1
|
González-Reyes M, Aragón J, Sánchez-Trujillo A, Rodríguez-Martínez G, Duarte K, Eleftheriou E, Barnier JV, Naquin D, Thermes C, Romo-Yáñez J, Roger JE, Rendon A, Vaillend C, Montanez C. Expression of Dystrophin Dp71 Splice Variants Is Temporally Regulated During Rodent Brain Development. Mol Neurobiol 2024; 61:10883-10900. [PMID: 38802640 PMCID: PMC11584426 DOI: 10.1007/s12035-024-04232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Dystrophin Dp71 is the major product of the Duchenne muscular dystrophy (DMD) gene in the brain, and its loss in DMD patients and mouse models leads to cognitive impairments. Dp71 is expressed as a range of proteins generated by alternative splicing of exons 71 to 74 and 78, classified in the main Dp71d and Dp71f groups that contain specific C-terminal ends. However, it is unknown whether each isoform has a specific role in distinct cell types, brain regions, and/or stages of brain development. In the present study, we characterized the expression of Dp71 isoforms during fetal (E10.5, E15.5) and postnatal (P1, P7, P14, P21 and P60) mouse and rat brain development. We finely quantified the expression of several Dp71 transcripts by RT-PCR and cloning assays in samples from whole-brain and distinct brain structures. The following Dp71 transcripts were detected: Dp71d, Dp71d∆71, Dp71d∆74, Dp71d∆71,74, Dp71d∆71-74, Dp71f, Dp71f∆71, Dp71f∆74, Dp71f∆71,74, and Dp71fΔ71-74. We found that the Dp71f isoform is the main transcript expressed at E10.5 (> 80%), while its expression is then progressively reduced and replaced by the expression of isoforms of the Dp71d group from E15.5 to postnatal and adult ages. This major finding was confirmed by third-generation nanopore sequencing. In addition, we found that the level of expression of specific Dp71 isoforms varies as a function of postnatal stages and brain structure. Our results suggest that Dp71 isoforms have different and complementary roles during embryonic and postnatal brain development, likely taking part in a variety of maturation processes in distinct cell types.
Collapse
Affiliation(s)
- Mayram González-Reyes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Jorge Aragón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
| | - Alejandra Sánchez-Trujillo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Griselda Rodríguez-Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Kevin Duarte
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Evangelia Eleftheriou
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - José Romo-Yáñez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
- Coordinación de Endocrinología Ginecológica y Perinatal, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Jérome E Roger
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
- CERTO-Retina France, Saclay, 91400, France
| | - Alvaro Rendon
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
| | - Cyrille Vaillend
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France.
| | - Cecilia Montanez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
2
|
García-Cruz C, Aragón J, Lourdel S, Annan A, Roger JE, Montanez C, Vaillend C. Tissue- and cell-specific whole-transcriptome meta-analysis from brain and retina reveals differential expression of dystrophin complexes and new dystrophin spliced isoforms. Hum Mol Genet 2022; 32:659-676. [PMID: 36130212 PMCID: PMC9896479 DOI: 10.1093/hmg/ddac236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023] Open
Abstract
The large DMD gene encodes a group of dystrophin proteins in brain and retina, produced from multiple promoters and alternative splicing events. Dystrophins are core components of different scaffolding complexes in distinct cell types. Their absence may thus alter several cellular pathways, which might explain the heterogeneous genotype-phenotype relationships underlying central comorbidities in Duchenne muscular dystrophy (DMD). However, the cell-specific expression of dystrophins and associated proteins (DAPs) is still largely unknown. The present study provides a first RNA-Seq-based reference showing tissue- and cell-specific differential expression of dystrophins, splice variants and DAPs in mouse brain and retina. We report that a cell type may express several dystrophin complexes, perhaps due to expression in separate cell subdomains and/or subpopulations, some of which with differential expression at different maturation stages. We also identified new splicing events in addition to the common exon-skipping events. These include a new exon within intron 51 (E51b) in frame with the flanking exons in retina, as well as inclusions of intronic sequences with stop codons leading to the presence of transcripts with elongated exons 40 and/or 41 (E40e, E41e) in both retina and brain. PCR validations revealed that the new exons may affect several dystrophins. Moreover, immunoblot experiments using a combination of specific antibodies and dystrophin-deficient mice unveiled that the transcripts with stop codons are translated into truncated proteins lacking their C-terminus, which we called N-Dp427 and N-Dp260. This study thus uncovers a range of new findings underlying the complex neurobiology of DMD.
