the nematic phase, successfully drives the formation of hydrogels through self-assembly of the hybrid supramolecules. The hydrogels show birefringence under polarized light, indicating that the nematic orientation is preserved in the gel phase. Gel stiffness enhances with incubation time and with an increase in molecular ratios between polyphenol and fibrils, fibril concentration, and pH. The hydrogels are shear thinning and thermostable from 25 to 90 °C without any phase transition. The integrity of the trihydroxyl groups, the gallate ester moiety in EGCG, and the hydrophobicity of the polyphenols govern the interactions with the amyloid fibrils and thus the properties of the ensuing hydrogels. The EGCG-binding amyloid fibrils, produced from lysozyme and peptidoglycans, retain the main binding functions of the enzyme, inducing bacterial agglomeration and immobilization on both Gram-positive and Gram-negative bacteria. Furthermore, the antibacterial mechanism of the lysozyme amyloid fibril hydrogels is initiated by membrane disintegration. In combination with the lack of cytotoxicity to human colonic epithelial cells demonstrated for these hybrid supramolecules, a potential role in combating multidrug-resistant bacteria in biomedical applications is suggested, such as in targeting diseases related to infection of the small intestine.
Collapse
Affiliation(s)
- Bing Hu
- College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 9 , 8092 Zurich , Switzerland
| | - Yang Shen
- Laboratory of Food Microbiology, Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Jozef Adamcik
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 9 , 8092 Zurich , Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Mirjam Schneider
- Laboratory of Toxicology, Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 9 , 8092 Zurich , Switzerland
| | - Martin J Loessner
- Laboratory of Food Microbiology, Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 9 , 8092 Zurich , Switzerland
| |
Collapse
|
15
|
Chateau A, Lunderberg JM, Oh SY, Abshire T, Friedlander A, Quinn CP, Missiakas DM, Schneewind O. Galactosylation of the Secondary Cell Wall Polysaccharide of Bacillus anthracis and Its Contribution to Anthrax Pathogenesis. J Bacteriol 2018; 200:e00562-17. [PMID: 29229702 PMCID: PMC5809694 DOI: 10.1128/jb.00562-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is essential for bacterial growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats with the structure, [→4)-β-ManNAc-(1→4)-β-GlcNAc(O3-α-Gal)-(1→6)-α-GlcNAc(O3-α-Gal, O4-β-Gal)-(1→]6-12 The genes whose products promote the galactosylation of B. anthracis SCWP are not yet known. We show here that the expression of galE1, encoding a UDP-glucose 4-epimerase necessary for the synthesis of UDP-galactose, is required for B. anthracis SCWP galactosylation. The galE1 mutant assembles surface (S) layer and S layer-associated proteins that associate with ketal-pyruvylated SCWP via their S layer homology domains similarly to wild-type B. anthracis, but the mutant displays a defect in γ-phage murein hydrolase binding to SCWP. Furthermore, deletion of galE1 diminishes the capsulation of B. anthracis with poly-d-γ-glutamic acid (PDGA) and causes a reduction in bacterial virulence. These data suggest that SCWP galactosylation is required for the physiologic assembly of the B. anthracis cell wall envelope and for the pathogenesis of anthrax disease.IMPORTANCE Unlike virulent Bacillus anthracis isolates, B. anthracis strain CDC684 synthesizes secondary cell wall polysaccharide (SCWP) trisaccharide repeats without galactosyl modification, exhibits diminished growth in vitro in broth cultures, and is severely attenuated in an animal model of anthrax. To examine whether SCWP galactosylation is a requirement for anthrax disease, we generated variants of B. anthracis strains Sterne 34F2 and Ames lacking UDP-glucose 4-epimerase by mutating the genes galE1 and galE2 We identified galE1 as necessary for SCWP galactosylation. Deletion of galE1 decreased the poly-d-γ-glutamic acid (PDGA) capsulation of the vegetative form of B. anthracis and increased the bacterial inoculum required to produce lethal disease in mice, indicating that SCWP galactosylation is indeed a determinant of anthrax disease.
