1
|
Fransz P, van de Belt J, de Jong H. Extended DNA Fibers for High-Resolution Mapping. Methods Mol Biol 2023; 2672:351-363. [PMID: 37335488 DOI: 10.1007/978-1-0716-3226-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
DNA fiber-FISH is an easy and simple light microscopic method to map unique and repeat sequences relative to each other at the molecular scale. A standard fluorescence microscope and a DNA labeling kit are sufficient to visualize DNA sequences from any tissue or organ. Despite the enormous progress of high-throughput sequencing technologies, DNA fiber-FISH remains a unique and indispensable tool to detect chromosomal rearrangements and to demonstrate differences between related species at high resolution. We discuss standard and alternative steps to easily prepare extended DNA fibers for high-resolution FISH mapping.
Collapse
Affiliation(s)
- Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
- Wageningen University & Research, Laboratory of Genetics, Wageningen, The Netherlands.
| | - José van de Belt
- Wageningen University & Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Hans de Jong
- Wageningen University & Research, Laboratory of Genetics, Wageningen, The Netherlands
| |
Collapse
|
2
|
Minina JM, Karamysheva TV, Rubtsov NB, Zhdanova NS. Replication timing of large Sorex granarius (Soricidae, Eulipotyphla) telomeres. PROTOPLASMA 2018; 255:1477-1486. [PMID: 29627866 DOI: 10.1007/s00709-018-1244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Previously, we described the unique feature of telomeric regions in Iberian shrew Sorex granarius: its telomeres have two ranges of size, very small (3.8 kb of telomeric repeats on average) and very large discontinuous telomeres (213 kb) interrupted with 18S rDNA. In this study, we have demonstrated extraordinary replication pattern of S. granarius large telomeres that have not been shown before in other studied mammal. Using the ReD-FISH procedure, we observed prolonged, through S period, large telomere replication. Furthermore, revealed ReD-FISH asymmetric signals were probably caused by partial replication of telomeres within an hour of 5-bromodeoxyuridine treatment due to the large size and special organization. We also found that in contrast to the telomeric halo from primary fibroblasts of bovine, mink, and common shrew, telomere halo of S. granarius consists of multiple loops bundled together, some of which contain rDNA. Here, we suggested several replicons firing possibly stochastic in each large telomere. Finally, we performed the TIF assay to reveal DNA damage responses at the telomeres, and along with TIF in nuclei, we found large bodies of telomeric DNA and ɤ-H2AX in the cytoplasm and on the surface of fibroblasts. We discuss the possibility of additional origin activation together with recombination-dependent replication pathways, mainly homologous recombination including BIR for replication fork stagnation overcoming and further S. granarius large telomere replication.
Collapse
Affiliation(s)
- Julia M Minina
- The Federal Research Center Institute of Cytology and Genetics of SB RAS, Lavrentjeva av. 10, 630090, Novosibirsk, Russia.
| | - Tatjana V Karamysheva
- The Federal Research Center Institute of Cytology and Genetics of SB RAS, Lavrentjeva av. 10, 630090, Novosibirsk, Russia
| | - Nicolaj B Rubtsov
- The Federal Research Center Institute of Cytology and Genetics of SB RAS, Lavrentjeva av. 10, 630090, Novosibirsk, Russia
| | - Natalia S Zhdanova
- The Federal Research Center Institute of Cytology and Genetics of SB RAS, Lavrentjeva av. 10, 630090, Novosibirsk, Russia
| |
Collapse
|
3
|
Abstract
High resolution fiber-Fluorescence in situ hybridization (FISH) is an advanced FISH technology that can effectively bridge the resolution gap between probe hybridizing on DNA molecules and chromosomal regions. Since various types of DNA and chromatin fibers can be generated reflecting different degrees of DNA/chromatin packaging status, fiber-FISH technology has been successfully used in diverse molecular cytogenetic/cytogenomic studies. Following a brief review of this technology, including its major development and increasing applications, typical protocols to generate DNA/chromatin fiber will be described, coupled with rationales, as well as technical tips. These released DNA/chromatin fibers are suitable for an array of cytogenetic/cytogenomic analyses.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 3226 Scott Hall, 540 E, Detroit, MI, 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Abstract
Fluorescence in situ hybridization (FISH) is widely used in cytogenetics to determine the localization of DNA sequences on target chromosomes, to provide visible information regarding the physical position of DNA sequences, to determine the abundance and distribution of repetitive sequences that comprise a large proportion of genomes, and to determine the relative chromosome positions of multiple sequences in physical mapping. By mapping on extended chromatin fibers, fiber-FISH can be used to determine the structure and organization of genes or DNA sequences with a high resolution (to a few kilobases). The protocols described here will provide procedures of FISH on metaphase chromosomes and extended chromatin fibers of rice (Oryza sativa). © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kai Wang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fujian, China
| | - Weichang Yu
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
5
|
Lee J, Kim Y, Lee S, Jo K. Visualization of large elongated DNA molecules. Electrophoresis 2015; 36:2057-71. [PMID: 25994517 DOI: 10.1002/elps.201400479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/08/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.
Collapse
Affiliation(s)
- Jinyong Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapogu, Seoul, Republic of Korea
| | - Yongkyun Kim
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapogu, Seoul, Republic of Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapogu, Seoul, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapogu, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ferguson-Smith MA. History and evolution of cytogenetics. Mol Cytogenet 2015; 8:19. [PMID: 25810762 PMCID: PMC4373004 DOI: 10.1186/s13039-015-0125-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 11/21/2022] Open
Abstract
The events that have led to the development of cytogenetics as a specialty within the life sciences are described, with special attention to the early history of human cytogenetics. Improvements in the resolution of chromosome analysis has followed closely the introduction of innovative technology. The review provides a brief account of the structure of somatic and meiotic chromosomes, stressing the high conservation of structure in plants and animals, with emphasis on aspects that require further research. The future of molecular cytogenetics is likely to depend on a better knowledge of chromosome structure and function.
Collapse
Affiliation(s)
- Malcolm A Ferguson-Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| |
Collapse
|
7
|
Abstract
This chapter describes the various methods derived from the protocol of standard fluorescent in situ hybridization (FISH) that are used in human, animal, plant, and microbial studies. These powerful techniques allow us to detect and physically map on interphase nuclei, chromatin fibers, or metaphase chromosomes probes derived from single-copy genes to repetitive DNA sequences. Other variants of the technique enable the co-localization of genes and the overall comparison of the genome among individuals of the same species or of different taxa. A further variant detects and localizes bacteria on tissues and cells. Overall, this offers a remarkable multiplicity of possible applications ranging from strict physical mapping, to clinical and evolutionary studies, making it a powerful and informative complement to other molecular, functional, or genomic approaches.