Collapse
Affiliation(s)
| | | | - Sophie Lourdel
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Ahrmad Annan
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Jérôme E Roger
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cecilia Montanez
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cyrille Vaillend
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| |
Collapse
|
3
|
Fujimoto T, Yaoi T, Nakano K, Arai T, Okamura T, Itoh K. Generation of dystrophin short product-specific tag-insertion mouse: distinct Dp71 glycoprotein complexes at inhibitory postsynapse and glia limitans. Cell Mol Life Sci 2022; 79:109. [PMID: 35098363 PMCID: PMC11071725 DOI: 10.1007/s00018-022-04151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 01/14/2022] [Indexed: 11/03/2022]
Abstract
Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathies, is a fatal X-linked recessive neuromuscular disorder characterized by progressive muscle degeneration and various extents of intellectual disabilities. Physiological and pathological roles of the responsible gene, dystrophin, in the brain remain elusive due to the presence of multiple dystrophin products, mainly full-length dystrophin, Dp427, and the short product, Dp71. In this study, we generated a Dp71-specific hemagglutinin (HA) peptide tag-insertion mice to enable specific detection of intrinsic Dp71 expression by anti-HA-tag antibodies. Immunohistochemical detections in the transgenic mice demonstrated Dp71 expression not only at the blood-brain barrier, where astrocytic endfeet surround the microvessels, but also at the inhibitory postsynapse of hippocampal dentate granule neurons. Interestingly, hippocampal cornu ammonis (CA)1 pyramidal neurons were negative for Dp71, although Dp427 detected by anti-dystrophin antibody was clearly present at the inhibitory postsynapse, suggesting cell-type dependent dystrophin expressions. Precise examination using the primary hippocampal culture validated exclusive localization of Dp71 at the inhibitory postsynaptic compartment but not at the excitatory synapse in neurons. We further performed interactome analysis and found that Dp71 formed distinct molecular complexes, i.e. synapse-associated Dp71 interacted with dystroglycan (Dg) and dystrobrevinβ (Dtnb), whereas glia-associated Dp71 did with Dg and dystrobrevinα (Dtna). Thus, our data indicate that Dp71 and its binding partners are relevant to the inhibitory postsynaptic function of hippocampal granule neurons and the novel Dp71-transgenic mouse provides a valuable tool to understand precise physiological expressions and functions of Dp71 and its interaction proteins in vivo and in vitro.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Tetsuya Arai
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
4
|
Fujimoto T, Yaoi T, Tanaka H, Itoh K. Dystroglycan regulates proper expression, submembranous localization and subsequent phosphorylation of Dp71 through physical interaction. Hum Mol Genet 2021; 29:3312-3326. [PMID: 32996569 DOI: 10.1093/hmg/ddaa217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 11/12/2022] Open
Abstract
Dystrophin-dystroglycan complex (DGC) plays important roles for structural integrity and cell signaling, and its defects cause progressive muscular degeneration and intellectual disability. Dystrophin short product, Dp71, is abundantly expressed in multiple tissues other than muscle and is suspected of contributing to cognitive functions; however, its molecular characteristics and relation to dystroglycan (DG) remain unknown. Here, we report that DG physically interacts with Dp71 in cultured cells. Intriguingly, DG expression positively and DG knockdown negatively affected the steady-state expression, submembranous localization and subsequent phosphorylation of Dp71. Mechanistically, two EF-hand regions along with a ZZ motif of Dp71 mediate its association with the transmembrane proximal region, amino acid residues 788-806, of DG cytoplasmic domain. Most importantly, the pathogenic point mutations of Dp71, C272Y in the ZZ motif or L170del in the second EF-hand region, impaired its binding to DG, submembranous localization and phosphorylation of Dp71, indicating the relevance of DG-dependent Dp71 regulatory mechanism to pathophysiological conditions. Since Dp140, another dystrophin product, was also regulated by DG in the same manner as Dp71, our results uncovered a tight molecular relation between DG and dystrophin, which has broad implications for understanding the DGC-related cellular physiology and pathophysiology.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hidekazu Tanaka
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
6
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 07/30/2023] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
7
|
Matsuo M, Awano H, Matsumoto M, Nagai M, Kawaguchi T, Zhang Z, Nishio H. Dystrophin Dp116: A yet to Be Investigated Product of the Duchenne Muscular Dystrophy Gene. Genes (Basel) 2017; 8:genes8100251. [PMID: 28974057 PMCID: PMC5664101 DOI: 10.3390/genes8100251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
The Duchenne muscular dystrophy (DMD) gene is one of the largest genes in the human genome. The gene exhibits a complex arrangement of seven alternative promoters, which drive the expression of three full length and four shorter isoforms. Dp116, the second smallest product of the DMD gene, is a Schwann cell-specific isoform encoded by a transcript corresponding to DMD exons 56–79, starting from a promoter/exon S1 within intron 55. The physiological roles of Dp116 are poorly understood, because of its extensive homology with other isoforms and its expression in specific tissues. This review summarizes studies on Dp116, focusing on clinical findings and alternative activation of the upstream translation initiation codon that is predicted to produce Dp118.
Collapse
Affiliation(s)
- Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan.
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Masaaki Matsumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Masashi Nagai
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Tatsuya Kawaguchi
- Biomedical Analysis and Pathology Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Tokyo 134-8630, Japan.
| | - Zhujun Zhang
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan.
