1
|
Wang J, Jiao H, Zhang X, Zhang Y, Sun N, Yang Y, Wei Y, Hu B, Guo X. Two Enteropathogenic Escherichia coli Strains Representing Novel Serotypes and Investigation of Their Roles in Adhesion. J Microbiol Biotechnol 2021; 31:1191-1199. [PMID: 34261855 PMCID: PMC9705854 DOI: 10.4014/jmb.2105.05016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC), which belongs to the attaching and effacing diarrheagenic E. coli strains, is a major causative agent of life-threatening diarrhea in infants in developing countries. Most EPEC isolates correspond to certain O serotypes; however, many strains are nontypeable. Two EPEC strains, EPEC001 and EPEC080, which could not be serotyped during routine detection, were isolated. In this study, we conducted an in-depth characterization of their putative O-antigen gene clusters (O-AGCs) and also performed constructed mutagenesis of the O-AGCs for functional analysis of O-antigen (OAg) synthesis. Sequence analysis revealed that the occurrence of O-AGCs in EPEC001 and E. coli O132 may be mediated by recombination between them, and EPEC080 and E. coli O2/O50 might acquire each O-AGC from uncommon ancestors. We also indicated that OAgknockout bacteria were highly adhesive in vitro, except for the EPEC001 wzy derivative, whose adherent capability was less than that of its wild-type strain, providing direct evidence that OAg plays a key role in EPEC pathogenesis. Together, we identified two EPEC O serotypes in silico and experimentally, and we also studied the adherent capabilities of their OAgs, which highlighted the fundamental and pathogenic role of OAg in EPEC.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - HongBo Jiao
- LanLing Center for Disease Control and Prevention, 1 City Huibao Road, Lanling 276000, Lanling Shandong, P.R. China
| | - XinFeng Zhang
- Taian Center for Disease Control and Prevention, 33 Changcheng Road, Taian 271000, Shandong, P.R. China
| | - YuanQing Zhang
- Jinan KeJia Medical Laboratory, Inc., 800 Minghu West Road, Jinan 250001, Shandong, P.R. China
| | - Na Sun
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China,Corresponding authors B. Hu Phone: +86-0531-82679738 Fax: +86-531-82679750 E-mail:
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,
X. Guo Phone: +86-22-66229574 Fax: +86-22-66229584 E-mail:
| |
Collapse
|
2
|
Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, Reeves PR, Knirel YA, Wang L, Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev 2020; 44:655-683. [PMID: 31778182 PMCID: PMC7685785 DOI: 10.1093/femsre/fuz028] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Quan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Peter R Reeves
- School of Molecular and Microbial Bioscience, University of Sydney, 2 Butilin Ave, Darlington NSW 2008, Sydney, Australia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Abstract
Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA. Flagellin, the agent of prokaryotic flagellar motion, is very widely distributed and is the H antigen of serology. Flagellin molecules have a variable region that confers serotype specificity, encoded by the middle of the gene, and also conserved regions encoded by the two ends of the gene. We collected all available prokaryotic flagellin protein sequences and found the variable region diversity to be at two levels. In each species investigated, there are hypervariable region (HVR) forms without detectable homology in protein sequences between them. There is also considerable variation within HVR forms, indicating that some have been diverging for thousands of years and that interphylum horizontal gene transfers make a major contribution to the evolution of such atypical diversity. IMPORTANCE Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA.