Collapse
|
8
|
Frum RA, Deb S, Deb SP. Use of the DNA fiber spreading technique to detect the effects of mutant p53 on DNA replication. Methods Mol Biol 2013; 962:147-55. [PMID: 23150444 PMCID: PMC4839281 DOI: 10.1007/978-1-62703-236-0_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA replication involves a coordinated progression through S phase, and disruption of these regulated steps may cause gene abnormalities, which may lead to cancer. Different stages of DNA replication can be detected immunofluorescently that would indicate how replication is progressing in a cell population or under specific conditions. We describe a method for labeling replicating DNA with two nucleotide analogs, and then detecting the sequential patterns of incorporation using fluorescently labeled antibodies on DNA spread onto a glass slide. Quantification of the different types of replication patterns produced by this method reveals how replication is achieved under different conditions by the predominance and lengths of elongating replication forks progressing from single or clustered origins, as well as the sites of termination from two converging forks.
Collapse
|
9
|
Peng R, Zhang T, Liu F, Ling J, Wang C, Li S, Zhang X, Wang Y, Wang K. Preparations of meiotic pachytene chromosomes and extended DNA fibers from cotton suitable for fluorescence in situ hybridization. PLoS One 2012; 7:e33847. [PMID: 22442728 PMCID: PMC3307766 DOI: 10.1371/journal.pone.0033847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/18/2012] [Indexed: 12/02/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established.
Collapse
Affiliation(s)
- Renhai Peng
- State Key Laboratory of Cotton Biology, China and Cotton Research Institute of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity (Edinb) 2011; 108:75-85. [PMID: 22086080 PMCID: PMC3238113 DOI: 10.1038/hdy.2011.100] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genomic rearrangements can result in losses, amplifications, translocations and inversions of DNA fragments thereby modifying genome architecture, and potentially having clinical consequences. Many genomic disorders caused by structural variation have initially been uncovered by early cytogenetic methods. The last decade has seen significant progression in molecular cytogenetic techniques, allowing rapid and precise detection of structural rearrangements on a whole-genome scale. The high resolution attainable with these recently developed techniques has also uncovered the role of structural variants in normal genetic variation alongside single-nucleotide polymorphisms (SNPs). We describe how array-based comparative genomic hybridisation, SNP arrays, array painting and next-generation sequencing analytical methods (read depth, read pair and split read) allow the extensive characterisation of chromosome rearrangements in human genomes.
Collapse
|
11
|
Galaz-Leiva S, Pérez-Rodríguez G, Blázquez-Castro A, Stockert JC. A simplified chromatin dispersion (nuclear halo) assay for detecting DNA breakage induced by ionizing radiation and chemical agents. Biotech Histochem 2011; 87:208-17. [DOI: 10.3109/10520295.2011.604163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
12
|
Cuadrado A, Jouve N. Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster. BMC Genomics 2011; 12:205. [PMID: 21521504 PMCID: PMC3114746 DOI: 10.1186/1471-2164-12-205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/26/2011] [Indexed: 12/02/2022] Open
Abstract
Background In recent years, substantial progress has been made in understanding the organization of sequences in heterochromatin regions containing single-copy genes and transposable elements. However, the sequence and organization of tandem repeat DNA sequences, which are by far the majority fraction of D. melanogaster heterochromatin, are little understood. Results This paper reports that the heterochromatin, as well as containing long tandem arrays of pentanucleotide satellites (AAGAG, AAGAC, AATAT, AATAC and AACAC), is also enriched in other simple sequence repeats (SSRs) such as A, AC, AG, AAG, ACT, GATA and GACA. Non-denaturing FISH (ND-FISH) showed these SSRs to localize to the chromocentre of polytene chromosomes, and was used to map them on mitotic chromosomes. Different distributions were detected ranging from single heterochromatic clusters to complex combinations on different chromosomes. ND-FISH performed on extended DNA fibres, along with Southern blotting, showed the complex organization of these heterochromatin sequences in long tracts, and revealed subclusters of SSRs (several kilobase in length) flanked by other DNA sequences. The chromosomal characterization of C, AAC, AGG, AAT, CCG, ACG, AGC, ATC and ACC provided further detailed information on the SSR content of D. melanogaster at the whole genome level. Conclusion These data clearly show the variation in the abundance of different SSR motifs and reveal their non-random distribution within and between chromosomes. The greater representation of certain SSRs in D. melanogaster heterochromatin suggests that its complexity may be greater than previously thought.
Collapse
Affiliation(s)
- Angeles Cuadrado
- Department of Cell Biology and Genetics, University of Alcalá de Henares, 28871 Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
13
|
Sugiyama S, Fukuta M, Hirose T, Ohtani T, Yoshino T. A silanized mica substrate suitable for high-resolution fiber FISH analysis by scanning near-field optical/atomic force microscopy. SCANNING 2010; 32:383-389. [PMID: 21254112 DOI: 10.1002/sca.20214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
We applied a novel silanized mica substrate with an extremely flat surface constructed according to Sasou et al. (Langmuir 19, 9845-9849 (2003)) to high-resolution detection of a specific gene on a DNA fiber by scanning near-field optical/atomic force microscopy (SNOM/AFM). The interaction between the substrate and fluorescence-dye conjugated peptide nucleic acid (PNA) probes, which causes fluorescence noise signal, was minimal. By using the substrate, we successfully obtained a fluorescence in situ hybridization signal from the ea47 gene on a λphage DNA labeled with an Alexa 532-conjugated 15-base PNA probe. As the results, no fluorescence noises were observed, indicating that the surface adsorbed almost none of the PNA probe. The combination of the substrate and SNOM/AFM is an effective tool for visualizing DNA sequences at nanometer-scale resolution.