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
8
|
Annese T, Corsi P, Ruggieri S, Tamma R, Marinaccio C, Picocci S, Errede M, Specchia G, De Luca A, Frassanito MA, Desantis V, Vacca A, Ribatti D, Nico B. Isolation and characterization of neural stem cells from dystrophic mdx mouse. Exp Cell Res 2016; 343:190-207. [PMID: 27015747 DOI: 10.1016/j.yexcr.2016.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
|
9
|
Saint Martín A, Aragón J, Depardon-Benítez F, Sánchez-Trujillo A, Mendoza-Hernández G, Ceja V, Montañez C. Identification of Dp71e, a new dystrophin with a novel carboxy-terminal end. FEBS J 2011; 279:66-77. [DOI: 10.1111/j.1742-4658.2011.08399.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Teniente-De Alba C, Martínez-Vieyra I, Vivanco-Calixto R, Galván IJ, Cisneros B, Cerecedo D. Distribution of dystrophin- and utrophin-associated protein complexes (DAPC/UAPC) in human hematopoietic stem/progenitor cells. Eur J Haematol 2011; 87:312-22. [PMID: 21623922 DOI: 10.1111/j.1600-0609.2011.01657.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem cells (HSC) are defined by their cardinal properties, such as sustained proliferation, multilineage differentiation, and self-renewal, which give rise to a hierarchy of progenitor populations with more restricted potential lineage, ultimately leading to the production of all types of mature blood cells. HSC are anchored by cell adhesion molecules to their specific microenvironment, thus regulating their cell cycle, while cell migration is essentially required for seeding the HSC of the fetal bone marrow (BM) during development as well as in adult BM homeostasis. The dystrophin-associated protein complex (DAPC) is a large group of membrane-associated proteins linking the cytoskeleton to the extracellular matrix and exhibiting scaffolding, adhesion, and signaling roles in muscle and non-muscle cells including mature blood cells. Because adhesion and migration are mechanisms that influence the fate of the HSC, we explored the presence and the feasible role of DAPC. In this study, we characterized the pattern expression by immunoblot technique and, by confocal microscopy analysis, the cellular distribution of dystrophin and utrophin gene products, and the dystrophin-associated proteins (α-, β-dystroglycan, α-syntrophin, α-dystrobrevin) in relation to actin filaments in freshly isolated CD34+ cells from umbilical cord blood. Immunoprecipitation assays demonstrated the presence of Dp71d/Dp71Δ110m ∼DAPC and Up400/Up140∼DAPC. The subcellular distribution of the two DAPC in actin-based structures suggests their dynamic participation in adhesion and cell migration. In addition, the particular protein pattern expression found in hematopoietic stem/progenitor cells might be indicative of their feasible participation during differentiation.
Collapse
Affiliation(s)
- Carmen Teniente-De Alba
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), México, D.F., México
| | | | | | | | | | | |
Collapse
|
11
|
Benabdesselam R, Sene A, Raison D, Benmessaoud-Mesbah O, Ayad G, Mornet D, Yaffe D, Rendon A, Hardin-Pouzet HÃ, Dorbani-Mamine L. A deficit of brain dystrophin 71 impairs hypothalamic osmostat. J Neurosci Res 2010; 88:324-34. [DOI: 10.1002/jnr.22198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Böhm S, Jin H, Hughes SM, Roberts RG, Hinits Y. Dystrobrevin and dystrophin family gene expression in zebrafish. Gene Expr Patterns 2007; 8:71-8. [PMID: 18042440 DOI: 10.1016/j.modgep.2007.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/21/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Dystrophin/dystrobrevin superfamily proteins play structural and signalling roles at the plasma membrane of many cell types. Defects in them or the associated multiprotein complex cause a range of neuromuscular disorders. Members of the dystrophin branch of the family form heterodimers with members of the dystrobrevin branch, mediated by their coiled-coil domains. To determine which combinations of these proteins might interact during embryonic development, we set out to characterise the gene expression pattern of dystrophin and dystrobrevin family members in zebrafish. gamma-dystrobrevin (dtng), a novel dystrobrevin recently identified in fish, is the predominant form of dystrobrevin in embryonic development. Dtng and dmd (dystrophin) have similar spatial and temporal expression patterns in muscle, where transcripts are localized to the ends of differentiated fibres at the somite borders. Dtng is expressed in the notochord while dmd is expressed in the chordo-neural hinge and then in floor plate and hypochord. In addition, dtng is dynamically expressed in rhombomeres 2 and 4-6 of the hindbrain and in the ventral midbrain. alpha-dystrobrevin (dtna) is expressed widely in the brain with particularly strong expression in the hypothalamus and the telencephalon; drp2 is also expressed widely in the brain. Utrophin expression is found in early pronephros and lateral line development and utrophin and dystrophin are both expressed later in the gut. beta-dystrobrevin (dtnb) is expressed in the pronephric duct and widely at low levels. In summary, we find clear instances of co-expression of dystrophin and dystrobrevin family members in muscle, brain and pronephric duct development and many examples of strong and specific expression of members of one family but not the other, an intriguing finding given the presumed heterodimeric state of these molecules.
