1
|
Hu Z, Xu W, Wang H, Li M, Wang J, Sun C, Yang X. CARM1-induced lncRNA NEAT1 synchronously activates MYCN and GalNAcT-I to accelerate the progression of neuroblastoma. Gene 2024; 938:149164. [PMID: 39675397 DOI: 10.1016/j.gene.2024.149164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) play important roles in progression of neuroblastoma (NB). LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to affect the development of multiple tumors. However, the effect of NEAT1 on NB remain unclear. In this study, the new mechanisms whereby how NEAT1 influences tumor progression in NB was investigated. METHODS RT-qPCR, western blot, bioinformatics, cell growth, Transwell, and flow cytometric analyses were performed to determine how NEAT1 synchronously regulates the miR-873-5p/MYCN proto-oncogene(MYCN) and miR-873-5p/polypeptide N-acetylgalactosaminyltransferase 1(GalNAcT-I) axes to accelerate the progression of NB. NB-bearing animal models were established to evaluate the function of NEAT1 in NB. The relationships between transcription factor coactivatorassociated arginine methyltransferase 1 (CARM1) and NEAT1, NEAT1 and miR-873-5p, miR-873-5p and GalNacT-I or MYCN, were verified using luciferase reporter gene assay, respectively. RESULTS Our study revealed elevated levels of NEAT1 expression in NB cells and tissues which was associated with an advanced pathological stage and poor prognostic outcomes. According to in vitro gain- and loss- of function experiments, NEAT1 enhances progression of NB. NEAT1 silencing was found to inhibit NB proliferation in vivo. Mechanistically, to achieve upstream regulation, epigenetic downregulation of NEAT1 was achieved via the inhibition of CARM1. NEAT1 was found to positively regulate MYCN and GalNAcT-I levels as a competitive sponge of miR-873-5p. CONCLUSION Activity of the lncRNA NEAT1 can be triggered via CARM1, which synchronously promotes NB development via the miR-873-5p/MYCN and miR-873-5p/GalNAcT-I axes. These findings shed light on the novel molecular mechanisms underlying NB progression.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weili Xu
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Huiming Wang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chi Sun
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaofeng Yang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
3
|
Collette AM, Hassan SA, Schmidt SI, Lara AJ, Yang W, Samara NL. An unusual dual sugar-binding lectin domain controls the substrate specificity of a mucin-type O-glycosyltransferase. SCIENCE ADVANCES 2024; 10:eadj8829. [PMID: 38416819 PMCID: PMC10901373 DOI: 10.1126/sciadv.adj8829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
N-acetylgalactosaminyl-transferases (GalNAc-Ts) initiate mucin-type O-glycosylation, an abundant and complex posttranslational modification that regulates host-microbe interactions, tissue development, and metabolism. GalNAc-Ts contain a lectin domain consisting of three homologous repeats (α, β, and γ), where α and β can potentially interact with O-GalNAc on substrates to enhance activity toward a nearby acceptor Thr/Ser. The ubiquitous isoenzyme GalNAc-T1 modulates heart development, immunity, and SARS-CoV-2 infectivity, but its substrates are largely unknown. Here, we show that both α and β in GalNAc-T1 uniquely orchestrate the O-glycosylation of various glycopeptide substrates. The α repeat directs O-glycosylation to acceptor sites carboxyl-terminal to an existing GalNAc, while the β repeat directs O-glycosylation to amino-terminal sites. In addition, GalNAc-T1 incorporates α and β into various substrate binding modes to cooperatively increase the specificity toward an acceptor site located between two existing O-glycans. Our studies highlight a unique mechanism by which dual lectin repeats expand substrate specificity and provide crucial information for identifying the biological substrates of GalNAc-T1.