Collapse
Affiliation(s)
- Shigeru Sugiyama
- Nanobiotechnology Laboratory, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
14
|
Mello MLS, Moraes AS, Vidal BC. Extended chromatin fibers and chromatin organization. Biotech Histochem 2010; 86:213-25. [DOI: 10.3109/10520290903549022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Fluorescence in situ hybridization on DNA halo preparations and extended chromatin fibres. Methods Mol Biol 2010; 659:21-31. [PMID: 20809301 DOI: 10.1007/978-1-60761-789-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although many fluorescence in situ hybridisation (FISH) protocols involve the use of intact, fixed nuclei, the resolution achieved is not always sufficient, especially for physical mapping. In light of this, several techniques are commonly used to create extended chromatin fibres or extruded loops of DNA. As a result, it is possible to visualise and distinguish regions of the genome at a resolution higher than that attained with conventional preparations for FISH. Such methodologies include fibre-FISH and the DNA halo preparation. While fibre-FISH involves the stretching of chromatin fibres across a glass slide, the DNA halo preparation is somewhat more complex; whereby DNA loops instead of chromatin fibres are generated from interphase nuclei. Furthermore, the DNA halo preparation coupled with FISH is a useful tool for examining interactions between the inextractable nuclear matrix and the cell's genome.In this chapter, we describe how to successfully generate extended chromatin fibres and extruded DNA loops. We will also provide detailed methodologies for coupling either procedure with two distinct FISH procedures; 2D-FISH, which allows for the visualisation of specific chromosomal regions, while telomere peptide nucleic acid (PNA) FISH, enables the detection of all telomeres present within human nuclei.
Collapse
|
16
|
Szuhai K, IJszenga M, de Jong D, Karseladze A, Tanke HJ, Hogendoorn PC. The NFATc2 Gene Is Involved in a Novel Cloned Translocation in a Ewing Sarcoma Variant That Couples Its Function in Immunology to Oncology. Clin Cancer Res 2009; 15:2259-68. [DOI: 10.1158/1078-0432.ccr-08-2184] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Greulich-Bode KM, Wang M, Rhein AP, Weier JF, Weier HUG. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA. Mol Cytogenet 2008; 1:28. [PMID: 19108707 PMCID: PMC2630919 DOI: 10.1186/1755-8166-1-28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/23/2008] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100 kb, careful probe selection and characterization are of paramount importance. RESULTS We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific ~6 kb plasmid onto an unusually small, ~55 kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-kappaB2 locus. CONCLUSION The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.
Collapse
Affiliation(s)
- Karin M Greulich-Bode
- Division Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | - Mei Wang
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | - Andreas P Rhein
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
- Klinikum Kaufbeuren, Dr.-Gutermann-Straße 2, D-87600 Kaufbeuren, Germany
| | - Jingly F Weier
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
- Reprogenetics, LLC, Oyster Point Blvd., South San Francisco, CA, USA
| | - Heinz-Ulli G Weier
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| |
Collapse
|
18
|
FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 2008; 45:385-6, 388, 390 passim. [PMID: 18855767 DOI: 10.2144/000112811] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The introduction of FISH (fluorescence in situ hybridization) marked the beginning of a new era for the study of chromosome structure and function. As a combined molecular and cytological approach, the major advantage of this visually appealing technique resides in its unique ability to provide an intermediate degree of resolution between DNA analysis and chromosomal investigations while retaining information at the single-cell level. Used to support large-scale mapping and sequencing efforts related to the human genome project, FISH accuracy and versatility were subsequently capitalized on in biological and medical research, providing a wealth of diverse applications and FISH-based diagnostic assays. The diversification of the original FISH protocol into the impressive number of procedures available these days has been promoted throughout the years by a number of interconnected factors: the improvement in sensitivity, specificity and resolution, together with the advances in the fields of fluorescence microscopy and digital imaging, and the growing availability of genomic and bioinformatic resources. By assembling in a glossary format many of the "acronymed" FISH applications published so far, this review intends to celebrate the ability of FISH to re-invent itself and thus remain at the forefront of biomedical research.
Collapse
|
19
|
Wiegant J, Raap AK. Basic preparative techniques for fluorescence in situ hybridization. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 8:Unit 8.2. [PMID: 18770740 DOI: 10.1002/0471142956.cy0802s00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit presents protocols for preparing human metaphase chromosome slides from peripheral blood lymphocytes, isolating interphase nuclei from lymphocytes and paraffin-embedded tissues, and preparing DNA fibers. The protocols are designed so that the resulting preparations are amenable to FISH. The methods correspond to a selection of the specimens that can be analyzed with FISH techniques, and the choice of sample preparation method is highly dependent on the molecular cytogenetics question being addressed.
Collapse
Affiliation(s)
- J Wiegant
- Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
20
|
Abstract
It contains the standard system for numbering human chromosomes and constitutional rearrangements and the banding pattern for normal chromosomes at 400-, 550-, and 850-band levels of resolution. ISCN 1995 also contains guidelines for cancer cytogenetics and for in situ hybridization. The complete ISCN 1995 also contains nomenclature for human meiotic chromosomes (not included here). The guidelines presented herein are recommended for use when reporting karyotypes, designating chromosome rearrangements and aberrations, and indicating regions of the genome where DNA sequences are located. It contains the standard system for numbering human chromosomes and constitutional rearrangements and the banding pattern for.
Collapse
|
21
|
Heng HHQ, Windle B, Tsui LC. High-resolution FISH analysis. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 4:Unit 4.5. [PMID: 18428380 DOI: 10.1002/0471142905.hg0405s44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Map order, orientation, and gap or overlap distance of closely linked DNA probes may be determined using fluorescent hybridization to decondensed DNA. The linear arrangement of released chromatin fibers not only simplifies the task of gene ordering, but also provides higher resolution with probes separated by greater distances than can be achieved in FISH with intact interphase nuclei. The Basic Protocol 1 of this unit describes an alkaline lysis procedure for generating free chromatin from cultured cells for FISH analysis. A support protocol describes an empirical approach to optimize conditions for preparation of free chromatin. An Alternate Protocol 1 provides a method for producing free chromatin from cultured lymphocytes with drug treatment. The Basic Protocol 2, high-resolution FISH mapping with free chromatin, is a modification of the method used for FISH mapping of interphase nuclei.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | |
Collapse
|
22
|
Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. PLANT METHODS 2006; 2:18. [PMID: 17081287 PMCID: PMC1635696 DOI: 10.1186/1746-4811-2-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 11/02/2006] [Indexed: 05/08/2023]
Abstract
Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene) expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes) and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.
