1
|
Fontana C, de Meirelles JL, Verli H. Theoretical models of staurosporine and analogs uncover detailed structural information in biological solution. J Mol Graph Model 2024; 126:108653. [PMID: 37922640 DOI: 10.1016/j.jmgm.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Staurosporine and its analogs (STA-analogs) are indolocarbazoles (ICZs) compounds able to inhibit kinase proteins in a non-specific way, while present antimicrobial and cytostatic properties. The knowledge of molecular features associated to the complexation, including the ligand shape in solution and thermodynamics of complexation, is substantial to the development of new bioactive ICZs with improved therapeutic properties. In this context, the empirical approach of GROMOS force field is able to accurately reproduce condensed phase physicochemical properties of molecular systems after parameterization. Hence, through parameterization under GROMOS force field and molecular simulations, we assessed STA-analogs dynamics in aqueous solution, as well as its interaction with water to probe conformational and structural features involved in complexation to therapeutic targets. The coexistence of multiple conformers observed in simulations, and confirmed by metadynamics calculations, expanding the conformational space knowledge of these ligands with potential implications in understanding the ligand conformational selection during complexation. Also, changes in availability to H-bonding concerning the different substituents and water can reflect on effects at complexation free energy due to variation at the desolvation energetic costs. Based on these results, we expect the obtained structural data provide systemic framework for rational chemical modification of STA-analogs.
Collapse
Affiliation(s)
- Crisciele Fontana
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Av. Bento Gonçalves, 9500 (Caixa Postal 15005), Porto Alegre, CEP 91501-970, RS, Brazil
| | - João Luiz de Meirelles
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Av. Bento Gonçalves, 9500 (Caixa Postal 15005), Porto Alegre, CEP 91501-970, RS, Brazil
| | - Hugo Verli
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Av. Bento Gonçalves, 9500 (Caixa Postal 15005), Porto Alegre, CEP 91501-970, RS, Brazil.
| |
Collapse
|
2
|
Newman KE, Khalid S. Conformational dynamics and putative substrate extrusion pathways of the N-glycosylated outer membrane factor CmeC from Campylobacter jejuni. PLoS Comput Biol 2023; 19:e1010841. [PMID: 36638139 PMCID: PMC9879487 DOI: 10.1371/journal.pcbi.1010841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/26/2023] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
The outer membrane factor CmeC of the efflux machinery CmeABC plays an important role in conferring antibiotic and bile resistance to Campylobacter jejuni. Curiously, the protein is N-glycosylated, with the glycans playing a key role in the effective function of this system. In this work we have employed atomistic equilibrium molecular dynamics simulations of CmeC in a representative model of the C. jejuni outer membrane to characterise the dynamics of the protein and its associated glycans. We show that the glycans are more conformationally labile than had previously been thought. The extracellular loops of CmeC visit the open and closed states freely suggesting the absence of a gating mechanism on this side, while the narrow periplasmic entrance remains tightly closed, regulated via coordination to solvated cations. We identify several cation binding sites on the interior surface of the protein. Additionally, we used steered molecular dynamics simulations to elucidate translocation pathways for a bile acid and a macrolide antibiotic. These, and additional equilibrium simulations suggest that the anionic bile acid utilises multivalent cations to climb the ladder of acidic residues that line the interior surface of the protein.
Collapse
Affiliation(s)
- Kahlan E. Newman
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Morgan BR, Massi F. The Role of Substrate Mediated Allostery in the Catalytic Competency of the Bacterial Oligosaccharyltransferase PglB. Front Mol Biosci 2021; 8:740904. [PMID: 34604309 PMCID: PMC8479172 DOI: 10.3389/fmolb.2021.740904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
The oligosaccharyltransferase of Campylobacter lari (PglB) catalyzes the glycosylation of asparagine in the consensus sequence N-X-S/T, where X is any residue except proline. Molecular dynamics simulations of PglB bound to two different substrates were used to characterize the differences in the structure and dynamics of the substrate-enzyme complexes that can explain the higher catalytic efficiency observed for substrates containing threonine at the +2 position rather than serine. We observed that a threonine-containing substrate is more tightly bound than a serine-containing substrate. Because serine lacks a methyl group relative to threonine, the serine-containing peptide cannot stably form simultaneous van der Waals interactions with T316 and I572 as the threonine-containing substrate can. As a result, the peptide-PglB interaction is destabilized and the allosteric communication between the periplasmic domain and external loop EL5 is disrupted. These changes ultimately lead to the reorientation of the periplasmic domain relative to the transmembrane domain such that the two domains are further apart compared to PglB bound to the threonine-containing peptide. The crystal structure of PglB bound to the peptide and a lipid-linked oligosaccharide analog shows a pronounced closing of the periplasmic domain over the transmembrane domain in comparison to structures of PglB with peptide only, indicating that a closed conformation of the domains is needed for catalysis. The results of our studies suggest that lower enzymatic activity observed for serine versus threonine results from a combination of less stable binding and structural changes in PglB that influence the ability to form a catalytically competent state. This study illustrates a mechanism for substrate specificity via modulation of dynamic allosteric pathways.