Collapse
Affiliation(s)
- Abbie M Collette
- Structural Biochemistry Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, OCICB, NIAID, NIH, Bethesda, MD 20892, USA
| | - Susan I Schmidt
- MICaB Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Alexander J Lara
- Section on Biological Chemistry, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Weiming Yang
- Section on Biological Chemistry, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Nadine L Samara
- Structural Biochemistry Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Mazuca LG, Mohl JE. ISOGlyP: O-Glycosylation Site Prediction Using Peptide Sequences and GALNTs. Methods Mol Biol 2024; 2763:237-247. [PMID: 38347415 DOI: 10.1007/978-1-0716-3670-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Mucin-type O-glycosylation is one of the most common posttranslational modifications of proteins. The abnormal expression of various polypeptide GalNAc-transferases (GALNTs) which initiate and define sites of O-glycosylation is linked to many cancers and other diseases. Many current O-glycosylation prediction programs utilize O-glycoproteomics data obtained without using the transferase isoform(s) responsible for the glycosylation. With 20 different GALNTs in humans, having the ability to predict and interpret O-glycosylation sites in terms of specific GALNT isoforms is invaluable.To fill this gap, ISOGlyP (isoform-specific O-glycosylation prediction) has been developed. Using position-specific enhancement values generated based on GalNAc-T isoform-specific amino acid preferences, ISOGlyP predicts the propensity that a site would be glycosylated by a specific transferase. ISOGlyP gave an overall prediction accuracy of 70% against in vivo data, which is comparable to that of the NetOGlyc4.0 predictor. Additionally, ISOGlyP can identify the known effects of long- and short-range prior glycosylation and can generate potential peptide sequences selectively glycosylated by specific isoforms. ISOGlyP is freely available for use at https://ISOGlyP.utep.edu . The code is also available on GitHub ( https://github.com/jonmohl/ISOGlyP ).
Collapse
|
5
|
Pinto D, Parameswaran R. Role of Truncated O-GalNAc Glycans in Cancer Progression and Metastasis in Endocrine Cancers. Cancers (Basel) 2023; 15:3266. [PMID: 37444377 DOI: 10.3390/cancers15133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glycans are an essential part of cells, playing a fundamental role in many pathophysiological processes such as cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumour cell invasion, and metastasis development. These glycans are also able to exert control over the changes in tumour immunogenicity, interfering with tumour-editing events and leading to immune-resistant cancer cells. The incomplete synthesis of O-glycans or the formation of truncated glycans such as the Tn-antigen (Thomsen nouveau; GalNAcα- Ser/Thr), its sialylated version the STn-antigen (sialyl-Tn; Neu5Acα2-6GalNAcα-Ser/Thr) and the elongated T-antigen (Thomsen-Friedenreich; Galβ1-3GalNAcα-Ser/Thr) has been shown to be associated with tumour progression and metastatic state in many human cancers. Prognosis in various human cancers is significantly poor when they dedifferentiate or metastasise. Recent studies in glycobiology have shown truncated O-glycans to be a hallmark of cancer cells, and when expressed, increase the oncogenicity by promoting dedifferentiation, risk of metastasis by impaired adhesion (mediated by selectins and integrins), and resistance to immunological killing by NK cells. Insight into these truncated glycans provides a complimentary and attractive route for cancer antigen discovery. The recent emergence of immunotherapies against cancers is predicted to harness the potential of using such agents against cancer-associated truncated glycans. In this review, we explore the role of truncated O-glycans in cancer progression and metastasis along with some recent studies on the role of O-glycans in endocrine cancers affecting the thyroid and adrenal gland.