Collapse
Affiliation(s)
- Ana Paula Santos
- Plant Genetic Engineering Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| | - Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - George C Allen
- Plant Transformation Laboratory (PTL), Departments of Crop Science and Horticultural Science, Campus Box 7550, North Carolina State University, Raleigh, NC 27695, USA
| | - William F Thompson
- Plant Gene Expression Laboratory, Campus Box 7550, North Carolina State University Raleigh, NC 27695, USA
| | - Eva Stoger
- Institute for Molecular Biotechnology, RWTH Aachen, 52074 Aachen, Germany
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| |
Collapse
|
23
|
Chan TF, Ha C, Phong A, Cai D, Wan E, Leung L, Kwok PY, Xiao M. A simple DNA stretching method for fluorescence imaging of single DNA molecules. Nucleic Acids Res 2006; 34:e113. [PMID: 16971459 PMCID: PMC1635263 DOI: 10.1093/nar/gkl593] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stretching or aligning DNA molecules onto a surface by means of molecular combing techniques is one of the critical steps in single DNA molecule analysis. However, many of the current studies have focused on λ-DNA, or other large DNA molecules. There are very few studies on stretching methodologies for DNA molecules generated via PCR (typically smaller than 20 kb). Here we describe a simple method of stretching DNA molecules up to 18 kb in size on a modified glass surface. The very low background fluorescence allows efficient detection of single fluorescent dye labels incorporated into the stretched DNA molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ming Xiao
- To whom correspondence should be addressed. 513 Parnassus Avenue, HSW-901A, San Francisco, CA 94143, USA. Tel: +1 4155143876; Fax: +1 4154762956;
| |
Collapse
|
24
|
Bentolila LA, Weiss S. Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem Biophys 2006; 45:59-70. [PMID: 16679564 PMCID: PMC3084375 DOI: 10.1385/cbb:45:1:59] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
We report a rapid method for the direct multicolor imaging of multiple subnuclear genetic sequences using novel quantum dot-based fluorescence in situ hybridization (FISH) probes (QD-FISH). Short DNA oligonucleotides were attached on QDs and used in a single hybridization/detection step of target sites in situ. QD-FISH probes penetrate both intact interphase nuclei and metaphase chromosomes and showed good targeting of dense chromatin domains with minimal steric hindrances. We further demonstrated that QD's broad absorption spectra allowed different colored probes specific for distinct subnuclear genetic sequences to be simultaneously excited with a single excitation wavelength and imaged free of chromatic aberrations in a single exposure. Thus, these results demonstrate that QD-FISH probes are very effective in multicolor FISH applications. This work also documents new possibilities of using QD-FISH probes detection down to the single molecule level.
Collapse
Affiliation(s)
- Laurent A Bentolila
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA.
| | | |
Collapse
|
25
|
Yamamoto M, Mukai Y. High-resolution physical mapping of the secalin-1 locus of rye on extended DNA fibers. Cytogenet Genome Res 2005; 109:79-82. [PMID: 15753562 DOI: 10.1159/000082385] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 01/22/2004] [Indexed: 11/19/2022] Open
Abstract
High-resolution mapping of secalin-1 (Sec-1) locus has been performed by fluorescence in situ hybridization to extended DNA fibers of rye (Secale cereale, 2n = 14), employing DNA probes of lambda phage clones containing the omega-secalin gene. The fluorescent signals to rye extended DNA fibers revealed continuous strings of 45 microm, corresponding to the size of 147 kb DNA. To determine the copy number of Sec-1 locus on DNA fibers, a 1.2-kb fragment including the entire coding region of the omega-secalin gene and a 1.0-kb fragment of the promoter region were amplified by PCR as probes for another fiber FISH. The physical position of these sequences was visualized as alternating fluorescent spots by multicolor in situ hybridization. Alternating signals of two DNA probes reflected the tandem repeated organization of the Sec-1 locus having 15 copies of the gene. The present findings based on fiber FISH analysis support the contention that the omega-secalin genes are arranged in a head-to-tail fashion separated by 8 kb of spacer sequences with a total length of 145 kb.
Collapse
Affiliation(s)
- M Yamamoto
- Kansai University of Welfare Sciences, Osaka, Japan
| | | |
Collapse
|
26
|
de Jong H. Visualizing DNA domains and sequences by microscopy: a fifty-year history of molecular cytogenetics. Genome 2004; 46:943-6. [PMID: 14663510 DOI: 10.1139/g03-107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This short review presents a historical perspective of chromosome research during the last 50 years. It shows how molecular knowledge and technology of DNA entered cytogenetics step by step making it now daily practice in almost every modern chromosome lab. A crucial milestone in these decades has been the development of in situ protocols by Pardue and Gall, among others, initially only with isotopic labels, and without fluorescence microscopy and sophisticated detection systems. But these very first in situ hybridizations played a decisive role in the discovery of chromosome banding profiles, which were obtained under specific chemical, physical, or enzymatic conditions, thus effecting stainability of specific chromosome regions. In the decades thereafter, numerous technical improvements were achieved leading to complex multi-colour fluorescence in situ hybridization (FISH) protocols for mammals, plants, and insects. Highly improved detection systems of the FISH signals further allowed detection of DNA targets of up to 50 bp, whereas other protocols, which were developed to stretch chromatin fibres to the full length of native DNA, improved spatial resolution of adjacent targets in the light microscope to 1 kb.
Collapse
Affiliation(s)
- Hans de Jong
- Wageningen University, Laboratory of Genetics, The Netherlands.
| |
Collapse
|
27
|
Cheng Z, Buell CR, Wing RA, Jiang J. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res 2003; 10:379-87. [PMID: 12296520 DOI: 10.1023/a:1016849618707] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fluorescence in-situ hybridization (FISH) is a quick and affordable approach to map DNA sequences to specific chromosomal regions. Although FISH is one of the most important physical mapping techniques, research on the resolution of FISH on different cytological targets is scarce in plants. In this study, we report the resolution of FISH mapping on mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers in rice. A majority of the FISH signals derived from bacterial artificial chromosome (BAC) clones separated by approximately 1 Mb of DNA cannot be resolved on mitotic prometaphase chromosomes. In contrast, the relative positions of closely linked or even partially overlapping BAC clones can be resolved on a euchromatic region of rice chromosome 10 at the early pachytene stage. The resolution of pachytene FISH is dependent on early or late pachytene stages and also on the location of the DNA probes in the euchromatic or heterochromatic regions. We calibrated the fiber-FISH technique in rice using seven sequenced BAC clones. The average DNA extension was 3.21 kb/microm among the seven BAC clones. Fiber-FISH results derived from a BAC contig that spanned 1 Mb DNA matched remarkably to the sequencing data, demonstrating the high resolution of this technique in cytological mapping.