Collapse
Affiliation(s)
- Alice Chateau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Justin Mark Lunderberg
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - So Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Teresa Abshire
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Arthur Friedlander
- Headquarters, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dominique M Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Shen Y, Boulos S, Sumrall E, Gerber B, Julian-Rodero A, Eugster MR, Fieseler L, Nyström L, Ebert MO, Loessner MJ. Structural and functional diversity in Listeria cell wall teichoic acids. J Biol Chem 2017; 292:17832-17844. [PMID: 28912268 DOI: 10.1074/jbc.m117.813964] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Wall teichoic acids (WTAs) are the most abundant glycopolymers found on the cell wall of many Gram-positive bacteria, whose diverse surface structures play key roles in multiple biological processes. Despite recent technological advances in glycan analysis, structural elucidation of WTAs remains challenging due to their complex nature. Here, we employed a combination of ultra-performance liquid chromatography-coupled electrospray ionization tandem-MS/MS and NMR to determine the structural complexity of WTAs from Listeria species. We unveiled more than 10 different types of WTA polymers that vary in their linkage and repeating units. Disparity in GlcNAc to ribitol connectivity, as well as variable O-acetylation and glycosylation of GlcNAc contribute to the structural diversity of WTAs. Notably, SPR analysis indicated that constitution of WTA determines the recognition by bacteriophage endolysins. Collectively, these findings provide detailed insight into Listeria cell wall-associated carbohydrates, and will guide further studies on the structure-function relationship of WTAs.
Collapse
Affiliation(s)
- Yang Shen
- From the Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, CH-8092 Zurich,
| | - Samy Boulos
- the Laboratory of Food Biochemistry, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich
| | - Eric Sumrall
- From the Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, CH-8092 Zurich
| | - Benjamin Gerber
- From the Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, CH-8092 Zurich
| | - Alicia Julian-Rodero
- From the Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, CH-8092 Zurich
| | - Marcel R Eugster
- From the Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, CH-8092 Zurich
| | - Lars Fieseler
- the ZHAW School of Life Sciences and Facility Management, Einsiedlerstrasse 31, CH-8820 Wädenswil, and
| | - Laura Nyström
- the Laboratory of Food Biochemistry, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich
| | - Marc-Olivier Ebert
- the Laboratory of Organic Chemistry, ETH Zurich, Vladmimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Martin J Loessner
- From the Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, CH-8092 Zurich
| |
Collapse
|
17
|
Molohon KJ, Saint-Vincent PMB, Park S, Doroghazi JR, Maxson T, Hershfield JR, Flatt KM, Schroeder NE, Ha T, Mitchell DA. Plantazolicin is an ultra-narrow spectrum antibiotic that targets the Bacillus anthracis membrane. ACS Infect Dis 2016; 2:207-220. [PMID: 27152321 DOI: 10.1021/acsinfecdis.5b00115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plantazolicin (PZN) is a ribosomally synthesized and post-translationally modified natural product from Bacillus methylotrophicus FZB42 and Bacillus pumilus. Extensive tailoring to twelve of the fourteen amino acid residues in the mature natural product endows PZN with not only a rigid, polyheterocyclic structure, but also antibacterial activity. Here we report a remarkably discriminatory activity of PZN toward Bacillus anthracis, which rivals a previously-described gamma (γ) phage lysis assay in distinguishing B. anthracis from other members of the Bacillus cereus group. We evaluate the underlying cause of this selective activity by measuring the RNA expression profile of PZN-treated B. anthracis, which revealed significant upregulation of genes within the cell envelope stress response. PZN depolarizes the B. anthracis membrane like other cell envelope-acting compounds but uniquely localizes to distinct foci within the envelope. Selection and whole-genome sequencing of PZN-resistant mutants of B. anthracis implicate a relationship between the action of PZN and cardiolipin (CL) within the membrane. Exogenous CL increases the potency of PZN in wild type B. anthracis and promotes the incorporation of fluorescently tagged PZN in the cell envelope. We propose that PZN localizes to and exacerbates structurally compromised regions of the bacterial membrane, which ultimately results in cell lysis.