Collapse
Affiliation(s)
- Sabrina Böhm
- Department of Medical & Molecular Genetics, Guy's Campus, King's College London, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
13
|
The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms. BMC Genomics 2007; 8:19. [PMID: 17233888 PMCID: PMC1790709 DOI: 10.1186/1471-2164-8-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 01/17/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dystrophins and dystrobrevins are distantly related proteins with important but poorly understood roles in the function of metazoan muscular and neuronal tissues. Defects in them and their associated proteins cause a range of neuromuscular disorders. Members of this superfamily have been discovered in a relatively serendipitous way; we set out to compile a comprehensive description of dystrophin- and dystrobrevin-related sequences from available metazoan genome sequences, validated in representative organisms by RT-PCR, or acquired de novo from key species. RESULTS Features of the superfamily revealed by our survey include: a) Dystrotelin, an entirely novel branch of the superfamily, present in most vertebrates examined. Dystrotelin is expressed in the central nervous system, and is a possible orthologue of Drosophila DAH. We describe the preliminary characterisation of its function, evolution and expression. b) A novel vertebrate member of the dystrobrevin family, gamma-dystrobrevin, an ancient branch now extant only in fish, but probably present in our own ancestors. Like dystrophin, zebrafish gamma-dystrobrevin mRNA is localised to myosepta. c) The extent of conservation of alternative splicing and alternative promoter use in the dystrophin and dystrobrevin genes; alternative splicing of dystrophin exons 73 and 78 and alpha-dystrobrevin exon 13 are conserved across vertebrates, as are the use of the Dp116, Dp71 and G-utrophin promoters; the Dp260 and Dp140 promoters are tetrapod innovations. d) The evolution of the unique N-terminus of DRP2 and its relationship to Dp116 and G-utrophin. e) A C-terminally truncated common ancestor of dystrophin and utrophin in cyclostomes. f) A severely restricted repertoire of dystrophin complex components in ascidians. CONCLUSION We have refined our understanding of the evolutionary history and isoform diversity of the five previously reported vertebrate superfamily members and describe two novel members, dystrotelin and gamma-dystrobrevin. Dystrotelins, dystrophins and dystrobrevins are roughly equally related to each other. Vertebrates therefore have a repertoire of seven superfamily members (three dystrophins, three dystrobevins, and one dystrotelin), with one lost in tetrapods. Most invertebrates studied have one member from each branch. Although the basic shared function which is implied by the common architecture of these distantly related proteins remains unclear, it clearly permeates metazoan biology.
Collapse
|
14
|
Hopf FW, Turner PR, Steinhardt RA. Calcium misregulation and the pathogenesis of muscular dystrophy. Subcell Biochem 2007; 45:429-464. [PMID: 18193647 DOI: 10.1007/978-1-4020-6191-2_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although the exact nature of the relationship between calcium and the pathogenesis of Duchenne muscular dystrophy (DMD) is not fully understood, this is an important issue which has been addressed in several recent reviews (Alderton and Steinhardt, 2000a, Gailly, 2002, Allen et al., 2005). A key question when trying to understand the cellular basis of DMD is how the absence or low level of expression of dystrophin, a cytoskeletal protein, results in the slow but progressive necrosis of muscle fibres. Although loss of cytoskeletal and sarcolemmal integrity which results from the absence of dystrophin clearly plays a key role in the pathogenesis associated with DMD, a number of lines of evidence also establish a role for misregulation of calcium ions in the DMD pathology, particularly in the cytoplasmic space just under the sarcolemma. A number of calcium-permeable channels have been identified which can exhibit greater activity in dystrophic muscle cells, and exIsting evidence suggests that these may represent different variants of the same channel type (perhaps the transient receptor potential channel, TRPC). In addition, a prominent role for calcium-activated proteases in the DMD pathology has been established, as well as modulation of other intracellular regulatory proteins and signaling pathways. Whether dystrophin and its associated proteins have a direct role in the regulation of calcium ions, calcium channels or intracellular calcium stores, or indirectly alters calcium regulation through enhancement of membrane tearing, remains unclear. Here we focus on areas of consensus or divergence amongst the existing literature, and propose areas where future research would be especially valuable.