Collapse
Affiliation(s)
- Diluka Pinto
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
| | - Rajeev Parameswaran
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Dworkin LA, Clausen H, Joshi HJ. Applying transcriptomics to studyglycosylation at the cell type level. iScience 2022; 25:104419. [PMID: 35663018 PMCID: PMC9156939 DOI: 10.1016/j.isci.2022.104419] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
The complex multi-step process of glycosylation occurs in a single cell, yet current analytics generally cannot measure the output (the glycome) of a single cell. Here, we addressed this discordance by investigating how single cell RNA-seq data can be used to characterize the state of the glycosylation machinery and metabolic network in a single cell. The metabolic network involves 214 glycosylation and modification enzymes outlined in our previously built atlas of cellular glycosylation pathways. We studied differential mRNA regulation of enzymes at the organ and single cell level, finding that most of the general protein and lipid oligosaccharide scaffolds are produced by enzymes exhibiting limited transcriptional regulation among cells. We predict key enzymes within different glycosylation pathways to be highly transcriptionally regulated as regulatable hotspots of the cellular glycome. We designed the Glycopacity software that enables investigators to extract and interpret glycosylation information from transcriptome data and define hotspots of regulation. RNA-seq can provide information on the glycosylation metabolic network state It is possible to readout glycosylation capacity from single cell RNA-seq data Genes regulating the biosynthesis of common glycan scaffolds show little regulation Key enzymes in the glycosylation network are predicted to be regulatable hotspots
Collapse
Affiliation(s)
- Leo Alexander Dworkin
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hiren Jitendra Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Corresponding author
| |
Collapse
|
8
|
Polypeptide-GalNAc-Transferase-13 Shows Prognostic Impact in Breast Cancer. Cancers (Basel) 2021; 13:cancers13225616. [PMID: 34830771 PMCID: PMC8616257 DOI: 10.3390/cancers13225616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is a public health concern and is currently the fifth cause of mortality worldwide. Identification of different biological subtypes is essential for clinical management; therefore, the role of pathologists is essential and useful tools for immunohistochemistry diagnosis are needed. Polypeptide-GalNAc-transferases are emerging novel biomarkers related to cancer behavior and GalNAc-T13, correlated with aggressiveness in some tumors, is an interesting candidate. Few monoclonal antibodies reacting with native proteins, and not affected by fixation and paraffin embedding, have been reported. The aim of this work was to develop a useful monoclonal antibody anti-GalNAc-T13 and to assess its potential significance in breast cancer diagnosis. We evaluated 6 human breast cancer cell lines, 338 primary breast tumors and 48 metastatic lymph nodes and looked for clinical significance correlating GalNAc-T13 expression with patients' clinical features and survival. We found high GalNAc-T13 expression in 43.8% of the cases and observed a significant higher expression in metastatic lymph nodes, correlating with worse overall survival. We hypothesized several possible molecular mechanisms and their implications. We conclude that GalNAc-T13 may be a novel biomarker in breast cancer, useful for routine pathological diagnosis. Elucidation of molecular mechanisms related to aggressiveness should contribute to understand the role of GalNAc-T13 in breast cancer biology.
Collapse
|
9
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Krautter F, Iqbal AJ. Glycans and Glycan-Binding Proteins as Regulators and Potential Targets in Leukocyte Recruitment. Front Cell Dev Biol 2021; 9:624082. [PMID: 33614653 PMCID: PMC7890243 DOI: 10.3389/fcell.2021.624082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Leukocyte recruitment is a highly controlled cascade of interactions between proteins expressed by the endothelium and circulating leukocytes. The involvement of glycans and glycan-binding proteins in the leukocyte recruitment cascade has been well-characterised. However, our understanding of these interactions and their regulation has expanded substantially in recent years to include novel lectins and regulatory pathways. In this review, we discuss the role of glycans and glycan-binding proteins, mediating the interactions between endothelium and leukocytes both directly and indirectly. We also highlight recent findings of key enzymes involved in glycosylation which affect leukocyte recruitment. Finally, we investigate the potential of glycans and glycan binding proteins as therapeutic targets to modulate leukocyte recruitment and transmigration in inflammation.
Collapse
Affiliation(s)
- Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
May C, Ji S, Syed ZA, Revoredo L, Paul Daniel EJ, Gerken TA, Tabak LA, Samara NL, Ten Hagen KG. Differential splicing of the lectin domain of an O-glycosyltransferase modulates both peptide and glycopeptide preferences. J Biol Chem 2020; 295:12525-12536. [PMID: 32669364 DOI: 10.1074/jbc.ra120.014700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Mucin-type O-glycosylation is an essential post-translational modification required for protein secretion, extracellular matrix formation, and organ growth. O-Glycosylation is initiated by a large family of enzymes (GALNTs in mammals and PGANTs in Drosophila) that catalyze the addition of GalNAc onto the hydroxyl groups of serines or threonines in protein substrates. These enzymes contain two functional domains: a catalytic domain and a C-terminal ricin-like lectin domain comprised of three potential GalNAc recognition repeats termed α, β, and γ. The catalytic domain is responsible for binding donor and acceptor substrates and catalyzing transfer of GalNAc, whereas the lectin domain recognizes more distant extant GalNAc on previously glycosylated substrates. We previously demonstrated a novel role for the α repeat of lectin domain in influencing charged peptide preferences. Here, we further interrogate how the differentially spliced α repeat of the PGANT9A and PGANT9B O-glycosyltransferases confers distinct preferences for a variety of endogenous substrates. Through biochemical analyses and in silico modeling using preferred substrates, we find that a combination of charged residues within the α repeat and charged residues in the flexible gating loop of the catalytic domain distinctively influence the peptide substrate preferences of each splice variant. Moreover, PGANT9A and PGANT9B also display unique glycopeptide preferences. These data illustrate how changes within the noncatalytic lectin domain can alter the recognition of both peptide and glycopeptide substrates. Overall, our results elucidate a novel mechanism for modulating substrate preferences of O-glycosyltransferases via alternative splicing within specific subregions of functional domains.
