1
|
Oka T, Okuno A, Hira D, Teramoto T, Chihara Y, Hirata R, Kadooka C, Kakuta Y. Substrate binding and catalytic mechanism of UDP-α-D-galactofuranose: β-galactofuranoside β-(1→5)-galactofuranosyltransferase GfsA. PNAS NEXUS 2024; 3:pgae482. [PMID: 39507050 PMCID: PMC11538602 DOI: 10.1093/pnasnexus/pgae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
UDP-α-D-galactofuranose (UDP-Galf): β-galactofuranoside β-(1→5)-galactofuranosyltransferase, known as GfsA, is essential in synthesizing β-(1→5)-galactofuranosyl oligosaccharides that are incorporated into the cell wall of pathogenic fungi. This study analyzed the structure and function of GfsA from Aspergillus fumigatus. To provide crucial insights into the catalytic mechanism and substrate recognition, the complex structure was elucidated with manganese (Mn2+), a donor substrate product (UDP), and an acceptor sugar molecule (β-galactofuranose). In addition to the typical GT-A fold domain, GfsA has a unique domain formed by the N and C termini. The former interacts with the GT-A of another GfsA, forming a dimer. The active center that contains Mn2+, UDP, and galactofuranose forms a groove structure that is highly conserved in the GfsA of Pezizomycotina fungi. Enzymatic assays using site-directed mutants were conducted to determine the roles of specific active-site residues in the enzymatic activity of GfsA. The predicted enzyme-substrate complex model containing UDP-Galf characterized a specific β-galactofuranosyltransfer mechanism to the 5'-OH of β-galactofuranose. Overall, the structure of GfsA in pathogenic fungi provides insights into the complex glycan biosynthetic processes of fungal pathogenesis and may inform the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Ayana Okuno
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Takamasa Teramoto
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuria Chihara
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Rio Hirata
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Kadooka C, Tanaka Y, Kishida R, Hira D, Oka T. Discovery of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in Aspergillus fumigatus mycelium. mSphere 2024; 9:e0010024. [PMID: 38651868 PMCID: PMC11237753 DOI: 10.1128/msphere.00100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The cellular surface of the pathogenic filamentous fungus Aspergillus fumigatus is enveloped in a mannose layer, featuring well-established fungal-type galactomannan and O-mannose-type galactomannan. This study reports the discovery of cell wall component in A. fumigatus mycelium, which resembles N-glycan outer chains found in yeast. The glycosyltransferases involved in its biosynthesis in A. fumigatus were identified, with a focus on two key α-(1→2)-mannosyltransferases, Mnn2 and Mnn5, and two α-(1→6)-mannosyltransferases, Mnn9 and Van1. In vitro examination revealed the roles of recombinant Mnn2 and Mnn5 in transferring α-(1→2)-mannosyl residues. Proton nuclear magnetic resonance (1H-NMR) analysis of cell wall extracts from the ∆mnn2∆mnn5 strain indicated the existence of an α-(1→6)-linked mannan backbone in the A. fumigatus mycelium, with Mnn2 and Mnn5 adding α-(1→2)-mannosyl residues to this backbone. The α-(1→6)-linked mannan backbone was absent in strains where mnn9 or van1 was disrupted in the parental ∆mnn2∆mnn5 strain in A. fumigatus. Mnn9 and Van1 functioned as α-(1→6)-linked mannan polymerases in heterodimers when co-expressed in Escherichia coli, indicating their crucial role in biosynthesizing the α-(1→6)-linked mannan backbone. Disruptions of these mannosyltransferases did not affect fungal-type galactomannan biosynthesis. This study provides insights into the complexity of fungal cell wall architecture and a better understanding of mannan biosynthesis in A. fumigatus. IMPORTANCE This study unravels the complexities of mannan biosynthesis in A. fumigatus, a key area for antifungal drug discovery. It reveals the presence of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in A. fumigatus mycelium, offering fresh insights into the fungal cell wall's design. Key enzymes, Mnn2, Mnn5, Mnn9, and Van1, are instrumental in this process, with Mnn2 and Mnn5 adding specific mannose residues and Mnn9 and Van1 assembling the α-(1→6)-linked mannan structures. Although fungal-type galactomannan's presence in the cell wall is known, the existence of an α-(1→6)-linked mannan adds a new dimension to our understanding. This intricate web of mannan biosynthesis opens avenues for further exploration and enhances our understanding of fungal cell wall dynamics, paving the way for targeted drug development.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Rintaro Kishida
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
3
|
Kadooka C, Tanaka Y, Hira D, Oka T. Identification of a putative α-galactoside β-(1 → 3)-galactosyltransferase involved in the biosynthesis of galactomannan side chain of glucuronoxylomannogalactan in Cryptococcus neoformans. Front Microbiol 2024; 15:1390371. [PMID: 38841067 PMCID: PMC11150766 DOI: 10.3389/fmicb.2024.1390371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The cell surface of Cryptococcus neoformans is covered by a thick capsular polysaccharide. The capsule is the most important virulence factor of C. neoformans; however, the complete mechanism of its biosynthesis is unknown. The capsule is composed of glucuronoxylomannan (GXM) and glucuronoxylomannogalactan (GXMGal). As GXM is the most abundant component of the capsule, many studies have focused on GXM biosynthesis. However, although GXMGal has an important role in virulence, studies on its biosynthesis are scarce. Herein, we have identified a GT31 family β-(1 → 3)-galactosyltransferase Ggt2, which is involved in the biosynthesis of the galactomannan side chain of GXMGal. Comparative analysis of GXMGal produced by a ggt2 disruption strain revealed that Ggt2 is a glycosyltransferase that catalyzes the initial reaction in the synthesis of the galactomannan side chain of GXMGal. The ggt2 disruption strain showed a temperature-sensitive phenotype at 37°C, indicating that the galactomannan side chain of GXMGal is important for high-temperature stress tolerance in C. neoformans. Our findings provide insights into complex capsule biosynthesis in C. neoformans.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
4
|
Groß M, Dika B, Loos E, Aliyeva-Schnorr L, Deising HB. The galactose metabolism genes UGE1 and UGM1 are novel virulence factors of the maize anthracnose fungus Colletotrichum graminicola. Mol Microbiol 2024; 121:912-926. [PMID: 38400525 DOI: 10.1111/mmi.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched β-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.