Collapse
Affiliation(s)
- F W Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton St., Suite 200, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
15
|
Driss A, Charrier L, Yan Y, Nduati V, Sitaraman S, Merlin D. Dystroglycan receptor is involved in integrin activation in intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1228-42. [PMID: 16357060 PMCID: PMC2738938 DOI: 10.1152/ajpgi.00378.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dystroglycans (alpha-DG and beta-DG), which play important roles in the formation of basement membranes, have been well studied in skeletal muscle and nerve, but their expression and localization in intestinal epithelial cells has not been previously investigated. Here, we demonstrated that the DG complex, composed of alpha-DG, beta-DG, and utrophin, is specifically expressed in the basolateral membrane of the Caco-2-BBE monolayer. The DG complex coprecipitated with beta(1)-integrin, suggesting a possible interaction among these proteins. In addition, we observed that activation of DG receptors by laminin-1 enhanced the interaction between beta(1)-integrin and laminin-1, whereas activation of DG receptors by laminin-2 reduced the interaction between beta(1)-integrin and laminin-2. Finally, we demonstrated that the intracellular COOH-terminal tail of beta-DG and its binding to the DG binding domain of utrophin are crucial for the interactions between laminin-1/-2 and beta(1)-integrin. Collectively, these novel results indicate that dystroglycans play important roles in the regulation of interactions between intestinal epithelial cells and the extracellular matrix.
Collapse
Affiliation(s)
- Adel Driss
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, Atlanta, 30322, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Hazai D, Halasy K, Mornet D, Hajós F, Jancsik V. Dystrophin splice variants are distinctly localized in the hippocampus. ACTA BIOLOGICA HUNGARICA 2006; 57:141-6. [PMID: 16841465 DOI: 10.1556/abiol.57.2006.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has previously been demonstrated that Dp71, the most abundant dystrophin protein in the brain, is mainly localized in the postsynaptic densities. Here we show the localization of Dp71f, one of the splice variants of this protein, within the CA3 region of the hippocampus. Immunopositivity occurs in the postsynaptic density of small asymmetrical axospinous and axodendritic synapses, while it is absent in the postsynaptic densities of the axospinous synapses of the large mossy fiber terminals. Dp71f immunoreactivity was found to be attached to the membranes of the mossy fibers in the stratum lucidum of the CA3 area. In a certain population of thin myelinated axons the protein seems to be present within the axon proper. These data support the notion of a physiological role of Dp71f distinct from other dystrophin isoforms present in the central nervous system.
Collapse
Affiliation(s)
- Diana Hazai
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
17
|
de León MB, Montañez C, Gómez P, Morales-Lázaro SL, Tapia-Ramírez V, Valadez-Graham V, Recillas-Targa F, Yaffe D, Nudel U, Cisneros B. Dystrophin Dp71 Expression Is Down-regulated during Myogenesis. J Biol Chem 2005; 280:5290-9. [PMID: 15550398 DOI: 10.1074/jbc.m411571200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dp71 expression is present in myoblasts but declines during myogenesis to avoid interfering with the function of dystrophin, the predominant Duchenne muscular dystrophy gene product in differentiated muscle fibers. To elucidate the transcriptional regulatory mechanisms operating on the developmentally regulated expression of Dp71, we analyzed the Dp71 expression and promoter activity during myogenesis of the C2C12 cells. We demonstrated that the cellular content of Dp71 transcript and protein decrease in myotubes as a consequence of the negative regulation that the differentiation stimulus exerts on the Dp71 promoter. Promoter deletion analysis showed that the 224-bp 5'-flanking region, which contains several Sp-binding sites (Sp-A to Sp-D), is responsible for the Dp71 promoter basal activity in myoblasts as well as for down-regulation of the promoter in differentiated cells. Electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that Sp1 and Sp3 transcription factors specifically bind to the Sp-binding sites in the minimal Dp71 promoter region. Site-directed mutagenesis assay revealed that Sp-A is the most important binding site for the proximal Dp71 promoter activity. Additionally, cotransfection of the promoter construct with Sp1- and Sp3-expressing vectors into Drosophila SL2 cells, which lack endogenous Sp family, confirmed that these proteins activate specifically the minimal Dp71 promoter. Endogenous Sp1 and Sp3 proteins were detected only in myoblasts and not in myotubes, which indicates that the lack of these factors causes down-regulation of the Dp71 promoter activity in differentiated cells. In corroboration, efficient promoter activity was restored in differentiated muscle cells by exogenous expression of Sp1 and Sp3.