Collapse
Affiliation(s)
- Carolyn May
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Suena Ji
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Zulfeqhar A Syed
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Leslie Revoredo
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Earnest James Paul Daniel
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas A Gerken
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lawrence A Tabak
- Section on Biological Chemistry, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Nadine L Samara
- Structural Biochemistry Unit, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Mohl JE, Gerken TA, Leung MY. ISOGlyP: de novo prediction of isoform-specific mucin-type O-glycosylation. Glycobiology 2020; 31:168-172. [PMID: 32681163 DOI: 10.1093/glycob/cwaa067] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Mucin-type O-glycosylation is one of the most common posttranslational modifications of proteins. The abnormal expression of various polypeptide GalNAc-transferases (GalNAc-Ts) which initiate and define sites of O-glycosylation are linked to many cancers and other diseases. Current O-glycosyation prediction programs utilize O-glycoproteomics data obtained without regard to the transferase isoform (s) responsible for the glycosylation. With 20 different GalNAc-Ts in humans, having an ability to predict and interpret O-glycosylation sites in terms of specific GalNAc-T isoforms is invaluable. To fill this gap, ISOGlyP (Isoform-Specific O-Glycosylation Prediction) has been developed. Using position-specific enhancement values generated based on GalNAc-T isoform-specific amino acid preferences, ISOGlyP predicts the propensity that a site would be glycosylated by a specific transferase. ISOGlyP gave an overall prediction accuracy of 70% against in vivo data, which is comparable to that of the NetOGlyc4.0 predictor. Additionally, ISOGlyP can identify the known effects of long- and short-range prior glycosylation and can generate potential peptide sequences selectively glycosylated by specific isoforms. ISOGlyP is freely available for use at ISOGlyP.utep.edu. The code is also available on GitHub (https://github.com/jonmohl/ISOGlyP).
Collapse
Affiliation(s)
- Jonathon E Mohl
- Department of Mathematical Sciences and Border Biomedical Research Center, The University of Texas at El Paso, W University, El Paso, TX 79968, USA
| | - Thomas A Gerken
- Departments of Biochemistry and Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ming-Ying Leung
- Department of Mathematical Sciences and Border Biomedical Research Center, The University of Texas at El Paso, W University, El Paso, TX 79968, USA
| |
Collapse
|
13
|
MOHL JONATHONE, GERKEN THOMAS, LEUNG MINGYING. Predicting mucin-type O-Glycosylation using enhancement value products from derived protein features. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020; 19:2040003. [PMID: 33208985 PMCID: PMC7671581 DOI: 10.1142/s0219633620400039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucin-type O-glycosylation is one of the most common post-translational modifications of proteins. This glycosylation is initiated in the Golgi by the addition of the sugar N-acetylgalactosamine (GalNAc) onto protein Ser and Thr residues by a family of polypeptide GalNAc transferases. In humans there are 20 isoforms that are differentially expressed across tissues that serve multiple important biological roles. Using random peptide substrates, isoform specific amino acid preferences have been obtained in the form of enhancement values (EV). These EVs alone have previously been used to predict O-glycosylation sites via the web based ISOGlyP (Isoform Specific O-Glycosylation Prediction) tool. Here we explore additional protein features to determine whether these can complement the random peptide derived enhancement values and increase the predictive power of ISOGlyP. The inclusion of additional protein substrate features (such as secondary structure and surface accessibility) was found to increase sensitivity with minimal loss of specificity, when tested with three different published in vivo O-glycoproteomics data sets, thus increasing the overall accuracy of the ISOGlyP predictions.