Collapse
Affiliation(s)
- Maximilian Groß
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Dika
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Elisabeth Loos
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lala Aliyeva-Schnorr
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B Deising
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Schaff H, Dey P, Heiss C, Keiser G, Moro TR, Azadi P, Patel P, Free SJ. Characterization of the need for galactofuranose during the Neurospora crassa life cycle. Fungal Genet Biol 2023; 168:103826. [PMID: 37541569 DOI: 10.1016/j.fgb.2023.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Galactofuranose is a constituent of the cell walls of filamentous fungi. The galactofuranose can be found as a component of N-linked oligosaccharides, in O-linked oligosaccharides, in GPI-anchored galactomannan, and in free galactomannan. The Neurospora genome contains a single UDP-galactose mutase gene (ugm-1/NCU01824) and two UDP-galactofuranose translocases used to import UDP-galactofuranose into the lumen of the Golgi apparatus (ugt-1/NCU01826 and ugt-2/NCU01456). Our results demonstrate that loss of galactofuranose synthesis or its translocation into the lumen of the secretory pathway affects the morphology and growth rate of the vegetative hyphae, the production of conidia (asexual spores), and dramatically affects the sexual stages of the life cycle. In mutants that are unable to make galactofuranose or transport it into the lumen of the Golgi apparatus, ascospore development is aborted soon after fertilization and perithecium maturation is aborted prior to the formation of the neck and ostiole. The Neurospora genome contains three genes encoding possible galactofuranosyltransferases from the GT31 family of glycosyltransferases (gfs-1/NCU05878, gfs-2/NCU07762, and gfs-3/NCU02213) which might be involved in generating galactofuranose-containing oligosaccharide structures. Analysis of triple KO mutants in GT31 glycosyltransferases shows that these mutants have normal morphology, suggesting that these genes do not encode vital galactofuranosyltransferases.
Collapse
Affiliation(s)
- Hayden Schaff
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Protyusha Dey
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Tatiana Rojo Moro
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Pavan Patel
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Stephen J Free
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
6
|
Kadooka C, Tanaka Y, Hira D, Maruyama JI, Goto M, Oka T. Identification of galactofuranose antigens such as galactomannoproteins and fungal-type galactomannan from the yellow koji fungus ( Aspergillus oryzae). Front Microbiol 2023; 14:1110996. [PMID: 36814571 PMCID: PMC9939772 DOI: 10.3389/fmicb.2023.1110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Filamentous fungi belonging to the genus Aspergillus are known to possess galactomannan in their cell walls. Galactomannan is highly antigenic to humans and has been reported to be involved in the pathogenicity of pathogenic filamentous fungi, such as A. fumigatus, and in immune responses. In this study, we aimed to confirm the presence of D-galactofuranose-containing glycans and to clarify the biosynthesis of D-galactofuranose-containing glycans in Aspergillus oryzae, a yellow koji fungus. We found that the galactofuranose antigen is also present in A. oryzae. Deletion of ugmA, which encodes UDP-galactopyranose mutase in A. oryzae, suppressed mycelial elongation, suggesting that D-galactofuranose-containing glycans play an important role in cell wall integrity in A. oryzae. Proton nuclear magnetic resonance spectrometry revealed that the galactofuranose-containing sugar chain was deficient and that core mannan backbone structures were present in ΔugmA A. oryzae, indicating the presence of fungal-type galactomannan in the cell wall fraction of A. oryzae. The findings of this study provide new insights into the cell wall structure of A. oryzae, which is essential for the production of fermented foods in Japan.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan,*Correspondence: Takuji Oka,
| |
Collapse
|
7
|
Identification of an α-(1 →6)-Mannosyltransferase Contributing To Biosynthesis of the Fungal-Type Galactomannan α-Core-Mannan Structure in Aspergillus fumigatus. mSphere 2022; 7:e0048422. [PMID: 36445154 PMCID: PMC9769593 DOI: 10.1128/msphere.00484-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Fungal-type galactomannan, a cell wall component of Aspergillus fumigatus, is composed of α-(1→2)-/α-(1→6)-linked mannan and β-(1→5)-/β-(1→6)-linked galactofuran side chains. Recently, CmsA and CmsB were identified as the α-(1→2)-mannosyltransferases involved in the biosynthesis of the α-core-mannan. However, the α-(1→6)-mannosyltransferase involved in the biosynthesis of the α-core-mannan has not been identified yet. In this study, we analyzed 9 putative α-(1→6)-mannosyltransferase gene disruption strains of A. fumigatus. The ΔanpA strain resulted in decreased mycelial elongation and reduced conidia formation. Proton nuclear magnetic resonance analysis revealed that the ΔanpA strain failed to produce the α-core-mannan of fungal-type galactomannan. We also found that recombinant AnpA exhibited much stronger α-(1→6)-mannosyltransferase activity toward α-(1→2)-mannobiose than α-(1→6)-mannobiose in vitro. Molecular simulations corroborated the fact that AnpA has a structure that can recognize the donor and acceptor substrates suitable for α-(1→6)-mannoside bond formation and that its catalytic activity would be specific for the elongation of the α-core-mannan structure in vivo. The identified AnpA is similar to Anp1p, which is involved in the elongation of the N-glycan outer chain in budding yeast, but the building sugar chain structure is different. The difference was attributed to the difference in substrate recognition of AnpA, which was clarified by simulations based on protein conformation. Thus, even proteins that seem to be functionally identical due to amino acid sequence similarity may be glycosyltransferase enzymes that make different glycans upon detailed analysis. This study describes an example of such a case. IMPORTANCE Fungal-type galactomannan is a polysaccharide incorporated into the cell wall of filamentous fungi belonging to the subphylum Pezizomycotina. Biosynthetic enzymes of fungal-type galactomannan are potential targets for antifungal drugs and agrochemicals. In this study, we identified an α-(1→6)-mannosyltransferase responsible for the biosynthesis of the α-core-mannan of fungal-type galactomannan, which has not been known for a long time. The findings of this study shed light on processes that shape this cellular structure while identifying a key enzyme essential for the biosynthesis of fungal-type galactomannan.