Collapse
Affiliation(s)
- Mario Bermúdez de León
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del I.P.N., 07360 México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nico B, Paola Nicchia G, Frigeri A, Corsi P, Mangieri D, Ribatti D, Svelto M, Roncali L. Altered blood–brain barrier development in dystrophic MDX mice. Neuroscience 2004; 125:921-35. [PMID: 15120852 DOI: 10.1016/j.neuroscience.2004.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/29/2004] [Accepted: 02/04/2004] [Indexed: 11/23/2022]
Abstract
In order to ascertain whether the alterations of the blood-brain barrier (BBB) seen in adult dystrophic mdx-mice [Glia 42 (2003) 235], a human model of Duchenne muscular dystrophy (DMD), are developmentally established and correlated with other dystrophin isoforms which are localized at the glial-vascular interface, we used immunocytochemistry to investigate the expression of dystrophin isoforms (Dp71) during BBB development in mdx fetuses and in adult mice. Parallelly, we used Western blot, immunocytochemistry and immunogold electron microscopy to analyze the expression of the zonula occludens (ZO-1), aquaporin-4 (AQP4) and glial fibrillary acidic (GFAP) proteins as endothelial and glial markers, and we evaluated the integrity of the mdx BBB by means of intravascular injection of horseradish peroxidase (HRP). The results show reduced dystrophin isoforms (Dp71) in the mdx mouse compared with the control, starting from early embryonic life. Endothelial ZO-1 expression was reduced, and the tight junctions were altered and unlabeled. AQP4 and GFAP glial proteins in mdx mice also showed modifications in developmental expression, the glial vascular processes being only lightly AQP4- and GFAP-labeled compared with the controls. Confocal microscopy and HRP assays confirmed the alteration in vessel glial investment, GFAP perivascular endfoot reactivity being strongly reduced and BBB permeability increasing. These results demonstrate that a reduction in dystrophin isoforms (Dp71) at glial endfeet leads to an altered development of the BBB, whose no-closure might contribute to the neurological dysfunctions associated with DMD.
Collapse
Affiliation(s)
- B Nico
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, I-70124 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82:291-329. [PMID: 11917091 DOI: 10.1152/physrev.00028.2001] [Citation(s) in RCA: 842] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The X-linked muscle-wasting disease Duchenne muscular dystrophy is caused by mutations in the gene encoding dystrophin. There is currently no effective treatment for the disease; however, the complex molecular pathology of this disorder is now being unravelled. Dystrophin is located at the muscle sarcolemma in a membrane-spanning protein complex that connects the cytoskeleton to the basal lamina. Mutations in many components of the dystrophin protein complex cause other forms of autosomally inherited muscular dystrophy, indicating the importance of this complex in normal muscle function. Although the precise function of dystrophin is unknown, the lack of protein causes membrane destabilization and the activation of multiple pathophysiological processes, many of which converge on alterations in intracellular calcium handling. Dystrophin is also the prototype of a family of dystrophin-related proteins, many of which are found in muscle. This family includes utrophin and alpha-dystrobrevin, which are involved in the maintenance of the neuromuscular junction architecture and in muscle homeostasis. New insights into the pathophysiology of dystrophic muscle, the identification of compensating proteins, and the discovery of new binding partners are paving the way for novel therapeutic strategies to treat this fatal muscle disease. This review discusses the role of the dystrophin complex and protein family in muscle and describes the physiological processes that are affected in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Derek J Blake
- Medical Research Council, Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
20
|
Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ. Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 2001; 276:24232-41. [PMID: 11316798 DOI: 10.1074/jbc.m010418200] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dystrophin-associated protein complex (DPC) is required for the maintenance of muscle integrity during the mechanical stresses of contraction and relaxation. In addition to providing a membrane scaffold, members of the DPC such as the alpha-dystrobrevin protein family are thought to play an important role in intracellular signal transduction. To gain additional insights into the function of the DPC, we performed a yeast two-hybrid screen for dystrobrevin-interacting proteins. Here we describe the identification of a dysbindin, a novel dystrobrevin-binding protein. Dysbindin is an evolutionary conserved 40-kDa coiled-coil-containing protein that binds to alpha- and beta-dystrobrevin in muscle and brain. Dystrophin and alpha-dystrobrevin are co-immunoprecipitated with dysbindin, indicating that dysbindin is DPC-associated in muscle. Dysbindin co-localizes with alpha-dystrobrevin at the sarcolemma and is up-regulated in dystrophin-deficient muscle. In the brain, dysbindin is found primarily in axon bundles and especially in certain axon terminals, notably mossy fiber synaptic terminals in the cerebellum and hippocampus. These findings have implications for the molecular pathology of Duchenne muscular dystrophy and may provide an alternative route for anchoring dystrobrevin and the DPC to the muscle membrane.
