1
|
Leroy J, Lecointe K, Coulon P, Sendid B, Robert R, Poulain D. Antibodies as Models and Tools to Decipher Candida albicans Pathogenic Development: Review about a Unique Monoclonal Antibody Reacting with Immunomodulatory Adhesins. J Fungi (Basel) 2023; 9:636. [PMID: 37367572 DOI: 10.3390/jof9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Candidiasis, caused mainly by Candida albicans, a natural commensal of the human digestive tract and vagina, is the most common opportunistic fungal infection at the mucosal and systemic levels. Its high morbi-mortality rates have led to considerable research to identify the molecular mechanisms associated with the switch to pathogenic development and to diagnose this process as accurately as possible. Since the 1980s, the advent of monoclonal antibody (mAb) technology has led to significant progress in both interrelated fields. This linear review, intended to be didactic, was prompted by considering how, over several decades, a single mAb designated 5B2 contributed to the elucidation of the molecular mechanisms of pathogenesis based on β-1,2-linked oligomannoside expression in Candida species. These contributions starting from the structural identification of the minimal epitope as a di-mannoside from the β-1,2 series consisted then in the demonstration that it was shared by a large number of cell wall proteins differently anchored in the cell wall and the discovery of a cell wall glycoplipid shed by the yeast in contact of host cells, the phospholipomannan. Cytological analysis revealed an overall highly complex epitope expression at the cell surface concerning all growth phases and a patchy distribution resulting from the merging of cytoplasmic vesicles to plasmalema and further secretion through cell wall channels. On the host side, the mAb 5B2 led to identification of Galectin-3 as the human receptor dedicated to β-mannosides and signal transduction pathways leading to cytokine secretion directing host immune responses. Clinical applications concerned in vivo imaging of Candida infectious foci, direct examination of clinical samples and detection of circulating serum antigens that complement the Platelia Ag test for an increased sensitivity of diagnosis. Finally, the most interesting character of mAb 5B2 is probably its ability to reveal C. albicans pathogenic behaviour in reacting specifically with vaginal secretions from women infected versus colonized by this species as well as to display higher reactivity with strains isolated in pathogenic circumstances or even linked to an unfavourable prognosis for systemic candidiasis. Together with a detailed referenced description of these studies, the review provides a complementary reading frame by listing the wide range of technologies involving mAb 5B2 over time, evidencing a practical robustness and versatility unique so far in the Candida field. Finally, the basic and clinical perspectives opened up by these studies are briefly discussed with regard to prospects for future applications of mAb 5B2 in current research challenges.
Collapse
Affiliation(s)
- Jordan Leroy
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Karine Lecointe
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
| | - Pauline Coulon
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Raymond Robert
- Kalidiv ZA, La Garde Bâtiment 1 B, Allée du 9 Novembre 1989, F-49240 Avrillé, France
| | - Daniel Poulain
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
| |
Collapse
|
2
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell Host Microbe 2019; 26:385-399.e9. [DOI: 10.1016/j.chom.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
|
4
|
Two KTR Mannosyltransferases Are Responsible for the Biosynthesis of Cell Wall Mannans and Control Polarized Growth in Aspergillus fumigatus. mBio 2019; 10:mBio.02647-18. [PMID: 30755510 PMCID: PMC6372797 DOI: 10.1128/mbio.02647-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It allows fungal pathogens to survive environmental challenge posed by nutrient stress and host defenses, and it also is central to polarized growth. The cell wall is mainly composed of polysaccharides organized in a three-dimensional network. Aspergillus fumigatus produces a cell wall galactomannan whose biosynthetic pathway and biological functions remain poorly defined. Here, we described two new mannosyltransferases essential to the synthesis of the cell wall galactomannan. Their absence leads to a growth defect with misregulation of polarization and altered conidiation, with conidia which are bigger and more permeable than the conidia of the parental strain. This study showed that in spite of its low concentration in the cell wall, this polysaccharide is absolutely required for cell wall stability, for apical growth, and for the full virulence of A. fumigatus. Fungal cell wall mannans are complex carbohydrate polysaccharides with different structures in yeasts and molds. In contrast to yeasts, their biosynthetic pathway has been poorly investigated in filamentous fungi. In Aspergillus fumigatus, the major mannan structure is a galactomannan that is cross-linked to the β-1,3-glucan-chitin cell wall core. This polymer is composed of a linear mannan with a repeating unit composed of four α1,6-linked and α1,2-linked mannoses with side chains of galactofuran. Despite its use as a biomarker to diagnose invasive aspergillosis, its biosynthesis and biological function were unknown. Here, we have investigated the function of three members of the Ktr (also named Kre2/Mnt1) family (Ktr1, Ktr4, and Ktr7) in A. fumigatus and show that two of them are required for the biosynthesis of galactomannan. In particular, we describe a newly discovered form of α-1,2-mannosyltransferase activity encoded by the KTR4 gene. Biochemical analyses showed that deletion of the KTR4 gene or the KTR7 gene leads to the absence of cell wall galactomannan. In comparison to parental strains, the Δktr4 and Δktr7 mutants showed a severe growth phenotype with defects in polarized growth and in conidiation, marked alteration of the conidial viability, and reduced virulence in a mouse model of invasive aspergillosis. In yeast, the KTR proteins are involved in protein 0- and N-glycosylation. This study provided another confirmation that orthologous genes can code for proteins that have very different biological functions in yeasts and filamentous fungi. Moreover, in A. fumigatus, cell wall mannans are as important structurally as β-glucans and chitin.