Collapse
|
8
|
Kadooka C, Hira D, Tanaka Y, Chihara Y, Goto M, Oka T. Mnt1, an α-(1 → 2)-mannosyltransferase responsible for the elongation of N-glycans and O-glycans in Aspergillus fumigatus. Glycobiology 2022; 32:1137-1152. [PMID: 35871410 DOI: 10.1093/glycob/cwac049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023] Open
Abstract
The fungal cell wall is necessary for survival as it serves a barrier for physical protection. Therefore, glycosyltransferases responsible for the synthesis of cell wall polysaccharides may be suitable targets for drug development. Mannose is a monosaccharide that is commonly found in sugar chains in the walls of fungi. Mannose residues are present in fungal-type galactomannan, O-glycans, N-glycans, glycosylphosphatidylinositol anchors, and glycosyl inositol phosphorylceramides in Aspergillus fumigatus. Three genes that are homologous to α-(1 → 2)-mannosyltransferase genes and belong to the glycosyltransferase family 15 were found in the A. fumigatus strain, Af293/A1163, genome: cmsA/ktr4, cmsB/ktr7, and mnt1. It is reported that the mutant ∆mnt1 strain exhibited a wide range of properties that included high temperature and drug sensitivity, reduced conidia formation, leakage at the hyphal tips, and attenuation of virulence. However, it is unclear whether Mnt1 is a bona fide α-(1 → 2)-mannosyltransferase and which mannose residues are synthesized by Mnt1 in vivo. In this study, we elucidated the structure of the Mnt1 reaction product, the structure of O-glycan in the Δmnt1 strain. In addition, the length of N-glycans attached to invertase was evaluated in the Δmnt1 strain. The results indicated that Mnt1 functioned as an α-(1 → 2)-mannosyltransferase involved in the elongation of N-glycans and synthesis of the second mannose residue of O-glycans. The widespread abnormal phenotype caused by the disruption of the mnt1 gene is the combined result of the loss of mannose residues from O-glycans and N-glycans. We also clarified the enzymatic properties and substrate specificity of Mnt1 based on its predicted protein structure.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yuria Chihara
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| |
Collapse
|
9
|
Role of Protein Glycosylation in Interactions of Medically Relevant Fungi with the Host. J Fungi (Basel) 2021; 7:jof7100875. [PMID: 34682296 PMCID: PMC8541085 DOI: 10.3390/jof7100875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/09/2023] Open
Abstract
Protein glycosylation is a highly conserved post-translational modification among organisms. It plays fundamental roles in many biological processes, ranging from protein trafficking and cell adhesion to host–pathogen interactions. According to the amino acid side chain atoms to which glycans are linked, protein glycosylation can be divided into two major categories: N-glycosylation and O-glycosylation. However, there are other types of modifications such as the addition of GPI to the C-terminal end of the protein. Besides the importance of glycoproteins in biological functions, they are a major component of the fungal cell wall and plasma membrane and contribute to pathogenicity, virulence, and recognition by the host immunity. Given that this structure is absent in host mammalian cells, it stands as an attractive target for developing selective compounds for the treatment of fungal infections. This review focuses on describing the relationship between protein glycosylation and the host–immune interaction in medically relevant fungal species.
Collapse
|
10
|
Zhou H, Xu Y, Ebel F, Jin C. Galactofuranose (Galf)-containing sugar chain contributes to the hyphal growth, conidiation and virulence of F. oxysporum f.sp. cucumerinum. PLoS One 2021; 16:e0250064. [PMID: 34329342 PMCID: PMC8323920 DOI: 10.1371/journal.pone.0250064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
The ascomycete fungus Fusarium oxysporum f.sp. cucumerinum causes vascular wilt diseases in cucumber. However, few genes related to morphogenesis and pathogenicity of this fungal pathogen have been functionally characterized. BLASTp searches of the Aspergillus fumigatus UgmA and galatofuranosyltransferases (Galf-transferases) sequences in the F. oxysporum genome identified two genes encoding putative UDP-galactopyranose mutase (UGM), ugmA and ugmB, and six genes encoding putative Galf-transferase homologs. In this study, the single and double mutants of the ugmA, ugmB and gfsB were obtained. The roles of UGMs and GfsB were investigated by analyzing the phenotypes of the mutants. Our results showed that deletion of the ugmA gene led to a reduced production of galactofuranose-containing sugar chains, reduced growth and impaired conidiation of F. oxysporum f.sp. cucumerinum. Most importantly, the ugmA deletion mutant lost the pathogenicity in cucumber plantlets. Although deletion of the ugmB gene did not cause any visible phenotype, deletion of both ugmA and ugmB genes caused more severe phenotypes as compared with the ΔugmA, suggesting that UgmA and UgmB are redundant and they can both contribute to synthesis of UDP-Galf. Furthermore, the ΔgfsB exhibited an attenuated virulence although no other phenotype was observed. Our results demonstrate that the galactofuranose (Galf) synthesis contributes to the cell wall integrity, germination, hyphal growth, conidiation and virulence in Fusarium oxysporum f.sp. cucumerinum and an ideal target for the development of new anti-Fusarium agents.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yueqiang Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, LMU, Munich, Germany
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Engineering Research Center for Non-food Bio-refinery, Guangxi Academy of Sciences, Nanning, China
- * E-mail:
| |
Collapse
|
11
|
Sándor E, Kolláth IS, Fekete E, Bíró V, Flipphi M, Kovács B, Kubicek CP, Karaffa L. Carbon-Source Dependent Interplay of Copper and Manganese Ions Modulates the Morphology and Itaconic Acid Production in Aspergillus terreus. Front Microbiol 2021; 12:680420. [PMID: 34093503 PMCID: PMC8173074 DOI: 10.3389/fmicb.2021.680420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of the interplay of copper(II) and manganese(II) ions on growth, morphology and itaconic acid formation was investigated in a high-producing strain of Aspergillus terreus (NRRL1960), using carbon sources metabolized either mainly via glycolysis (D-glucose, D-fructose) or primarily via the pentose phosphate shunt (D-xylose, L-arabinose). Limiting Mn2+ concentration in the culture broth is indispensable to obtain high itaconic acid yields, while in the presence of higher Mn2+ concentrations yield decreases and biomass formation is favored. However, this low yield in the presence of high Mn2+ ion concentrations can be mitigated by increasing the Cu2+ concentration in the medium when D-glucose or D-fructose is the growth substrate, whereas this effect was at best modest during growth on D-xylose or L-arabinose. A. terreus displays a high tolerance to Cu2+ which decreased when Mn2+ availability became increasingly limiting. Under such conditions biomass formation on D-glucose or D-fructose could be sustained at concentrations up to 250 mg L–1 Cu2+, while on D-xylose- or L-arabinose biomass formation was completely inhibited at 100 mg L–1. High (>75%) specific molar itaconic acid yields always coincided with an “overflow-associated” morphology, characterized by small compact pellets (<250 μm diameter) and short chains of “yeast-like” cells that exhibit increased diameters relative to the elongated cells in growing filamentous hyphae. At low concentrations (≤1 mg L–1) of Cu2+ ions, manganese deficiency did not prevent filamentous growth. Mycelial- and cellular morphology progressively transformed into the typical overflow-associated one when external Cu2+ concentrations increased, irrespective of the available Mn2+. Our results indicate that copper ions are relevant for overflow metabolism and should be considered when optimizing itaconic acid fermentation in A. terreus.