Collapse
Affiliation(s)
- Zhukuan Cheng
- Department of Horticulture, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
28
|
Wang N. Methodologies in cancer cytogenetics and molecular cytogenetics. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 115:118-24. [PMID: 12407691 DOI: 10.1002/ajmg.10687] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Various types of cytogenetic and molecular cytogenetic approaches, including conventional banding, fluorescence in situ hybridization (FISH), fiber-FISH, comparative genomic hybridization (CGH), matrix array CGH, chromosome microdissection, and microcell-mediated chromosome transfer are summarized. The rationale, advantage, and limitations of each approach are discussed with respect to research and clinical applications in human neoplasia.
Collapse
Affiliation(s)
- Nancy Wang
- School of Rochester, University of Rochester, NY, USA.
| |
Collapse
|
29
|
Abstract
Human cytogenetics was born in 1956 with the fundamental, but empowering, discovery that normal human cells contain 46 chromosomes. Since then, this field and our understanding of the link between chromosomal defects and disease have grown in spurts that have been fuelled by advances in cytogenetic technology. As a mature enterprise, cytogenetics now informs human genomics, disease and cancer genetics, chromosome evolution and the relationship of nuclear structure to function.
Collapse
Affiliation(s)
- Barbara J Trask
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| |
Collapse
|
30
|
Abstract
Genomic instability is one of the major features of cancer cells. The clinical phenotypes associated with several human diseases have been linked to recurrent DNA rearrangements and dysfunction of DNA replication processes that involve unstable genomic regions. Analysis of these rearrangements, which are frequently submicroscopic and can lead to loss or gain of dosage-sensitive genes or gene disruption, requires the development of sensitive, high-resolution techniques. This will lead to a better understanding of the mechanisms underlying genome instability and a greater awareness of the role of chromosomal rearrangements in disease. A new technology that involves molecular combing, a method that permits straightening and aligning molecules of genomic DNA, should make possible a detailed analysis of genomic events at the level of single DNA molecules. Such a single molecule approach could help to elucidate important properties that are masked in bulk studies.
Collapse
Affiliation(s)
- Sandrine Caburet
- Unité de Stabilité des Génomes, Dépt de Structure et Dynamique des Génomes, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
31
|
Kim JM, Ohtani T, Park JY, Chang SM, Muramatsu H. DC electric-field-induced DNA stretching for AFM and SNOM studies. Ultramicroscopy 2002; 91:139-49. [PMID: 12211462 DOI: 10.1016/s0304-3991(02)00093-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An effective method of DNA stretching on mica surfaces is proposed for an extremely low concentration of DNA. The method is based on an electric field and well applied on the concentration range from 57 x 10(-3) to 57 x 10(-6) ng/ml. The stretching exists in a gap between positive and negative electrodes. The difference in the stretching efficiency among the different surfaces of bare mica, Mg2+ soaked mica and AP-mica is discussed. The best performance of the stretching is found from the surface of AP-mica for the same experimental condition of sample concentration and applied voltage. Finally, from a Scanning near-field optical microscope image, it is found that well-stretched DNA molecules have shown more similar optical resolution, which is inferred from an optical fiber probe, itself.
Collapse
Affiliation(s)
- J M Kim
- Department of Food Engineering, National Food Research Institute, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
32
|
Rätsch A, Joos S, Kioschis P, Lichter P. Topological organization of the MYC/IGK locus in Burkitt's lymphoma cells assessed by nuclear halo preparations. Exp Cell Res 2002; 273:12-20. [PMID: 11795942 DOI: 10.1006/excr.2001.5429] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Burkitt's lymphoma (BL) cells characteristic chromosomal translocations juxtapose the MYC oncogene to one of the three immunoglobulin (IG) gene loci. This results in deregulation of MYC expression through IG gene enhancer elements. As enhancers and MYC promoters can be as much as several hundred kilobases apart, long-distance effects are to be postulated, which affect chromatin organization. Since transcriptionally active and inactive sequences can be distinguished based on their localization in nuclear halo preparations, we used this technique to assess the topology of wild-type and translocated MYC and IGK genes. Following visualization of these genes by fluorescence in situ hybridization, the signal distribution was determined in nuclear halo structures of human monocytes and the BL-derived cell line LY66. MYC signals derived from the non-translocated chromosome 8 were found equally distributed between the residual nucleus and the surrounding DNA halo. In contrast, the activated MYC and IGK genes on the translocated chromosome in LY66 cells were associated with the residual nucleus in 78 and 88% of cases, respectively. In LY66 cells, attachment to the residual nucleus was restricted to a DNA segment 30 to 50 kb downstream of MYC, while in monocytes it was dispersed over 80 kb around the MYC gene. These findings indicate a specific chromatin organization for the activated MYC locus. Distance measurements between MYC and IGK signals revealed shorter values than expected from their linear distance (325 kb), indicating a back folding of the DNA backbone. Thus, there is strong evidence for a specific topological organization, which is functionally related to the MYC activation status with the specific folding of the DNA strand likely reflecting maintenance of a spatial interaction between IGK enhancer and MYC promoter elements.
Collapse
MESH Headings
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/pathology
- Cell Nucleus/genetics
- Centromere/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 8/ultrastructure
- Enhancer Elements, Genetic
- Genes, Immunoglobulin/genetics
- Genes, myc/genetics
- Humans
- Immunoglobulin lambda-Chains/genetics
- In Situ Hybridization, Fluorescence
- Monocytes/pathology
- Telomere/genetics
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Rätsch
- Abteilung Molekulare Genetik, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | | | |
Collapse
|
33
|
Cinti C, Stuppia L, Maraldi NM. Combined use of PRINS and FISH in the study of the dystrophin gene. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 107:115-8. [PMID: 11807884 DOI: 10.1002/ajmg.10104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The efficacy of fluorescence in situ hybridization (FISH) may be limited in specific applications by low-resolution sensitivity. Primed in situ labeling (PRINS) is based on specific hybridization of an unlabeled oligonucleotide with a denatured template and synthesis of a single-strand DNA in situ. This method may represent a powerful alternative to FISH for gene mapping because of its ability to generate multiple independent signals within the same gene segment. We investigated the specificity of signals produced by a modified PRINS protocol combining a centromeric probe for the X-chromosome with specific primers for 3'- and 5'-terminal regions of the dystrophin gene. In approximately 70% of nuclei from male and female subjects, we detected one or two large signals (X-chromosome centromere) and two or four smaller signals (the two regions of the dystrophin gene). Specific hybridization of the oligonucleotides on Xp was demonstrated by localization of the smaller (dystrophin) and larger (X-centromere) signals on the same chromosome. Simultaneous hybridization with a centromeric probe and gene-specific oligonucleotides allowed localization of PRINS signals, and assessment of the specificity of the primers used for hybridization. This approach could facilitate identification of female carriers of small intragenic deletions in the dystrophin gene.