Collapse
Affiliation(s)
- M A Benson
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Mehler MF. Brain dystrophin, neurogenetics and mental retardation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:277-307. [PMID: 10751678 DOI: 10.1016/s0165-0173(99)00090-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) and the allelic disorder Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders that are associated with a spectrum of genetically based developmental cognitive and behavioral disabilities. Seven promoters scattered throughout the huge DMD/BMD gene locus normally code for distinct isoforms of the gene product, dystrophin, that exhibit nervous system developmental, regional and cell-type specificity. Dystrophin is a complex plasmalemmal-cytoskeletal linker protein that possesses multiple functional domains, autosomal and X-linked homologs and associated binding proteins that form multiunit signaling complexes whose composition is unique to each cellular and developmental context. Through additional interactions with a variety of proteins of the extracellular matrix, plasma membrane, cytoskeleton and distinct intracellular compartments, brain dystrophin acquires the capability to participate in the modulatory actions of a large number of cellular signaling pathways. During neural development, dystrophin is expressed within the neural tube and selected areas of the embryonic and postnatal neuraxis, and may regulate distinct aspects of neurogenesis, neuronal migration and cellular differentiation. By contrast, in the mature brain, dystrophin is preferentially expressed by specific regional neuronal subpopulations within proximal somadendritic microdomains associated with synaptic terminal membranes. Increasing experimental evidence suggests that in adult life, dystrophin normally modulates synaptic terminal integrity, distinct forms of synaptic plasticity and regional cellular signal integration. At a systems level, dystrophin may regulate essential components of an integrated sensorimotor attentional network. Dystrophin deficiency in DMD/BMD patients and in the mdx mouse model appears to impair intracellular calcium homeostasis and to disrupt multiple protein-protein interactions that normally promote information transfer and signal integration from the extracellular environment to the nucleus within regulated microdomains. In DMD/BMD, the individual profiles of cognitive and behavioral deficits, mental retardation and other phenotypic variations appear to depend on complex profiles of transcriptional regulation associated with individual dystrophin mutations that result in the corresponding presence or absence of individual brain dystrophin isoforms that normally exhibit developmental, regional and cell-type-specific expression and functional regulation. This composite experimental model will allow fine-level mapping of cognitive-neurogenetic associations that encompass the interrelationships between molecular, cellular and systems levels of signal integration, and will further our understanding of complex gene-environmental interactions and the pathogenetic basis of developmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- M F Mehler
- Departments of Neurology, Neuroscience and Psychiatry, the Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
22
|
Jancsik V, Hajós F. The demonstration of immunoreactive dystrophin and its developmental expression in perivascular astrocytes. Brain Res 1999; 831:200-5. [PMID: 10411999 DOI: 10.1016/s0006-8993(99)01445-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immunoreactivity of dystrophin family proteins was observed in the astrocytes of the adult and immature rat hippocampus and cerebral cortex by using Dys2, a monoclonal antibody recognizing both 427 kDa and short dystrophin isoforms. As revealed by light and electron microscopy, immunostaining of the ribosomal apparatus and of pericapillary endfeet was particularly pronounced in the adult. In the pericapillary astrocyte processes immunostaining appeared between postnatal days 10 and 20, and reached the intensity seen in the adult by postnatal day 30. In the pericapillary astrocyte process, the membrane facing the endothelial basal lamina was the earliest structure to show the immunoreaction. At later stages, the pericapillary astrocyte process was gradually filled up with immunoprecipitate. Findings suggest that dystrophins are expressed coinciding with the development of the blood-brain barrier, and it is assumed that they contribute to the formation of this system.
Collapse
Affiliation(s)
- V Jancsik
- Department of Anatomy and Histology, University of Veterinary Science, H-1400, Budapest P.O. Box 2, Hungary
| | | |
Collapse
|
23
|
Lumeng CN, Hauser M, Brown V, Chamberlain JS. Expression of the 71 kDa dystrophin isoform (Dp71) evaluated by gene targeting. Brain Res 1999; 830:174-8. [PMID: 10350571 DOI: 10.1016/s0006-8993(99)01201-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To investigate the function of the major non-muscle dystrophin isoform, Dp71, we substituted a beta-galactosidase (betagal) reporter gene for Dp71 by homologous recombination in embryonic stem cells. Staining for betagal activity in chimeric mice revealed Dp71 promoter activity in glial cells in the CNS, in neurons of the inner nuclear and inner plexiform layers of the retina, and in the kidney tubules and collecting ducts. Our observations demonstrate that Dp71 is widely expressed in the adult CNS (retina, cerebellum, cerebral cortex, ependyma, and choroid) as well as the adult kidney epithelium and suggest a broad function for Dp71 in differentiated tissues.
Collapse
Affiliation(s)
- C N Lumeng
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-0618, USA
| | | | | | | |
Collapse
|
24
|
Howard PL, Dally GY, Ditta SD, Austin RC, Worton RG, Klamut HJ, Ray PN. Dystrophin isoforms DP71 and DP427 have distinct roles in myogenic cells. Muscle Nerve 1999; 22:16-27. [PMID: 9883853 DOI: 10.1002/(sici)1097-4598(199901)22:1<16::aid-mus5>3.0.co;2-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene, a complex gene that generates a family of distinct isoforms. In immature muscle cells, two dystrophin isoforms are expressed, Dp427 and Dp71. To characterize the function of Dp71 in myogenesis, we have examined the expression of Dp71 in myogenic cells. The localization of Dp71 in these cells is distinct from the localization of Dp427. Whereas Dp427 localizes to focal adhesions and surface membrane during myogenesis, Dp71 localizes to stress fiberlike structures in myogenic cells. Biochemical fractionation of myogenic cells demonstrates that Dp71 cosediments with the actin bundles thus confirming this interaction. Furthermore, transfection of C2C12 myoblasts with constructs encoding Dp71 fused to green fluorescent protein targeted the protein to the actin microfilament bundles. These results demonstrate involvement of Dp71 with the actin cytoskeleton during myogenesis and suggest a role for Dp71 that is distinct from Dp427.