Collapse
Affiliation(s)
- Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - István S Kolláth
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Chemistry, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Vivien Bíró
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Galactomannan Produced by Aspergillus fumigatus: An Update on the Structure, Biosynthesis and Biological Functions of an Emblematic Fungal Biomarker. J Fungi (Basel) 2020; 6:jof6040283. [PMID: 33198419 PMCID: PMC7712326 DOI: 10.3390/jof6040283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The galactomannan (GM) that is produced by the human fungal pathogen Aspergillus fumigatus is an emblematic biomarker in medical mycology. The GM is composed of two monosaccharides: mannose and galactofuranose. The furanic configuration of galactose residues, absent in mammals, is responsible for the antigenicity of the GM and has favoured the development of ELISA tests to diagnose aspergillosis in immunocompromised patients. The GM that is produced by A. fumigatus is a unique fungal polysaccharide containing a tetramannoside repeat unit and having three different forms: (i) membrane bound through a glycosylphosphatidylinositol (GPI)-anchor, (ii) covalently linked to β-1,3-glucans in the cell wall, or (iii) released in the culture medium as a free polymer. Recent studies have revealed the crucial role of the GM during vegetative and polarized fungal growth. This review highlights these recent data on its biosynthetic pathway and its biological functions during the saprophytic and pathogenic life of this opportunistic human fungal pathogen.
Collapse
|
13
|
Hira D, Onoue T, Oka T. Structural basis for the core-mannan biosynthesis of cell wall fungal-type galactomannan in Aspergillus fumigatus. J Biol Chem 2020; 295:15407-15417. [PMID: 32873705 DOI: 10.1074/jbc.ra120.013742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/17/2020] [Indexed: 11/06/2022] Open
Abstract
Fungal cell walls and their biosynthetic enzymes are potential targets for novel antifungal agents. Recently, two mannosyltransferases, namely core-mannan synthases A (CmsA/Ktr4) and B (CmsB/Ktr7), were found to play roles in the core-mannan biosynthesis of fungal-type galactomannan. CmsA/Ktr4 is an α-(1→2)-mannosyltransferase responsible for α-(1→2)-mannan biosynthesis in fungal-type galactomannan, which covers the cell surface of Aspergillus fumigatus Strains with disrupted cmsA/ktr4 have been shown to exhibit strongly suppressed hyphal elongation and conidiation alongside reduced virulence in a mouse model of invasive aspergillosis, indicating that CmsA/Ktr4 is a potential novel antifungal candidate. In this study we present the 3D structures of the soluble catalytic domain of CmsA/Ktr4, as determined by X-ray crystallography at a resolution of 1.95 Å, as well as the enzyme and Mn2+/GDP complex to 1.90 Å resolution. The CmsA/Ktr4 protein not only contains a highly conserved binding pocket for the donor substrate, GDP-mannose, but also has a unique broad cleft structure formed by its N- and C-terminal regions and is expected to recognize the acceptor substrate, a mannan chain. Based on these crystal structures, we also present a 3D structural model of the enzyme-substrate complex generated using docking and molecular dynamics simulations with α-Man-(1→6)-α-Man-(1→2)-α-Man-OMe as the model structure for the acceptor substrate. This predicted enzyme-substrate complex structure is also supported by findings from single amino acid substitution CmsA/Ktr4 mutants expressed in ΔcmsA/ktr4 A. fumigatus cells. Taken together, these results provide basic information for developing specific α-mannan biosynthesis inhibitors for use as pharmaceuticals and/or pesticides.
Collapse
Affiliation(s)
- Daisuke Hira
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan.
| | - Takuya Onoue
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan.
| |
Collapse
|
14
|
Matsunaga E, Tanaka Y, Toyota S, Yamada H, Oka T, Higuchi Y, Takegawa K. Identification and characterization of β-d-galactofuranosidases from Aspergillus nidulans and Aspergillus fumigatus. J Biosci Bioeng 2020; 131:1-7. [PMID: 33011078 DOI: 10.1016/j.jbiosc.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
Although β-d-galactofuranosidases (Galf-ases) that hydrolyze β-d-galactofuranose (Galf)-containing oligosaccharides have been characterized in various organisms, to date no Galf-specific Galf-ase-encoding genes have been reported in Aspergillus fungi. Based on the amino acid sequences of previously identified bacterial Galf-ases, here we found two candidate Galf-specific Galf-ase genes AN2395 (gfgA) and AN3200 (gfgB) in the genome of Aspergillus nidulans. Indeed, recombinant GfgA and GfgB proteins exhibited Galf-specific Galf-ase activity, but no detectable α-l-arabinofuranosidase (Araf-ase) activity. Phylogenetic analysis of GfgA and GfgB orthologs indicated that there are two types of Aspergillus species: those containing one ortholog each for GfgA and GfgB; and those containing only one ortholog in total, among which Aspergillus fumigatus there is a representative with a single ortholog Galf-ase Afu2g14520. Unlike GfgA and GfgB, the recombinant Afu2g14520 protein showed higher Araf-ase activity than Galf-ase activity. An assay of substrate specificity revealed that although GfgA and GfgB are both exo-type Galf-ases and hydrolyze β-(1,5) and β-(1,6) linkages, GfgA hydrolyzes β-(1,6)-linked Galf-oligosaccharide more effectively as compared with GfgB. Collectively, our findings indicate that Galf-ases in Aspergillus species may have a role in cooperatively degrading Galf-containing oligosaccharides depending on environmental conditions.