Collapse
Affiliation(s)
- Caterina Cinti
- Istituto di Citomorfologia Normale e Patologica, CNR, Bologna, Italy.
| | | | | |
Collapse
|
34
|
Kaji N, Ueda M, Baba Y. Molecular stretching of long DNA in agarose gel using alternating current electric fields. Biophys J 2002; 82:335-44. [PMID: 11751320 PMCID: PMC1302473 DOI: 10.1016/s0006-3495(02)75398-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of approximately 10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell.
Collapse
Affiliation(s)
- Noritada Kaji
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, CREST, Japan Science and Technology Corporation, Tokushima 770-8505, Japan.
| | | | | |
Collapse
|
35
|
Kim JM, Ohtani T, Sugiyama S, Hirose T, Muramatsu H. Simultaneous topographic and fluorescence imaging of single DNA molecules for DNA analysis with a scanning near-field optical/atomic force microscope. Anal Chem 2001; 73:5984-91. [PMID: 11791570 DOI: 10.1021/ac010536i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-resolution fluorescence imaging of lambda-phage DNA molecules, intercalated with the dye YOYO-1, has been performed by a SNOM/AFM based on a bent-type optical fiber probe. A modified design of the optical probe has been made, and successful near-field optical resolution has been obtained for the strongly stretched lambda-phage DNA molecules. The best optical resolution was estimated at 45 nm for the dye-intercalated single lambda-DNA molecules by a mean width evaluation. In our comparison between the far-field fluorescence and high-resolution near-field fluorescence images for the DNA, it has been found that the near-field images much better defined the intercalation state of the dye. Finally, the relation between the DNA shapes and the dye distribution states, and the discrimination between the double-stranded and single-stranded DNA molecules, are discussed by comparing the topography and fluorescence images of the SNOM/AFM.
Collapse
Affiliation(s)
- J M Kim
- Department of Food Engineering, National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
36
|
Weier HU. DNA fiber mapping techniques for the assembly of high-resolution physical maps. J Histochem Cytochem 2001; 49:939-48. [PMID: 11457922 DOI: 10.1177/002215540104900802] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-resolution physical maps are indispensable for directed sequencing projects or the finishing stages of shotgun sequencing projects. These maps are also critical for the positional cloning of disease genes and genetic elements that regulate gene expression. Typically, physical maps are based on ordered sets of large insert DNA clones from cosmid, P1/PAC/BAC, or yeast artificial chromosome (YAC) libraries. Recent technical developments provide detailed information about overlaps or gaps between clones and precisely locate the position of sequence tagged sites or expressed sequences, and thus support efforts to determine the complete sequence of the human genome and model organisms. Assembly of physical maps is greatly facilitated by hybridization of non-isotopically labeled DNA probes onto DNA molecules that were released from interphase cell nuclei or recombinant DNA clones, stretched to some extent and then immobilized on a solid support. The bound DNA, collectively called "DNA fibers," may consist of single DNA molecules in some experiments or bundles of chromatin fibers in others. Once released from the interphase nuclei, the DNA fibers become more accessible to probes and detection reagents. Hybridization efficiency is therefore increased, allowing the detection of DNA targets as small as a few hundred base pairs. This review summarizes different approaches to DNA fiber mapping and discusses the detection sensitivity and mapping accuracy as well as recent achievements in mapping expressed sequence tags and DNA replication sites.
Collapse
Affiliation(s)
- H U Weier
- Department of Subcellular Structure, Life Sciences Division, University of California, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
37
|
Abstract
Genome stability is crucial for the complete maintenance of the cellular pathways that govern the cell cycle. As a result of irregularities in DNA replication occurring throughout the S phase, key genes that regulate cell cycle pathways are damaged, giving rise to single-base mutations and chromosomal aberrations. Thus, the efficient replication of the genome, which depends on a precise temporal and spatial pattern of activation of origins of replication, is greatly impaired. The approach discussed below aims at monitoring the replication pattern and the kinetics of replication throughout the entire genome of living cells. It could shed light on the mechanisms by which drugs act on DNA replication and, moreover, it might assist the discovery and design of novel drugs that inhibit cell proliferation under pathophysiological conditions.
Collapse
Affiliation(s)
- C Conti
- DNA Biophysics Laboratory, Pasteur Institute, 25 Rue du Dr Roux, 75724 Cedex, Paris, France
| | | | | |
Collapse
|
38
|
Tacken PJ, van der Zee A, Beumer TL, Florijn RJ, Gijpels MJ, Havekes LM, Frants RR, van Dijk KW, Hofker MH. Effective generation of very low density lipoprotein receptor transgenic mice by overlapping genomic DNA fragments: high testis expression and disturbed spermatogenesis. Transgenic Res 2001; 10:211-21. [PMID: 11437278 DOI: 10.1023/a:1016682520887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The generation of functional transgenes via microinjection of overlapping DNA fragments has previously been reported to be successful, but it is still not a widely applied approach. Here we show that the method is very reliable, and should be considered, in case a single large insert clone of the desired gene is not available. In the present study, two large DNA fragments consisting of overlapping cosmids, together constituting the human very low density lipoprotein receptor (VLDLR) gene (35 kb), were used to generate VLDLR transgenic (VLDLR-Tg) mice. Three transgenic founders were born, of which two (strain #2 and #3) generated transgenic offspring. Using Fiber-FISH analysis, the integration site was shown to contain at least 44 and 64 DNA fragments in mouse strains #2 and #3, respectively. This copy number resulted in integration sites of 1.5 and 2.5 megabase in size. Notably, over 90% of the fragments in both mouse strains #2 and #3 were flanked by their complementary fragment. In line with this observation, Southern blot analysis demonstrated that the correct recombination between fragments predominated in the transgenic insertion. Human VLDLR expression was detected in testis, kidney and brain of both mouse strains. Since this pattern did not parallel the endogenous VLDLR expression, some crucial regulatory elements were probably not present in the cosmid clones. Human VLDLR expression in testis was detected in germ cells up to the meiotic stage by in situ mRNA analysis. Remarkably, in the F1 generation of both VLDLR-Tg mouse strains the testis was atrophic and giant cells were detected in the semineferous tubuli. Furthermore, male VLDLR-Tg mice transmitted the transgene to their progeny with low frequencies. This could imply that VLDLR overexpression in the germ cells disturbed spermatogenesis.