Collapse
|
5
|
Base-modified GDP-mannose derivatives and their substrate activity towards a yeast mannosyltransferase. Carbohydr Res 2017; 452:91-96. [PMID: 29080432 DOI: 10.1016/j.carres.2017.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/17/2023]
Abstract
We have previously developed a new class of inhibitors and chemical probes for glycosyltransferases through base-modification of the sugar-nucleotide donor. The key feature of these donor analogues is the presence of an additional substituent at the nucleobase. To date, the application of this general concept has been limited to UDP-sugars and UDP-sugar-dependent glycosyltransferases. Herein, we report for the first time the application of our approach to a GDP-mannose-dependent mannosyltransferase. We have prepared four GDP-mannose derivatives with an additional substituent at either position 6 or 8 of the nucleobase. These donor analogues were recognised as donor substrates by the mannosyltransferase Kre2p from yeast, albeit with significantly lower turnover rates than the natural donor GDP-mannose. The presence of the additional substituent also redirected enzyme activity from glycosyl transfer to donor hydrolysis. Taken together, our results suggest that modification of the donor nucleobase is, in principle, a viable strategy for probe and inhibitor development against GDP-mannose-dependent GTs.
Collapse
|
6
|
Cattiaux L, Mée A, Pourcelot M, Sfihi-Loualia G, Hurtaux T, Maes E, Fradin C, Sendid B, Poulain D, Fabre E, Delplace F, Guérardel Y, Mallet JM. Candida albicans β-1,2 mannosyl transferase Bmt3: Preparation and evaluation of a β (1,2), α (1,2)-tetramannosyl fluorescent substrate. Bioorg Med Chem 2016; 24:1362-8. [PMID: 26895658 DOI: 10.1016/j.bmc.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/18/2022]
Abstract
We describe for the first time the chemical synthesis of a tetramannoside, containing both α (1→2) and β (1→2) linkages. Dodecylthio (lauryl) glycosides were prepared from odorless dodecyl thiol and used as donors for the glycosylation steps. This tetramannoside, was coupled to a mantyl group, and revealed to be a perfect substrate of β-mannosyltransferase Bmt3, confirming the proposed specificity and allowing the preparation of a pentamannoside sequence (β Man (1,2) β Man (1,2) α Man (1,2) α Man (1,2) α Man) usable as a novel substrate for further elongation studies.
Collapse
Affiliation(s)
- Laurent Cattiaux
- École Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France
| | - Anaïs Mée
- École Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France
| | - Marilyne Pourcelot
- École Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France
| | - Ghenima Sfihi-Loualia
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Thomas Hurtaux
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Emmanuel Maes
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Chantal Fradin
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Boualem Sendid
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Daniel Poulain
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Emeline Fabre
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Florence Delplace
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Maurice Mallet
- École Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France.
| |
Collapse
|
7
|
Hurtaux T, Sfihi-Loualia G, Brissonnet Y, Bouckaert J, Mallet JM, Sendid B, Delplace F, Fabre E, Gouin SG, Guérardel Y. Evaluation of monovalent and multivalent iminosugars to modulate Candida albicans β-1,2-mannosyltransferase activities. Carbohydr Res 2016; 429:123-7. [PMID: 26852253 DOI: 10.1016/j.carres.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 11/30/2022]
Abstract
β-1,2-Linked oligomannosides substitute the cell wall of numerous yeast species. Several of those including Candida albicans may cause severe infections associated with high rates of morbidity and mortality, especially in immunocompromised patients. β-1,2-Mannosides are known to be involved in the pathogenic process and to elicit an immune response from the host. In C. albicans, the synthesis of β-mannosides is under the control of a family of nine genes coding for putative β-mannosyltransferases. Two of them, CaBmt1 and CaBmt3, have been shown to initiate and prime the elongation of the β-mannosides on the cell-wall mannan core. In the present study, we have assessed the modulating activities of monovalent and multivalent iminosugar analogs on these enzymes in order to control the enzymatic bio-synthesis of β-mannosides. We have identified a monovalent deoxynojirimycin (DNJ) derivative that inhibits the CaBmt1-catalyzed initiating activity, and mono-, tetra- and polyvalent deoxymannojirimycin (DMJ) that modulate the CaBmt1 activity toward the formation of a single major product. Analysis of the aggregating properties of the multivalent iminosugars showed their ability to elicit clusterization of both CaBmt1 and CaBmt3, without affecting their activity. These results suggest promising roles for multivalent iminosugars as controlling agents for the biosynthesis of β-1,2 mannosides and for monovalent DNJ derivative as a first target for the design of future β-mannosyltransferase inhibitors.
Collapse
Affiliation(s)
- Thomas Hurtaux
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France; CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Inserm, F-59000 Lille, France
| | - Ghenima Sfihi-Loualia
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Yoan Brissonnet
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, LUNAM Université, UMR CNRS 6230, UFR des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Julie Bouckaert
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Jean-Maurice Mallet
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, École Normale Supérieure-PSL Research University, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Boualem Sendid
- CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Inserm, F-59000 Lille, France
| | - Florence Delplace
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Emeline Fabre
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Sébastien G Gouin
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, LUNAM Université, UMR CNRS 6230, UFR des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Yann Guérardel
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France.
| |
Collapse
|