Collapse
Affiliation(s)
- Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
4
|
Arantes PR, Pedebos C, Polêto MD, Pol-Fachin L, Verli H. The Lazy Life of Lipid-Linked Oligosaccharides in All Life Domains. J Chem Inf Model 2020; 60:631-643. [PMID: 31769974 DOI: 10.1021/acs.jcim.9b00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid-linked oligosaccharides (LLOs) play an important role in the N-glycosylation pathway as the donor substrate of oligosaccharyltransferases (OSTs), which are responsible for the en bloc transfer of glycan chains onto a nascent polypeptide. The lipid component of LLO in both eukarya and archaea consists of a dolichol, and an undecaprenol in prokarya, whereas the number of isoprene units may change between species. Given the potential relevance of LLOs and their related enzymes to diverse biotechnological applications, obtaining reliable LLO models from distinct domains of life could support further studies on complex formation and their processing by OSTs, as well as protein engineering on such systems. In this work, molecular modeling techniques, such as quantum mechanics calculations, molecular dynamics simulations, and metadynamics were employed to study eukaryotic (Glc3-Man9-GlcNAc2-PP-Dolichol), bacterial (Glc1-GalNAc5-Bac1-PP-Undecaprenol), and archaeal (Glc1-Man1-Gal1-Man1-Glc1-Gal1-Glc1-P-Dolichol) LLOs in membrane bilayers. Microsecond molecular dynamics simulations and metadynamics calculations of LLOs revealed that glycan chains are more prone to interact with the membrane lipid head groups, while the PP linkages are positioned at the lipid phosphate head groups level. The dynamics of isoprenoid chains embedded within the bilayer are described, and membrane dynamics and related properties are also investigated. Overall, there are similarities regarding the structure and dynamics of the eukaryotic, the bacterial, and the archaeal LLOs in bilayers, which can support the comprehension of their association with OSTs. These data may support future studies on the transferring mechanism of the oligosaccharide chain to an acceptor protein.
Collapse
Affiliation(s)
- Pablo R Arantes
- Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS 91509-900 , Brazil.,Laboratory of Genetic Toxicology , Federal University of Health Sciences of Porto Alegre - UFCSPA, Sarmento Leite, 245, Lab.714 , Porto Alegre , RS 90050-170 , Brazil
| | - Conrado Pedebos
- Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS 91509-900 , Brazil.,School of Chemistry , University of Southampton , Southampton , SO17 1BJ , U.K
| | - Marcelo D Polêto
- Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS 91509-900 , Brazil.,Departamento de Biologia Geral , Universidade Federal de Viçosa , Viçosa , MG 36570-000 , Brazil
| | | | - Hugo Verli
- Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS 91509-900 , Brazil
| |
Collapse
|
5
|
Villavicencio B, Ligabue-Braun R, Verli H. All-Hydrocarbon Staples and Their Effect over Peptide Conformation under Different Force Fields. J Chem Inf Model 2018; 58:2015-2023. [DOI: 10.1021/acs.jcim.8b00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bianca Villavicencio
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91500-970 Porto Alegre-RS, Brazil
| | - Rodrigo Ligabue-Braun
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91500-970 Porto Alegre-RS, Brazil
| | - Hugo Verli
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91500-970 Porto Alegre-RS, Brazil
| |
Collapse
|
6
|
Kohda D. Structural Basis of Protein Asn-Glycosylation by Oligosaccharyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:171-199. [PMID: 30484249 DOI: 10.1007/978-981-13-2158-0_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glycosylation of asparagine residues is a ubiquitous protein modification. This N-glycosylation is essential in Eukaryotes, but principally nonessential in Prokaryotes (Archaea and Eubacteria), although it facilitates their survival and pathogenicity. In many reviews, Archaea have received far less attention than Eubacteria, but this review will cover the N-glycosylation in the three domains of life. The oligosaccharide chain is preassembled on a lipid-phospho carrier to form a donor substrate, lipid-linked