Collapse
Affiliation(s)
- Katie J. Molohon
- Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Seongjin Park
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James R. Doroghazi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeremy R. Hershfield
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, United States
| | - Kristen M. Flatt
- Department of Crop Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Nathan E. Schroeder
- Department of Crop Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Taekjip Ha
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Douglas A. Mitchell
- Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Lunderberg JM, Liszewski Zilla M, Missiakas D, Schneewind O. Bacillus anthracis tagO Is Required for Vegetative Growth and Secondary Cell Wall Polysaccharide Synthesis. J Bacteriol 2015; 197:3511-20. [PMID: 26324447 PMCID: PMC4621081 DOI: 10.1128/jb.00494-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/17/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Bacillus anthracis elaborates a linear secondary cell wall polysaccharide (SCWP) that retains surface (S)-layer and associated proteins via their S-layer homology (SLH) domains. The SCWP is comprised of trisaccharide repeats [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→] and tethered via acid-labile phosphodiester bonds to peptidoglycan. Earlier work identified UDP-GlcNAc 2-epimerases GneY (BAS5048) and GneZ (BAS5117), which act as catalysts of ManNAc synthesis, as well as a polysaccharide deacetylase (BAS5051), as factors contributing to SCWP synthesis. Here, we show that tagO (BAS5050), which encodes a UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme that initiates the synthesis of murein linkage units, is required for B. anthracis SCWP synthesis and S-layer assembly. Similar to gneY-gneZ mutants, B. anthracis strains lacking tagO cannot maintain cell shape or support vegetative growth. In contrast, mutations in BAS5051 do not affect B. anthracis cell shape, vegetative growth, SCWP synthesis, or S-layer assembly. These data suggest that TagO-mediated murein linkage unit assembly supports SCWP synthesis and attachment to the peptidoglycan via acid-labile phosphodiester bonds. Further, B. anthracis variants unable to synthesize SCWP trisaccharide repeats cannot sustain cell shape and vegetative growth. IMPORTANCE Bacillus anthracis elaborates an SCWP to support vegetative growth and envelope assembly. Here, we show that some, but not all, SCWP synthesis is dependent on tagO-derived murein linkage units and subsequent attachment of SCWP to peptidoglycan. The data implicate secondary polymer modifications of peptidoglycan and subcellular distributions as a key feature of the cell cycle in Gram-positive bacteria and establish foundations for work on the molecular functions of the SCWP and on inhibitors with antibiotic attributes.
Collapse
Affiliation(s)
- J Mark Lunderberg
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Megan Liszewski Zilla
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Liu J, Zhang X, Yang H, Yuan J, Wei H, Yu J, Fang X. Study of the interactions between endolysin and bacterial peptidoglycan on S. aureus by dynamic force spectroscopy. NANOSCALE 2015; 7:15245-15250. [PMID: 26324763 DOI: 10.1039/c5nr03525b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cell wall binding domain (CBD) of bacteriophage lysins can recognize target bacteria with extraordinary specificity through binding to bacterial peptidoglycan, thus it is a promising new probe to identify the corresponding bacterial pathogen. In this work, we used atomic force microscopy (AFM) based single-molecule force spectroscopy to investigate the interaction between the CBD of lysin PlyV12 (PlyV12C) and pathogenic bacterium Staphylococcus aureus (S. aureus). The binding forces of PlyV12C with S. aureus have been measured, and the dissociation process of their binding complex has been characterized. Furthermore, we compared the interactions of PlyV12C-S. aureus and antibody-S. aureus. It is revealed that PlyV12C has a comparable affinity to bacterial peptidoglycans as that of the S. aureus antibody. The results provide new information on the binding properties of lysin CBD with bacterium, and the application of lysin CBD in bacterium detection.