Collapse
Affiliation(s)
- Emiko Matsunaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Saki Toyota
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hisae Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto 860-0082, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
15
|
Seničar M, Lafite P, Eliseeva SV, Petoud S, Landemarre L, Daniellou R. Galactofuranose-Related Enzymes: Challenges and Hopes. Int J Mol Sci 2020; 21:ijms21103465. [PMID: 32423053 PMCID: PMC7278926 DOI: 10.3390/ijms21103465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Galactofuranose is a rare form of the well-known galactose sugar, and its occurrence in numerous pathogenic micro-organisms makes the enzymes responsible for its biosynthesis interesting targets. Herein, we review the role of these carbohydrate-related proteins with a special emphasis on the galactofuranosidases we recently characterized as an efficient recombinant biocatalyst.
Collapse
Affiliation(s)
- Mateja Seničar
- Institut de Chimie Organique et Analytique, CNRS UMR 7311, Université d’Orléans, Rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France; (M.S.); (P.L.)
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS 8005, 45071 Orléans, France; (S.V.E.); (S.P.)
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique, CNRS UMR 7311, Université d’Orléans, Rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France; (M.S.); (P.L.)
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS 8005, 45071 Orléans, France; (S.V.E.); (S.P.)
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS 8005, 45071 Orléans, France; (S.V.E.); (S.P.)
| | | | - Richard Daniellou
- Institut de Chimie Organique et Analytique, CNRS UMR 7311, Université d’Orléans, Rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France; (M.S.); (P.L.)
- Correspondence: ; Tel.: +33-238-494-978
| |
Collapse
|
16
|
Biosynthesis of β-(1→5)-Galactofuranosyl Chains of Fungal-Type and O-Mannose-Type Galactomannans within the Invasive Pathogen Aspergillus fumigatus. mSphere 2020; 5:5/1/e00770-19. [PMID: 31941812 PMCID: PMC6968653 DOI: 10.1128/msphere.00770-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-(1→5)-Galactofuranosyl residues are widely distributed in the subphylum Pezizomycotina of the phylum Ascomycota. Pezizomycotina includes many plant and animal pathogens. Although the structure of β-(1→5)-galactofuranosyl residues of galactomannans in filamentous fungi was discovered long ago, it remains unclear which enzyme is responsible for biosynthesis of this glycan. Fungal cell wall formation processes are complicated, and information concerning glycosyltransferases is essential for understanding them. In this study, we showed that GfsA and GfsC are responsible for the biosynthesis of all β-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans. The data presented here indicate that β-(1→5)-galactofuranosyl residues are involved in cell growth, conidiation, polarity, and cell surface hydrophobicity. Our new understanding of β-(1→5)-galactofuranosyl residue biosynthesis provides important novel insights into the formation of the complex cell wall structure and the virulence of the members of the subphylum Pezizomycotina. The pathogenic fungus Aspergillus fumigatus contains galactomannans localized on the surface layer of its cell walls, which are involved in various biological processes. Galactomannans comprise α-(1→2)-/α-(1→6)-mannan and β-(1→5)-/β-(1→6)-galactofuranosyl chains. We previously revealed that GfsA is a β-galactofuranoside β-(1→5)-galactofuranosyltransferase involved in the biosynthesis of β-(1→5)-galactofuranosyl chains. In this study, we clarified the biosynthesis of β-(1→5)-galactofuranosyl chains in A. fumigatus. Two paralogs exist within A. fumigatus: GfsB and GfsC. We show that GfsB and GfsC, in addition to GfsA, are β-galactofuranoside β-(1→5)-galactofuranosyltransferases by biochemical and genetic analyses. GfsA, GfsB, and GfsC can synthesize β-(1→5)-galactofuranosyl oligomers at up to lengths of 7, 3, and 5 galactofuranoses within an established in vitro highly efficient assay of galactofuranosyltransferase activity. Structural analyses of galactomannans extracted from ΔgfsB, ΔgfsC, ΔgfsAC, and ΔgfsABC strains revealed that GfsA and GfsC synthesized all β-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans and that GfsB exhibited limited function in A. fumigatus. The loss of β-(1→5)-galactofuranosyl residues decreased the hyphal growth rate and conidium formation ability and increased the abnormal hyphal branching structure and cell surface hydrophobicity, but this loss is dispensable for sensitivity to antifungal agents and virulence toward immunocompromised mice. IMPORTANCE β-(1→5)-Galactofuranosyl residues are widely distributed in the subphylum Pezizomycotina of the phylum Ascomycota. Pezizomycotina includes many plant and animal pathogens. Although the structure of β-(1→5)-galactofuranosyl residues of galactomannans in filamentous fungi was discovered long ago, it remains unclear which enzyme is responsible for biosynthesis of this glycan. Fungal cell wall formation processes are complicated, and information concerning glycosyltransferases is essential for understanding them. In this study, we showed that GfsA and GfsC are responsible for the biosynthesis of all β-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans. The data presented here indicate that β-(1→5)-galactofuranosyl residues are involved in cell growth, conidiation, polarity, and cell surface hydrophobicity. Our new understanding of β-(1→5)-galactofuranosyl residue biosynthesis provides important novel insights into the formation of the complex cell wall structure and the virulence of the members of the subphylum Pezizomycotina.
Collapse
|
17
|
|
18
|
Lee DJ, O'Donnell H, Routier FH, Tiralongo J, Haselhorst T. Glycobiology of Human Fungal Pathogens: New Avenues for Drug Development. Cells 2019; 8:cells8111348. [PMID: 31671548 PMCID: PMC6912366 DOI: 10.3390/cells8111348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal infections (IFI) are an increasing threat to the developing world, with fungal spores being ubiquitous and inhaled every day. Some fungal species are commensal organisms that are part of the normal human microbiota, and, as such, do not pose a threat to the immune system. However, when the natural balance of this association is disturbed or the host's immune system is compromised, these fungal pathogens overtake the organism, and cause IFI. To understand the invasiveness of these pathogens and to address the growing problem of IFI, it is essential to identify the cellular processes of the invading organism and their virulence. In this review, we will discuss the prevalence and current options available to treat IFI, including recent reports of drug resistance. Nevertheless, the main focus of this review is to describe the glycobiology of human fungal pathogens and how various components of the fungal cell wall, particularly cell wall polysaccharides and glycoconjugates, are involved in fungal pathogenicity, their biosynthesis and how they can be potentially exploited to develop novel antifungal treatment options. We will specifically describe the nucleotide sugar transporters (NSTs) that are important in fungal survival and suggest that the inhibition of fungal NSTs may potentially be useful to prevent the establishment of fungal infections.