oligosaccharide (LLO). The en bloc transfer of an oligosaccharide from LLO to selected Asn residues in the Asn-X-Ser/Thr (X≠Pro) sequons in a polypeptide chain is catalyzed by a membrane-bound enzyme, oligosaccharyltransferase (OST). Over the last 10 years, the three-dimensional structures of the catalytic subunits of the Stt3/AglB/PglB proteins, with an acceptor peptide and a donor LLO, have been determined by X-ray crystallography, and recently the complex structures with other subunits have been determined by cryo-electron microscopy . Structural comparisons within the same species and across the different domains of life yielded a unified view of the structures and functions of OSTs. A catalytic structure in the TM region accounts for the amide bond twisting, which increases the reactivity of the side-chain nitrogen atom of the acceptor Asn residue in the sequon. The Ser/Thr-binding pocket in the C-terminal domain explains the requirement for hydroxy amino acid residues in the sequon. As expected, the two functional structures are formed by the involvement of short amino acid motifs conserved across the three domains of life.
Collapse
Affiliation(s)
- Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
Napiórkowska M, Boilevin J, Sovdat T, Darbre T, Reymond JL, Aebi M, Locher KP. Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase. Nat Struct Mol Biol 2017; 24:1100-1106. [PMID: 29058712 DOI: 10.1038/nsmb.3491] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/21/2017] [Indexed: 11/09/2022]
Abstract
Oligosaccharyltransferase (OST) is a membrane-integral enzyme that catalyzes the transfer of glycans from lipid-linked oligosaccharides (LLOs) onto asparagine side chains, the first step in protein N-glycosylation. Here, we report the X-ray structure of a single-subunit OST, PglB from Campylobacter lari, trapped in an intermediate state bound to an acceptor peptide and a synthetic LLO analog. The structure reveals the role of the external loop EL5, present in all OST enzymes, in substrate recognition. Whereas the N-terminal half of EL5 binds LLO, the C-terminal half interacts with the acceptor peptide. The glycan moiety of LLO must thread under EL5 to access the active site. Reducing EL5 mobility decreases the catalytic rate of OST when full-size heptasaccharide LLO is provided, but not for a monosaccharide-containing LLO analog. Our results define the chemistry of a ternary complex state, assign functional roles to conserved OST motifs, and provide opportunities for glycoengineering by rational design of PglB.
Collapse
Affiliation(s)
- Maja Napiórkowska
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland
| | - Tina Sovdat
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland
| | - Markus Aebi
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Lee HS, Im W. Transmembrane motions of PglB induced by LLO are coupled with EL5 loop conformational changes necessary for OST activity. Glycobiology 2017; 27:734-742. [PMID: 28575441 DOI: 10.1093/glycob/cwx052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 11/14/2022] Open
Abstract
N-linked glycosylation is an enzymatic reaction in which an oligosaccharide is transferred en bloc onto an asparagine residue of an acceptor polypeptide, catalyzed by oligosaccharyltransferase (OST). Despite the available crystal structures, the role of the external loop EL5, which is critical for the catalytic cycle, is enigmatic as EL5 in the crystal structures is partially absent or blocks a pathway of lipid-linked oligosaccharide to the active site. Here we report the molecular origin of EL5 conformational changes through a series of molecular dynamics simulations of a bacterial OST, Campylobacter lari PglB. The simulations reveal that the isoprenoid moiety of lipid-linked oligosaccharide favorably binds to a hydrophobic groove of the PglB transmembrane domain. This binding triggers the conformational changes of the transmembrane domain and subsequently impairs the structural stability of EL5, leading to disordered EL5 with open conformations that are required for correct placement of the oligosaccharide in the active site.
Collapse
Affiliation(s)
- Hui Sun Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | |
Collapse
|