Collapse
Affiliation(s)
- JONATHON E. MOHL
- Department of Mathematical Sciences and Border Biomedical Research
Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - THOMAS GERKEN
- Departments of Biochemistry and Chemistry, Case Western Reserve
University, Cleveland, OH, 44106, USA
| | - MING-YING LEUNG
- Department of Mathematical Sciences and Border Biomedical Research
Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
14
|
Narimatsu Y, Joshi HJ, Schjoldager KT, Hintze J, Halim A, Steentoft C, Nason R, Mandel U, Bennett EP, Clausen H, Vakhrushev SY. Exploring Regulation of Protein O-Glycosylation in Isogenic Human HEK293 Cells by Differential O-Glycoproteomics. Mol Cell Proteomics 2019; 18:1396-1409. [PMID: 31040225 PMCID: PMC6601209 DOI: 10.1074/mcp.ra118.001121] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
Most proteins trafficking the secretory pathway of metazoan cells will acquire GalNAc-type O-glycosylation. GalNAc-type O-glycosylation is differentially regulated in cells by the expression of a repertoire of up to twenty genes encoding polypeptide GalNAc-transferase isoforms (GalNAc-Ts) that initiate O-glycosylation. These GalNAc-Ts orchestrate the positions and patterns of O-glycans on proteins in coordinated, but poorly understood ways - guided partly by the kinetic properties and substrate specificities of their catalytic domains, as well as by modulatory effects of their unique GalNAc-binding lectin domains. Here, we provide the hereto most comprehensive characterization of nonredundant contributions of individual GalNAc-T isoforms to the O-glycoproteome of the human HEK293 cell using quantitative differential O-glycoproteomics on a panel of isogenic HEK293 cells with knockout of GalNAc-T genes (GALNT1, T2, T3, T7, T10, or T11). We confirm that a major part of the O-glycoproteome is covered by redundancy, whereas distinct O-glycosite subsets are covered by nonredundant GalNAc-T isoform-specific functions. We demonstrate that the GalNAc-T7 and T10 isoforms function in follow-up of high-density O-glycosylated regions, and that GalNAc-T11 has highly restricted functions and essentially only serves the low-density lipoprotein-related receptors in linker regions (C6XXXTC1) between the ligand-binding repeats.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Hiren J Joshi
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - John Hintze
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catharina Steentoft
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Ulla Mandel
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
15
|
de Las Rivas M, Lira-Navarrete E, Gerken TA, Hurtado-Guerrero R. Polypeptide GalNAc-Ts: from redundancy to specificity. Curr Opin Struct Biol 2019; 56:87-96. [PMID: 30703750 PMCID: PMC6656595 DOI: 10.1016/j.sbi.2018.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Mucin-type O-glycosylation is a post-translational modification (PTM) that is predicted to occur in more than the 80% of the proteins that pass through the Golgi apparatus. This PTM is initiated by a family of polypeptide GalNAc-transferases (GalNAc-Ts) that modify Ser and Thr residues of proteins through the addition of a GalNAc moiety. These enzymes are type II membrane proteins that consist of a Golgi luminal catalytic domain connected by a flexible linker to a ricin type lectin domain. Together, both domains account for the different glycosylation preferences observed among isoenzymes. Although it is well accepted that most of the family members share some degree of redundancy toward their protein and glycoprotein substrates, it has been recently found that several GalNAc-Ts also possess activity toward specific targets. Despite the high similarity between isoenzymes, structural differences have recently been reported that are key to understanding the molecular basis of both their redundancy and specificity. The present review focuses on the molecular aspects of the protein substrate recognition and the different glycosylation preferences of these enzymes, which in turn will serve as a roadmap to the rational design of specific modulators of mucin-type O-glycosylation.
Collapse
Affiliation(s)
- Matilde de Las Rivas
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Gerken
- Departments of Biochemistry, Chemistry and Pediatrics Case Western Reserve University, Cleveland, OH, USA.
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain; Fundación ARAID, 50018, Zaragoza, Spain.
| |
Collapse
|