Collapse
Affiliation(s)
- Danielle J Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Holly O'Donnell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Françoise H Routier
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
19
|
de Oliveira NF, Santos GRC, Xisto MIDS, Pires Dos Santos GM, Nucci M, Haido RMT, Barreto-Bergter E. β-1,6-linked Galactofuranose- rich peptidogalactomannan of Fusarium oxysporum is important in the activation of macrophage mechanisms and as a potential diagnostic antigen. Med Mycol 2019; 57:234-245. [PMID: 29767770 DOI: 10.1093/mmy/myx167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A peptidogalactomannan (PGM) from Fusarium oxysporum was structurally characterized by a combination of chemical and spectroscopic methods, including one and two-dimensional nuclear magnetic resonance (1D and 2D NMR). The galactomannan component consists of a main chain containing (1→6)-linked β-D-galactofuranose residues with side chains containing (1→2)-linked α-D-Glcp, (1→2)-linked -β-D-Manp (1→2) and β-D-Manp terminal nonreducing end units and differs from that of Aspergillus fumigatus and Cladosporium resinae that present a main chain containing (1→6)-linked α-D-Manp residues presenting β-D-Galf as side chains of 3-4 units that are (1→5)-interlinked. The importance of the carbohydrate moiety of the F. oxysporum PGM was demonstrated. Periodate oxidation abolished much of the PGM antigenic activity. A strong decrease in reactivity was also observed with de-O-glycosylated PGM. In addition, de-O-glycosylated PGM was not able to inhibit F. oxysporum phagocytosis, suggesting that macrophages recognize and internalize F. oxysporum via PGM. F. oxysporum PGM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PGM led to a significant increase of TNF-α cytokine levels, suggesting that their removal could exposure another PGM motifs able to induce a higher secretion of TNF-α levels. Interestingly, F. oxysporum conidia, intact and de-O-linked PGM were not able to induce IL-10 cytokine release. The difference in patient serum reativity using a PGM from F. oxysporum characterized in the present study as compared with a PGM from C. resinae, that presents the same epitopes recognized by serum from patients with aspergillosis, could be considered a potential diagnostic antigen and should be tested with more sera.
Collapse
Affiliation(s)
- Nathalia Ferreira de Oliveira
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Bloco I, Ilha do Fundão, 21941-970, Rio de Janeiro, RJ, Brazil
| | - Gustavo R C Santos
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), 21941-913, Rio de Janeiro, RJ, Brazil
| | - Mariana Ingrid D S Xisto
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Bloco I, Ilha do Fundão, 21941-970, Rio de Janeiro, RJ, Brazil
| | | | - Marcio Nucci
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), 21941-913, Rio de Janeiro, RJ, Brazil
| | | | - Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Bloco I, Ilha do Fundão, 21941-970, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Arentshorst M, de Lange D, Park J, Lagendijk EL, Alazi E, van den Hondel CAMJJ, Ram AFJ. Functional analysis of three putative galactofuranosyltransferases with redundant functions in galactofuranosylation in Aspergillus niger. Arch Microbiol 2019; 202:197-203. [PMID: 31372664 PMCID: PMC6949202 DOI: 10.1007/s00203-019-01709-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/20/2019] [Indexed: 10/27/2022]
Abstract
Galactofuranose (Galf)-containing glycostructures are important to secure the integrity of the fungal cell wall. Golgi-localized Galf-transferases (Gfs) have been identified in Aspergillus nidulans and Aspergillus fumigatus. BLASTp searches identified three putative Galf-transferases in Aspergillus niger. Phylogenetic analysis showed that they group in three distinct groups. Characterization of the three Galf-transferases in A. niger by constructing single, double, and triple mutants revealed that gfsA is most important for Galf biosynthesis. The growth phenotypes of the ΔgfsA mutant are less severe than that of the ΔgfsAC mutant, indicating that GfsA and GfsC have redundant functions. Deletion of gfsB did not result in any growth defect and combining ΔgfsB with other deletion mutants did not exacerbate the growth phenotype. RT-qPCR experiments showed that induction of the agsA gene was higher in the ΔgfsAC and ΔgfsABC compared to the single mutants, indicating a severe cell wall stress response after multiple gfs gene deletions.
Collapse
Affiliation(s)
- Mark Arentshorst
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Davina de Lange
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Joohae Park
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ellen L Lagendijk
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Koppert Biological Systems, Veilingweg 14, 2651 BE, Berkel en Rodenrijs, The Netherlands
| | - Ebru Alazi
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Cees A M J J van den Hondel
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
21
|
Muszkieta L, Fontaine T, Beau R, Mouyna I, Vogt MS, Trow J, Cormack BP, Essen LO, Jouvion G, Latgé JP. The Glycosylphosphatidylinositol-Anchored DFG Family Is Essential for the Insertion of Galactomannan into the β-(1,3)-Glucan-Chitin Core of the Cell Wall of Aspergillus fumigatus. mSphere 2019; 4:e00397-19. [PMID: 31366710 PMCID: PMC6669337 DOI: 10.1128/msphere.00397-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 11/20/2022] Open
Abstract
The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. At the cell wall level, enzyme activities are involved in postsynthesis polysaccharide modifications such as cleavage, elongation, branching, and cross-linking. Glycosylphosphatidylinositol (GPI)-anchored proteins have been shown to participate in cell wall biosynthesis and specifically in polysaccharide remodeling. Among these proteins, the DFG family plays an essential role in controlling polar growth in yeast. In the filamentous fungus and opportunistic human pathogen Aspergillus fumigatus, the DFG gene family contains seven orthologous DFG genes among which only six are expressed under in vitro growth conditions. Deletions of single DFG genes revealed that DFG3 plays the most important morphogenetic role in this gene family. A sextuple-deletion mutant resulting from the deletion of all in vitro expressed DFG genes did not contain galactomannan in the cell wall and has severe growth defects. This study has shown that DFG members are absolutely necessary for the insertion of galactomannan into the cell wall of A. fumigatus and that the proper cell wall localization of the galactomannan is essential for correct fungal morphogenesis in A. fumigatusIMPORTANCE The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. Enzymes involved in postsynthesis polysaccharide modifications, such as cleavage, elongation, branching, and cross-linking, are essential for fungal life. Here, we investigated in Aspergillus fumigatus the role of the members of the Dfg family, one of the 4 GPI-anchored protein families common to yeast and molds involved in cell wall remodeling. Molecular and biochemical approaches showed that DFG members are required for filamentous growth, conidiation, and cell wall organization and are essential for the life of this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Rémi Beau
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | | | | | - Jonathan Trow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lars-Oliver Essen
- Faculty of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Gregory Jouvion
- Histopathologie humaine et modèles animaux, Institut Pasteur, Paris, France
| | | |
Collapse
|
22
|
Zacharias CA, Sheppard DC. The role of Aspergillus fumigatus polysaccharides in host-pathogen interactions. Curr Opin Microbiol 2019; 52:20-26. [PMID: 31121411 DOI: 10.1016/j.mib.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Aspergillus fumigatus is a saprophytic mold that can cause infection in patients with impaired immunity or chronic lung diseases. The polysaccharide-rich cell wall of this fungus is a key point of contact with the host immune system. The availability of purified cell wall polysaccharides and mutant strains deficient in the production of these glycans has revealed that these glycans play an important role in the pathogenesis of A. fumigatus infections. Herein, we review our current understanding of the key polysaccharides present within the A. fumigatus cell wall, and their interactions with host cells and secreted factors during infection.