Collapse
Affiliation(s)
- P J Tacken
- Department of Human and Clinical Genetics, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Raap AK. Overview of fluorescence in situ hybridization techniques for molecular cytogenetics. CURRENT PROTOCOLS IN CYTOMETRY 2001; Chapter 8:Unit 8.1. [PMID: 18770737 DOI: 10.1002/0471142956.cy0801s00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This unit presents an overview of the FISH methodology. It covers such topics as direct versus indirect methods, sensitivity, multiplicity, resolution, and applications.
Collapse
Affiliation(s)
- A K Raap
- Leiden University, Leiden, The Netherlands
| |
Collapse
|
40
|
Tsuchiya D, Taga M. Application of fibre-FISH (fluorescence in situ hybridization) to filamentous fungi: visualization of the rRNA gene cluster of the ascomycete Cochliobolus heterostrophus. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1183-1187. [PMID: 11320121 DOI: 10.1099/00221287-147-5-1183] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fibre-FISH (fluorescence in situ hybridization) has not been used in filamentous fungi before to the authors' knowledge. In this study, this technique was applied to a filamentous ascomycete, Cochliobolus heterostrophus, to visualize the organization of the rRNA gene clusters (rDNA). Using protoplasts embedded in agarose, DNA fibres were released from interphase nuclei and extended on a glass slide. Four kinds of probes (0.5-9.0 kb in size) that correspond to specific regions in the repeat unit of rDNA were hybridized singly or in combination to the DNA fibres, and the hybridization was detected with fluorescein- and/or rhodamine-conjugated antibodies after one round of signal amplification. The alternating arrangement of 18S and 28S rRNA genes as well as the tandem repetitive nature of the repeat units were clearly visualized by this single- or two-colour fibre-FISH. With a probe targeting the 5.8S or 18S rRNA gene, a region spanning over 800 kb could be visualized in a single fibre, allowing estimation of both the copy number of the repeat unit in rDNA and the stretching degree of the DNA fibre. It was shown that C. heterostrophus has more than 90 copies of the repeat unit in its rDNA and the stretching degree was similar to the value based on the Watson-Crick model. Visualization of individual genes on an extended DNA fibre was accomplished in filamentous fungi by this study.
Collapse
MESH Headings
- Ascomycota/genetics
- DNA, Fungal/analysis
- DNA, Ribosomal/analysis
- Fluorescent Dyes
- Genes, Fungal
- Genes, rRNA
- In Situ Hybridization, Fluorescence
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5.8S/genetics
Collapse
Affiliation(s)
- Dai Tsuchiya
- Department of Biology, Faculty of Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan1
| | - Masatoki Taga
- Department of Biology, Faculty of Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan1
| |
Collapse
|
41
|
Garagna S, Marziliano N, Zuccotti M, Searle JB, Capanna E, Redi CA. Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc Natl Acad Sci U S A 2001; 98:171-5. [PMID: 11136254 PMCID: PMC14563 DOI: 10.1073/pnas.98.1.171] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, Robertsonian (Rb) translocation (the joining of two telo/acrocentric chromosomes at their centromere to form a metacentric) is the most effective process in chromosomal evolution leading to speciation; its occurrence also affects human health (through the induction of trisomies) and the fertility of farm animals. To understand the mechanism of Rb translocation, we used the house mouse as a model system and studied the organization of pericentromeric satellite DNAs (satDNA) of telocentrics and Rb chromosomes, both minor and major satDNA. The chromosome-orientation fluorescence in situ hybridization (CO-FISH) technique was used to analyze the major satDNA. To detect the very small amount of minor satDNA, a procedure was developed that combines CO-FISH with primed in situ labeling and conventional FISH and is five times more sensitive than the CO-FISH procedure alone. It was found that both the major and the minor satDNA tandem repeats are oriented head-to-tail in telocentric and Rb chromosomes, and their polarity is always the same relative to the centromere. We suggest that all tandemly repetitive satDNAs in a species probably are locked into such a symmetry constraint as a universal consequence of chromosomal evolution. Rb translocation breakpoints were found localized within the minor satDNA of telocentrics, and these sequences contributed symmetrically to the formation of the centromeric region of the Rb chromosomes. These results are important for an understanding of the geometry of Rb translocations and suggest the study of DNA orientation as a new tool for investigating these rearrangements.
Collapse
Affiliation(s)
- S Garagna
- Dipartimento di Biologia Animale, Laboratorio di Biologia dello Sviluppo, Universita' degli Studi di Pavia, Piazza Botta 9, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Fluorescence in situ hybridization to DNA fibers (Fiber-FISH) is a high-resolution, wide-ranging physical DNA mapping method that finds increasing application in the study of pathological gene rearrangements. Here we present experiments designed to understand the nature of the discontinuous FISH signal patterns seen after Fiber-FISH. Use of a novel cisplatin-based chemical labeling method enabled us to produce intact biotin-labeled cosmid target DNA molecules. We monitored by immunofluorescence the fate of such cosmid targets during denaturation and hybridization. The same cosmid DNA labeled with digoxigenin by nick-translation was used to analyze the FISH probe signal distribution in a different color. The probe signals proved to be a subset of the target signals remaining after denaturation and hybridization. We argue that the discontinuity of probe signals in Fiber-FISH is mainly caused by loss of target DNA and limited accessibility due to in situ renaturation and attachment. Furthermore, we conclude that FISH sensitivity is determined by hybridization efficiency and not the ability to generate sufficient signal from small probes. (J Histochem Cytochem 48:743-745, 2000)
Collapse
Affiliation(s)
- F M van de Rijke
- Departments of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
43
|
Herrick J, Michalet X, Conti C, Schurra C, Bensimon A. Quantifying single gene copy number by measuring fluorescent probe lengths on combed genomic DNA. Proc Natl Acad Sci U S A 2000; 97:222-7. [PMID: 10618399 PMCID: PMC26644 DOI: 10.1073/pnas.97.1.222] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An approach was developed for the quantification of subtle gains and losses of genomic DNA. The approach relies on a process called molecular combing. Molecular combing consists of the extension and alignment of purified molecules of genomic DNA on a glass coverslip. It has the advantage that a large number of genomes can be combed per coverslip, which allows for a statistically adequate number of measurements to be made on the combed DNA. Consequently, a high-resolution approach to mapping and quantifying genomic alterations is possible. The approach consists of applying fluorescence hybridization to the combed DNA by using probes to identify the amplified region. Measurements then are made on the linear hybridization signals to ascertain the region's exact size. The reliability of the approach first was tested for low copy number amplifications by determining the copy number of chromosome 21 in a normal and trisomy 21 cell line. It then was tested for high copy number amplifications by quantifying the copy number of an oncogene amplified in the tumor cell line GTL-16. These results demonstrate that a wide range of amplifications can be accurately and reliably quantified. The sensitivity and resolution of the approach likewise was assessed by determining the copy number of a single allele (160 kb) alteration.