Collapse
|
4
|
|
5
|
Harris S, Piotrowska MJ, Goldstone RJ, Qi R, Foster G, Dobrindt U, Madec JY, Valat C, Rao FV, Smith DGE. Variant O89 O-Antigen of E. coli Is Associated With Group 1 Capsule Loci and Multidrug Resistance. Front Microbiol 2018; 9:2026. [PMID: 30233517 PMCID: PMC6128206 DOI: 10.3389/fmicb.2018.02026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial surface polysaccharides play significant roles in fitness and virulence. In Gram-negative bacteria such as Escherichia coli, major surface polysaccharides are lipopolysaccharide (LPS) and capsule, representing O- and K-antigens, respectively. There are multiple combinations of O:K types, many of which are well-characterized and can be related to ecotype or pathotype. In this investigation, we have identified a novel O:K permutation resulting through a process of major genome reorganization in a clade of E. coli. A multidrug-resistant, extended-spectrum β-lactamase (ESBL)-producing strain - E. coli 26561 - represented a prototype of strains combining a locus variant of O89 and group 1 capsular polysaccharide. Specifically, the variant O89 locus in this strain was truncated at gnd, flanked by insertion sequences and located between nfsB and ybdK and we apply the term O89m for this variant. The prototype lacked colanic acid and O-antigen loci between yegH and hisI with this tandem polysaccharide locus being replaced with a group 1 capsule (G1C) which, rather than being a recognized E. coli capsule type, this locus matched to Klebsiella K10 capsule type. A genomic survey identified more than 200 E. coli strains which possessed the O89m locus variant with one of a variety of G1C types. Isolates from our collection with the combination of O89m and G1C all displayed a mucoid phenotype and E. coli 26561 was unusual in exhibiting a mucoviscous phenotype more recognized as a characteristic among Klebsiella strains. Despite the locus truncation and novel location, all O89m:G1C strains examined showed a ladder pattern typifying smooth LPS and also showed high molecular weight, alcian blue-staining polysaccharide in cellular and/or extra-cellular fractions. Expression of both O-antigen and capsule biosynthesis loci were confirmed in prototype strain 26561 through quantitative proteome analysis. Further in silico exploration of more than 200 E. coli strains possessing the O89m:G1C combination identified a very high prevalence of multidrug resistance (MDR) - 85% possessed resistance to three or more antibiotic classes and a high proportion (58%) of these carried ESBL and/or carbapenemase. The increasing isolation of O89m:G1C isolates from extra-intestinal infection sites suggests that these represents an emergent clade of invasive, MDR E. coli.
Collapse
Affiliation(s)
- Susan Harris
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Marta J Piotrowska
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | | | - Ruby Qi
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Geoffrey Foster
- Veterinary Services, SAC Consulting, Scotland's Rural College, Inverness, United Kingdom
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Jean-Yves Madec
- Unité Antibiorésistances et Virulences Bactériennes, Anses Laboratoire de Lyon, Université Lyon-1, Lyon, France
| | - Charlotte Valat
- Unité Antibiorésistances et Virulences Bactériennes, Anses Laboratoire de Lyon, Université Lyon-1, Lyon, France
| | | | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Guo X, Wang M, Wang L, Wang Y, Chen T, Wu P, Chen M, Liu B, Feng L. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes. Front Microbiol 2018; 9:501. [PMID: 29616012 PMCID: PMC5867348 DOI: 10.3389/fmicb.2018.00501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/05/2018] [Indexed: 11/17/2022] Open
Abstract
Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes. A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes, providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes, providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen.
Collapse
Affiliation(s)
- Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education-Tianjin Economic-Technological Development Area, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University-Tianjin Economic-Technological Development Area, Tianjin, China
| | - Min Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education-Tianjin Economic-Technological Development Area, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University-Tianjin Economic-Technological Development Area, Tianjin, China
| | - Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University-Tianjin Economic-Technological Development Area, Tianjin, China
| | - Yao Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University-Tianjin Economic-Technological Development Area, Tianjin, China
| | - Tingting Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University-Tianjin Economic-Technological Development Area, Tianjin, China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University-Tianjin Economic-Technological Development Area, Tianjin, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education-Tianjin Economic-Technological Development Area, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University-Tianjin Economic-Technological Development Area, Tianjin, China
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education-Tianjin Economic-Technological Development Area, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University-Tianjin Economic-Technological Development Area, Tianjin, China
| |
Collapse
|
7
|
Senchenkova SN, Hou W, Naumenko OI, Geng P, Shashkov AS, Perepelov AV, Yang B, Knirel YA. Structure and genetics of a glycerol 2-phosphate-containing O-specific polysaccharide of Escherichia coli O33. Carbohydr Res 2018. [PMID: 29524726 DOI: 10.1016/j.carres.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An O-specific polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Escherichia coli O33 followed by gel-permeation chromatography on Sephadex G-50. The polysaccharide was found to contain glycerol 2-phosphate (Gro-2-P), and the following structure of its tetrasaccharide repeat was established by sugar analysis, dephosphorylation, and 1D and 2D 1H and 13C NMR spectroscopy: The O33-antigen gene cluster was analyzed and found to be essentially consistent with the O-polysaccharide structure.
Collapse
Affiliation(s)
- Sof'ya N Senchenkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Wenqi Hou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Olesya I Naumenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation; Higher Chemical College of the Russian Academy of Sciences, D.I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Peng Geng
- School of Basic Medical Sciences, Tianjin Medical University, Heping District, Tianjin, 300070, PR China
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| | - Bin Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| |
Collapse
|