Collapse
Affiliation(s)
- Caitlin A Zacharias
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Department of Medicine, Infectious Diseases and Immunity in Global Health Program, Centre for Translational Biology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Department of Medicine, Infectious Diseases and Immunity in Global Health Program, Centre for Translational Biology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
23
|
Two KTR Mannosyltransferases Are Responsible for the Biosynthesis of Cell Wall Mannans and Control Polarized Growth in Aspergillus fumigatus. mBio 2019; 10:mBio.02647-18. [PMID: 30755510 PMCID: PMC6372797 DOI: 10.1128/mbio.02647-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It allows fungal pathogens to survive environmental challenge posed by nutrient stress and host defenses, and it also is central to polarized growth. The cell wall is mainly composed of polysaccharides organized in a three-dimensional network. Aspergillus fumigatus produces a cell wall galactomannan whose biosynthetic pathway and biological functions remain poorly defined. Here, we described two new mannosyltransferases essential to the synthesis of the cell wall galactomannan. Their absence leads to a growth defect with misregulation of polarization and altered conidiation, with conidia which are bigger and more permeable than the conidia of the parental strain. This study showed that in spite of its low concentration in the cell wall, this polysaccharide is absolutely required for cell wall stability, for apical growth, and for the full virulence of A. fumigatus. Fungal cell wall mannans are complex carbohydrate polysaccharides with different structures in yeasts and molds. In contrast to yeasts, their biosynthetic pathway has been poorly investigated in filamentous fungi. In Aspergillus fumigatus, the major mannan structure is a galactomannan that is cross-linked to the β-1,3-glucan-chitin cell wall core. This polymer is composed of a linear mannan with a repeating unit composed of four α1,6-linked and α1,2-linked mannoses with side chains of galactofuran. Despite its use as a biomarker to diagnose invasive aspergillosis, its biosynthesis and biological function were unknown. Here, we have investigated the function of three members of the Ktr (also named Kre2/Mnt1) family (Ktr1, Ktr4, and Ktr7) in A. fumigatus and show that two of them are required for the biosynthesis of galactomannan. In particular, we describe a newly discovered form of α-1,2-mannosyltransferase activity encoded by the KTR4 gene. Biochemical analyses showed that deletion of the KTR4 gene or the KTR7 gene leads to the absence of cell wall galactomannan. In comparison to parental strains, the Δktr4 and Δktr7 mutants showed a severe growth phenotype with defects in polarized growth and in conidiation, marked alteration of the conidial viability, and reduced virulence in a mouse model of invasive aspergillosis. In yeast, the KTR proteins are involved in protein 0- and N-glycosylation. This study provided another confirmation that orthologous genes can code for proteins that have very different biological functions in yeasts and filamentous fungi. Moreover, in A. fumigatus, cell wall mannans are as important structurally as β-glucans and chitin.
Collapse
|
24
|
Ota R, Okamoto Y, Vavricka CJ, Oka T, Matsunaga E, Takegawa K, Kiyota H, Izumi M. Chemo-enzymatic synthesis of p-nitrophenyl β-D-galactofuranosyl disaccharides from Aspergillus sp. fungal-type galactomannan. Carbohydr Res 2019; 473:99-103. [PMID: 30658252 DOI: 10.1016/j.carres.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 11/28/2022]
Abstract
β-d-Galactofuranose (Galf) is a component of polysaccharides and glycoconjugates. There are few reports about the involvement of galactofuranosyltransferases and galactofuranosidases (Galf-ases) in the synthesis and degradation of galactofuranose-containing glycans. The cell walls of filamentous fungi in the genus Aspergillus include galactofuranose-containing polysaccharides and glycoconjugates, such as O-glycans, N-glycans, and fungal-type galactomannan, which are important for cell wall integrity. In this study, we investigated the synthesis of p-nitrophenyl β-d-galactofuranoside and its disaccharides by chemo-enzymatic methods including use of galactosidase. The key step was selective removal of the concomitant pyranoside by enzymatic hydrolysis to purify p-nitrophenyl β-d-galactofuranoside, a promising substrate for β-d-galactofuranosidase from Streptomyces species.