Collapse
Affiliation(s)
- Jianli Liu
- Beijing National Lab. for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Rodríguez-Rubio L, Gutiérrez D, Donovan DM, Martínez B, Rodríguez A, García P. Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Crit Rev Biotechnol 2015; 36:542-52. [PMID: 25603721 DOI: 10.3109/07388551.2014.993587] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most bacteriophages encode two types of cell wall lytic proteins: endolysins (lysins) and virion-associated peptidoglycan hydrolases. Both enzymes have the ability to degrade the peptidoglycan of Gram-positive bacteria resulting in cell lysis when they are applied externally. Bacteriophage lytic proteins have a demonstrated potential in treating animal models of infectious diseases. There has also been an increase in the study of these lytic proteins for their application in areas such as food safety, pathogen detection/diagnosis, surfaces disinfection, vaccine development and nanotechnology. This review summarizes the more recent developments, outlines the full potential of these proteins to develop new biotechnological tools and discusses the feasibility of these proposals.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| | - Diana Gutiérrez
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| | - David M Donovan
- b Animal Biosciences and Biotechnology Laboratory , BARC, ARS, USDA , Beltsville , MD , USA
| | - Beatriz Martínez
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| | - Ana Rodríguez
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| | - Pilar García
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| |
Collapse
|
21
|
Huang G, Shen X, Gong Y, Dong Z, Zhao X, Shen W, Wang J, Hu F, Peng Y. Antibacterial properties of Acinetobacter baumannii phage Abp1 endolysin (PlyAB1). BMC Infect Dis 2014; 14:681. [PMID: 25495514 PMCID: PMC4274762 DOI: 10.1186/s12879-014-0681-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii has emerged as one of the most important hospital-acquired pathogens in the world, because of its resistance to almost all available antibiotic drugs. Endolysins from phages are attracting increasing interest as potential antimicrobial agents, especially for drug-resistant bacteria. We previously isolated and characterized Abp1, a virulent phage targeting the multidrug-resistant A. baumannii strain, AB1. METHODS To evaluate the antimicrobial potential of endolysin from the Abp1 phage, the endolysin gene plyAB1 was cloned and over-expressed in Escherichia coli, and the lytic activity of the recombinant protein (PlyAB1) was tested by turbidity assessment and bacteria counting assays. RESULTS PlyAB1 exhibits a marked lytic activity against A. baumannii AB1, as shown by a decrease in the number of live bacteria following treatment with the enzyme. Moreover, PlyAB1 displayed a highly specific lytic effect against all of the 48 hospital-derived pandrug-resistant A. baumannii isolates that were tested. These isolates were shown to belong to different ST clones by multilocus sequence typing. CONCLUSIONS The results presented here show that PlyAB1 has potential as an antibiotic against drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Guangtao Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China. .,Department of Microbiology, Third Military Medical University, Chongqing, China.
| | - Xiaodong Shen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, China.
| | - Yali Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Zhiwei Dong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xia Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, China.
| | - Wei Shen
- Department of Microbiology, Third Military Medical University, Chongqing, China.
| | - Jing Wang
- Department of Microbiology, Third Military Medical University, Chongqing, China.
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing, China.
| | - Yizhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
22
|
Heselpoth RD, Owens JM, Nelson DC. Quantitative analysis of the thermal stability of the gamma phage endolysin PlyG: a biophysical and kinetic approach to assaying therapeutic potential. Virology 2014; 477:125-132. [PMID: 25432575 DOI: 10.1016/j.virol.2014.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/27/2014] [Accepted: 11/03/2014] [Indexed: 01/11/2023]
Abstract
Endolysins are lytic enzymes encoded by bacteriophage that represent an emerging class of protein therapeutics. Considering macromolecular thermoresistance correlates with shelf life, PlyG, a Bacillus anthracis endolysin, was thermally characterized to further evaluate its therapeutic potential. Results from a biophysical thermal analysis revealed full-length PlyG and its isolated domains comprised thermal denaturation temperatures exceeding 63°C. In the absence of reducing agent, PlyG was determined to be kinetically unstable, a finding hypothesized to be attributable to the chemical oxidation of cysteine and/or methionine residues. The presence of reducing agent kinetically stabilized the endolysin, with PlyG retaining at least ~50% residual lytic activity after being heated at temperatures up to 80°C and remaining enzymatically functional after being boiled. Furthermore, the endolysin had a kinetic half-life at 50°C and 55°C of 35 and 5.5h, respectively. PlyG represents a thermostable proteinaceous antibacterial with subsequent prolonged therapeutic shelf life expectancy.
