1
|
Qi Z, Lei B, Xiong M, Li W, Liao Y, Cai D, Ma X, Zhang R, Chen S. High-level production of chitinase by multi-strategy combination optimization in Bacillus licheniformis. World J Microbiol Biotechnol 2024; 40:181. [PMID: 38668833 DOI: 10.1007/s11274-024-03995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
In view of the extensive potential applications of chitinase (ChiA) in various fields such as agriculture, environmental protection, medicine, and biotechnology, the development of a high-yielding strain capable of producing chitinase with enhanced activity holds significant importance. The objective of this study was to utilize the extracellular chitinase from Bacillus thuringiensis as the target, and Bacillus licheniformis as the expression host to achieve heterologous expression of ChiA with enhanced activity. Initially, through structural analysis and molecular dynamics simulation, we identified key amino acids to improve the enzymatic performance of chitinase, and the specific activity of chitinase mutant D116N/E118N was 48% higher than that of the natural enzyme, with concomitant enhancements in thermostability and pH stability. Subsequently, the expression elements of ChiA(D116N/E118N) were screened and modified in Bacillus licheniformis, resulting in extracellular ChiA activity reached 89.31 U/mL. Further efforts involved the successful knockout of extracellular protease genes aprE, bprA and epr, along with the gene clusters involved in the synthesis of by-products such as bacitracin and lichenin from Bacillus licheniformis. This led to the development of a recombinant strain, DW2△abelA, which exhibited a remarkable improvement in chitinase activity, reaching 145.56 U/mL. To further improve chitinase activity, a chitinase expression frame was integrated into the genome of DW2△abelA, resulting in a significant increas to 180.26 U/mL. Optimization of fermentation conditions and medium components further boosted shake flask enzyme activity shake flask enzyme activity, achieving 200.28 U/mL, while scale-up fermentation experiments yielded an impressive enzyme activity of 338.79 U/mL. Through host genetic modification, expression optimization and fermentation optimization, a high-yielding ChiA strain was successfully constructed, which will provide a solid foundation for the extracellular production of ChiA.
Collapse
Affiliation(s)
- Zhimin Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Bo Lei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Min Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Weijia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Yongqing Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Ruibin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China.
| |
Collapse
|
2
|
Tamburino R, Marcolongo L, Sannino L, Ionata E, Scotti N. Plastid Transformation: New Challenges in the Circular Economy Era. Int J Mol Sci 2022; 23:ijms232315254. [PMID: 36499577 PMCID: PMC9736159 DOI: 10.3390/ijms232315254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In a circular economy era the transition towards renewable and sustainable materials is very urgent. The development of bio-based solutions, that can ensure technological circularity in many priority areas (e.g., agriculture, biotechnology, ecology, green industry, etc.), is very strategic. The agricultural and fishing industry wastes represent important feedstocks that require the development of sustainable and environmentally-friendly industrial processes to produce and recover biofuels, chemicals and bioactive molecules. In this context, the replacement, in industrial processes, of chemicals with enzyme-based catalysts assures great benefits to humans and the environment. In this review, we describe the potentiality of the plastid transformation technology as a sustainable and cheap platform for the production of recombinant industrial enzymes, summarize the current knowledge on the technology, and display examples of cellulolytic enzymes already produced. Further, we illustrate several types of bacterial auxiliary and chitinases/chitin deacetylases enzymes with high biotechnological value that could be manufactured by plastid transformation.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | | | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | - Elena Ionata
- CNR-IRET, Research Institute on Terrestrial Ecosystems, 80131 Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
- Correspondence:
| |
Collapse
|
3
|
Žárský V, Klimeš V, Pačes J, Vlček Č, Hradilová M, Beneš V, Nývltová E, Hrdý I, Pyrih J, Mach J, Barlow L, Stairs CW, Eme L, Hall N, Eliáš M, Dacks JB, Roger A, Tachezy J. The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba. Mol Biol Evol 2021; 38:2240-2259. [PMID: 33528570 PMCID: PMC8136499 DOI: 10.1093/molbev/msab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host–parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).
Collapse
Affiliation(s)
- Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Pačes
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimír Beneš
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Eva Nývltová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lael Barlow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Laura Eme
- Diversity, Ecology and Evolution of Microbes (DEEM), Unité Ecologie Systématique Evolution Université Paris-Saclay, Orsay, France
| | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Joel B Dacks
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Institute of Parasitology, Biology Centre, CAS, v.v.i., Ceske Budejovice, Czech Republic
| | - Andrew Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|