Collapse
Affiliation(s)
- J Herrick
- Laboratoire de Biophysique de l'ADN, Département des Biotechnologies, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Herrick J, Bensimon A. Imaging of single DNA molecule: applications to high-resolution genomic studies. Chromosome Res 1999; 7:409-23. [PMID: 10560964 DOI: 10.1023/a:1009276210892] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Single molecule analysis of DNA has revealed new insights into its structural and physical properties. The application of new methods for manipulating and visualizing DNA has resulted in important advances in high-resolution physical mapping of the genome and quantitative cytogenetic studies of genomic abnormalities (Lichter 1997). Studies of single molecules of DNA have employed a variety of approaches including electron microscopy, atomic force microscopy, scanning-tunneling microscopy and fluorescence microscopy. A number of new technologies have recently been developed to exploit fluorescence microscopy's full potential for genomic analysis and the fine mapping of subtle genetic alterations. In the case of the latter application, particular emphasis has been placed on developing new methods for stretching DNA for high-resolution fluorescence in-situ hybridization studies. We have recently described a process called molecular combing according to which single DNA molecules bound by their extremities to a solid surface are uniformly stretched and aligned by a receding air/water interface (Bensimon et al. 1994). In the following, we will review recent developments concerning molecular combing and discuss its current and potential applications for the high-resolution mapping of the human genome, the detection and quantification of subtle genomic imbalances and the positional cloning of disease-related genes.
Collapse
Affiliation(s)
- J Herrick
- Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
46
|
Abstract
We describe here a novel approach for the study of DNA replication. The approach is based on a process called molecular combing and allows for the genome wide analysis of the spatial and temporal organization of replication units and replication origins in a sample of genomic DNA. Molecular combing is a process whereby molecules of DNA are stretched and aligned on a glass surface by the force exerted by a receding air/water interface. Since the stretching occurs in the immediate vicinity of the meniscus, all molecules are identically stretched in a size and sequence independent manner. The application of fluorescence hybridization to combed DNA results in a high resolution (1 to 4 kb) optical mapping that is simple, controlled and reproducible. The ability to comb up to several hundred haploid genomes on a single coverslip allows for a statistically significant number of measurements to be made. Direct labeling of replicating DNA sequences in turn enables origins of DNA replication to be visualized and mapped. These features therefore make molecular combing an attractive tool for genomic studies of DNA replication. In the following, we discuss the application of molecular combing to the study of DNA replication and genome stability.
Collapse
Affiliation(s)
- J Herrick
- Laboratoire de Biophysique de l'ADN, Département des Biotechnologies, Institut Pasteur, 25, rue du Dr.-Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
47
|
Fransz P, Zabel P. High resolution FISH in plants - techniques and applications. TRENDS IN PLANT SCIENCE 1999; 4:258-263. [PMID: 10407441 DOI: 10.1016/s1360-1385(99)01436-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) is an effective and accurate cytogenetic tool for mapping single copy and repetitive DNA sequences on chromosomes. Attempts to increase the detection sensitivity of very small chromosomal targets, and to improve the spatial resolution of signals derived from flanking sequences, have led to the development of a variety of novel techniques: it is now possible to perform in situ hybridizations on interphase nuclei, meiotic pachytene chromosomes and isolated chromatin (DNA fibres). The recent application of these techniques has indicated that a spatial resolution of 1 kb between adjacent targets and a sensitivity of targets smaller than 1 kb is now feasible. Here, we describe the benefits of these novel chromosome analysis techniques and discuss their relevance for the study of plant genomes.
Collapse
|
48
|
Erdel M, Hubalek M, Lingenhel A, Kofler K, Duba HC, Utermann G. Counting the repetitive kringle-IV repeats in the gene encoding human apolipoprotein(a) by fibre-FISH. Nat Genet 1999; 21:357-8. [PMID: 10192381 DOI: 10.1038/7681] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Devriendt K, Matthijs G, Van Dael R, Gewillig M, Eyskens B, Hjalgrim H, Dolmer B, McGaughran J, Bröndum-Nielsen K, Marynen P, Fryns JP, Vermeesch JR. Delineation of the critical deletion region for congenital heart defects, on chromosome 8p23.1. Am J Hum Genet 1999; 64:1119-26. [PMID: 10090897 PMCID: PMC1377836 DOI: 10.1086/302330] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Deletions in the distal region of chromosome 8p (del8p) are associated with congenital heart malformations. Other major manifestations include microcephaly, intrauterine growth retardation, mental retardation, and a characteristic hyperactive, impulsive behavior. We studied genotype-phenotype correlations in nine unrelated patients with a de novo del8p, by using the combination of classic cytogenetics, FISH, and the analysis of polymorphic DNA markers. With the exception of one large terminal deletion, all deletions were interstitial. In five patients, a commonly deleted region of approximately 6 Mb was present, with breakpoints clustering in the same regions. One patient without a heart defect or microcephaly but with mild mental retardation and characteristic behavior had a smaller deletion within this commonly deleted region. Two patients without a heart defect had a more proximal interstitial deletion that did not overlap with the commonly deleted region. Taken together, these data allowed us to define the critical deletion regions for the major features of a del8p.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/physiopathology
- Adolescent
- Adult
- Child
- Child, Preschool
- Chromosome Breakage/genetics
- Chromosome Deletion
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Human, Pair 8/genetics
- Female
- Genotype
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Humans
- In Situ Hybridization, Fluorescence
- Infant
- Infant, Newborn
- Karyotyping
- Male
- Microsatellite Repeats/genetics
- Phenotype
- Physical Chromosome Mapping
- Polymorphism, Genetic/genetics
Collapse
Affiliation(s)
- K Devriendt
- Center for Human Genetics, University Hospital Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kearney L. The impact of the new fish technologies on the cytogenetics of haematological malignancies. Br J Haematol 1999; 104:648-58. [PMID: 10192422 DOI: 10.1046/j.1365-2141.1999.01181.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- L Kearney
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford
| |
Collapse
|