Collapse
Affiliation(s)
- Ryan D Heselpoth
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Jacqueline M Owens
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Biotechnology Program, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
23
|
GneZ, a UDP-GlcNAc 2-epimerase, is required for S-layer assembly and vegetative growth of Bacillus anthracis. J Bacteriol 2014; 196:2969-78. [PMID: 24914184 DOI: 10.1128/jb.01829-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, forms an S-layer atop its peptidoglycan envelope and displays S-layer proteins and Bacillus S-layer-associated (BSL) proteins with specific functions to support cell separation of vegetative bacilli and growth in infected mammalian hosts. S-layer and BSL proteins bind via the S-layer homology (SLH) domain to the pyruvylated secondary cell wall polysaccharide (SCWP) with the repeat structure [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→]n, where α-GlcNAc and β-GlcNAc are substituted with two and one galactosyl residues, respectively. B. anthracis gneY (BAS5048) and gneZ (BAS5117) encode nearly identical UDP-GlcNAc 2-epimerase enzymes that catalyze the reversible conversion of UDP-GlcNAc and UDP-ManNAc. UDP-GlcNAc 2-epimerase enzymes have been shown to be required for the attachment of the phage lysin PlyG with the bacterial envelope and for bacterial growth. Here, we asked whether gneY and gneZ are required for the synthesis of the pyruvylated SCWP and for S-layer assembly. We show that gneZ, but not gneY, is required for B. anthracis vegetative growth, rod cell shape, S-layer assembly, and synthesis of pyruvylated SCWP. Nevertheless, inducible expression of gneY alleviated all the defects associated with the gneZ mutant. In contrast to vegetative growth, neither germination of B. anthracis spores nor the formation of spores in mother cells required UDP-GlcNAc 2-epimerase activity.
Collapse
|
24
|
Adamo R. Glycan surface antigens fromBacillus anthracisas vaccine targets: current status and future perspectives. Expert Rev Vaccines 2014; 13:895-907. [DOI: 10.1586/14760584.2014.924404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Brogioni B, Berti F. Surface plasmon resonance for the characterization of bacterial polysaccharide antigens: a review. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00088a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review gives an overview of significant applications of flow SPR to investigate the specific interactions of bacterial polysaccharide antigens.
Collapse
|
26
|
Investigations on the interactions of λphage-derived peptides against the SrtA mechanism in Bacillus anthracis. Appl Biochem Biotechnol 2013; 172:1790-806. [PMID: 24264995 DOI: 10.1007/s12010-013-0641-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/30/2013] [Indexed: 02/06/2023]
Abstract
Bacillus anthracis is a well-known bioweapon pathogen, which coordinates the expression of its virulence factors in response to a specific environmental signal by its protein architecture. Absences of sortase signal functioning may fail to assemble the surface linked proteins and so B. anthracis cannot sustain an infection with host cells. Targeting the signaling mechanism of B. anthracis can be achieved by inhibition of SrtA enzyme through λphage-derived plyG. The lysin enzyme plyG is experimentally proven as bacteriolytic agent, specifically kill's B. anthracis by inhibiting the SrtA. Here, we have screened the peptides from λphage lysin, and these peptides are having the ability as LPXTG competitive inhibitors. In comparison to the activator peptide LPXTG binding motif, λphage lysin based inhibitor peptides are having much supremacy towards binding of SrtA. Finally, peptide structures extracted from PlyG are free from toxic, allergic abilities and also have the ability to terminate the signal transduction mechanism in B. anthracis.
Collapse
|