Collapse
Affiliation(s)
- Ryo Ota
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan
| | - Yumi Okamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan
| | - Christopher J Vavricka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, 4-22-1, Kumamoto 860-0082, Japan
| | - Emiko Matsunaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan
| | - Minoru Izumi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan.
| |
Collapse
|
25
|
Identification of Two Mannosyltransferases Contributing to Biosynthesis of the Fungal-type Galactomannan α-Core-Mannan Structure in Aspergillus fumigatus. Sci Rep 2018; 8:16918. [PMID: 30446686 PMCID: PMC6240093 DOI: 10.1038/s41598-018-35059-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/28/2018] [Indexed: 01/31/2023] Open
Abstract
Fungal-type galactomannan (FTGM) is a polysaccharide composed of α-(1 → 2)-/α-(1 → 6)-mannosyl and β-(1 → 5)-/β-(1 → 6)-galactofuranosyl residues located at the outer cell wall of the human pathogenic fungus Aspergillus fumigatus. FTGM contains a linear α-mannan structure called core-mannan composed of 9 or 10 α-(1 → 2)-mannotetraose units jointed by α-(1 → 6)-linkages. However, the enzymes involved in core-mannan biosynthesis remain unknown. We speculated that two putative α-1,2-mannosyltransferase genes in A. fumigatus, Afu5g02740/AFUB_051270 (here termed core-mannan synthase A [CmsA]) and Afu5g12160/AFUB_059750 (CmsB) are involved in FTGM core-mannan biosynthesis. We constructed recombinant proteins for CmsA and detected robust mannosyltransferase activity using the chemically synthesized substrate p-nitrophenyl α-d-mannopyranoside as an acceptor. Analyses of CmsA enzymatic product revealed that CmsA possesses the capacity to transfer a mannopyranoside to the C-2 position of α-mannose. CmsA could also transfer a mannose residue to α-(1 → 2)-mannobiose and α-(1 → 6)-mannobiose and showed a 31-fold higher specific activity toward α-(1 → 6)-mannobiose than toward α-(1 → 2)-mannobiose. Proton nuclear magnetic resonance (1H-NMR) spectroscopy and gel filtration chromatography of isolated FTGM revealed that core-mannan structures were drastically altered and shortened in disruptant A. fumigatus strains ∆cmsA, ∆cmsB, and ∆cmsA∆cmsB. Disruption of cmsA or cmsB resulted in severely repressed hyphal extension, abnormal branching hyphae, formation of a balloon structure in hyphae, and decreased conidia formation. The normal wild type core-mannan structure and developmental phenotype were restored by the complementation of cmsA and cmsB in the corresponding disruptant strains. These findings indicate that both CmsA, an α-1,2-mannosyltransferase, and CmsB, a putative mannosyltransferase, are involved in FTGM biosynthesis.
Collapse
|
26
|
Amino Acid Metabolism and Transport Mechanisms as Potential Antifungal Targets. Int J Mol Sci 2018; 19:ijms19030909. [PMID: 29562716 PMCID: PMC5877770 DOI: 10.3390/ijms19030909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/15/2023] Open
Abstract
Discovering new drugs for treatment of invasive fungal infections is an enduring challenge. There are only three major classes of antifungal agents, and no new class has been introduced into clinical practice in more than a decade. However, recent advances in our understanding of the fungal life cycle, functional genomics, proteomics, and gene mapping have enabled the identification of new drug targets to treat these potentially deadly infections. In this paper, we examine amino acid transport mechanisms and metabolism as potential drug targets to treat invasive fungal infections, including pathogenic yeasts, such as species of Candida and Cryptococcus, as well as molds, such as Aspergillus fumigatus. We also explore the mechanisms by which amino acids may be exploited to identify novel drug targets and review potential hurdles to bringing this approach into clinical practice.
Collapse
|
27
|
Li J, Mouyna I, Henry C, Moyrand F, Malosse C, Chamot-Rooke J, Janbon G, Latgé JP, Fontaine T. Glycosylphosphatidylinositol Anchors from Galactomannan and GPI-Anchored Protein Are Synthesized by Distinct Pathways in Aspergillus fumigatus. J Fungi (Basel) 2018; 4:E19. [PMID: 29393895 PMCID: PMC5872322 DOI: 10.3390/jof4010019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are lipid anchors allowing the exposure of proteins at the outer layer of the plasma membrane. In fungi, a number of GPI-anchored proteins (GPI-APs) are involved in the remodeling of the cell wall polymers. GPIs follow a specific biosynthetic pathway in the endoplasmic reticulum. After the transfer of the protein onto the GPI-anchor, a lipid remodeling occurs to substitute the diacylglycerol moiety by a ceramide. In addition to GPI-APs, A. fumigatus produces a GPI-anchored polysaccharide, the galactomannan (GM), that remains unique in the fungal kingdom. To investigate the role of the GPI pathway in the biosynthesis of the GM and cell wall organization, the deletion of PER1-coding for a phospholipase required for the first step of the GPI lipid remodeling-was undertaken. Biochemical characterization of the GPI-anchor isolated from GPI-APs showed that the PER1 deficient mutant produced a lipid anchor with a diacylglycerol. The absence of a ceramide on GPI-anchors in the Δper1 mutant led to a mislocation of GPI-APs and to an alteration of the composition of the cell wall alkali-insoluble fraction. On the other hand, the GM isolated from the Δper1 mutant membranes possesses a ceramide moiety as the parental strain, showing that GPI anchor of the GM follow a distinct unknown biosynthetic pathway.
Collapse
Affiliation(s)
- Jizhou Li
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Isabelle Mouyna
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Christine Henry
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Frédérique Moyrand
- Unité de Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Christian Malosse
- Unité de Spectrométrie de Masse pour la Biologie, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France.
| | - Julia Chamot-Rooke
- Unité de Spectrométrie de Masse pour la Biologie, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France.
| | - Guilhem Janbon
- Unité de Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Jean-Paul Latgé
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Thierry Fontaine
- Unité des Aspergillus, 25 rue du Docteur Roux, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
28
|
Oka T. Biosynthesis of galactomannans found in filamentous fungi belonging to Pezizomycotina. Biosci Biotechnol Biochem 2018; 82:183-191. [PMID: 29334321 DOI: 10.1080/09168451.2017.1422383] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The galactomannans (GMs) that are produced by filamentous fungi belonging to Pezizomycotina, many of which are pathogenic for animals and plants, are polysaccharides consisting of α-(1→2)-/α-(1→6)-mannosyl and β-(1→5)-/β-(1→6)-galactofuranosyl residues. GMs are located at the outermost layer of the cell wall. When a pathogenic fungus infects a host, its cell surface must be in contact with the host. The GMs on the cell surface may be involved in the infection mechanism of a pathogenic fungus or the defense mechanism of a host. There are two types of GMs in filamentous fungi, fungal-type galactomannans and O-mannose type galactomannans. Recent biochemical and genetic advances have facilitated a better understanding of the biosynthesis of both types. This review summarizes our current information on their biosynthesis.
Collapse
Affiliation(s)
- Takuji Oka
- a Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science , Sojo University , Kumamoto , Japan
| |
Collapse
|