Collapse
Affiliation(s)
- P L Howard
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Pfister MH, Apaydin F, Turan O, Bereketoglu M, Bylgen V, Braendle U, Zenner HP, Lalwani AK. A second family with nonsyndromic sensorineural hearing loss linked to Xp21.2: refinement of the DFN4 locus within DMD. Genomics 1998; 53:377-82. [PMID: 9799605 DOI: 10.1006/geno.1998.5538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-linked inherited hearing impairment is a group of heterogeneous disorders accounting for less than 2% of hereditary hearing loss. DFN4, a sex-linked hearing impairment associated with profound sensorineural hearing loss, has been previously mapped to Xp21.2, a region containing the DMD locus. We have identified a family from Turkey with deafness in which the disease maps to and refines the DFN4 locus. In contrast to the previous family, the crossover points are entirely within the DMD locus. Two-point lod score analysis for the markers DXS 997, DXS 1214, and DXS 1219 showed a lod score of 2. 59. 5' and 3' crossovers were between DMD 44 and DXS 1219 and between DXS 1214 and DXS 985, respectively, suggesting that DFN4 is either an allele of DMD or a mutation in a DMD nested gene. The restriction of the DFN4 locus to DMD suggests that dystrophin may play an important role in hearing.
Collapse
Affiliation(s)
- M H Pfister
- Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gramolini AO, Jasmin BJ. Molecular mechanisms and putative signalling events controlling utrophin expression in mammalian skeletal muscle fibres. Neuromuscul Disord 1998; 8:351-61. [PMID: 9713851 DOI: 10.1016/s0960-8966(98)00052-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The absence of full-length dystrophin molecules in skeletal muscle fibres results in the most severe form of muscular dystrophy, the Duchenne form (DMD). Several years ago, an autosomal homologue to dystrophin, termed utrophin, was identified. Although utrophin is expressed along the sarcolemma in developing, regenerating and DMD muscles, it nonetheless accumulates at the postsynaptic membrane of the neuromuscular junction in both normal and DMD adult muscle fibres. Due to the high degree of sequence identity between dystrophin and utrophin, it has been previously suggested that utrophin could in fact functionally compensate for the lack of dystrophin. Recent studies using transgenic mouse model systems have directly tested this hypothesis and revealed that upregulation of utrophin throughout dystrophic muscle fibres represents indeed, a viable approach for the treatment of DMD. Current studies are therefore focusing on the elucidation of the various regulatory mechanisms presiding over expression of utrophin in muscle fibres in attempts to ultimately identify small molecules which could systematically increase utrophin levels in extrasynaptic compartments of dystrophic muscle fibres. This review presents some of the recent data relevant for our understanding of the transcriptional regulatory mechanisms involved in maintaining expression of utrophin at the neuromuscular junction. In addition, the contribution of specific cues originating from motoneurons and the putative involvement of signalling events are also discussed.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
27
|
Imamura M, Ozawa E. Differential expression of dystrophin isoforms and utrophin during dibutyryl-cAMP-induced morphological differentiation of rat brain astrocytes. Proc Natl Acad Sci U S A 1998; 95:6139-44. [PMID: 9600931 PMCID: PMC27600 DOI: 10.1073/pnas.95.11.6139] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1997] [Accepted: 03/02/1998] [Indexed: 02/07/2023] Open
Abstract
We have identified isoforms of dystrophin and utrophin, a dystrophin homologue, expressed in astrocytes and examined their expression patterns during dibutyryl-cAMP (dBcAMP)-induced morphological differentiation of astrocytes. Immunoblot and immunocytochemical analyses showed that full-length-type dystrophin (427 kDa), utrophin (395 kDa), and Dp71 (75 kDa), a small-type dystrophin isoform, were coexpressed in cultured nondifferentiated rat brain astrocytes and were found to be located in the cell membrane. During morphological differentiation of the astrocytes induced by 1 mM dBcAMP, the amount of Dp71 markedly increased, whereas that of dystrophin and utrophin decreased. Northern blot analyses revealed that dBcAMP regulates the mRNA levels of Dp71 and dystrophin but not that of utrophin. dBcAMP slightly increased the amount of the beta-dystroglycan responsible for anchoring dystrophin isoforms and utrophin to the cell membrane. Immunocytochemical analyses showed that most utrophin was observed in the cytoplasmic area during astrocyte differentiation, whereas Dp71 was found along the cell membrane of the differentiated astrocytes. These findings suggest that most of the dystrophin/utrophin-dystroglycan complex on cell membrane in cultured astrocytes was replaced by the Dp71-dystroglycan complex during morphological differentiation. The cell biological roles of Dp71 are discussed.
Collapse
Affiliation(s)
- M Imamura
- Department of Cell Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187, Japan.
| | | |
Collapse
|
28
|
Ceccarini M, Rizzo G, Rosa G, Chelucci C, Macioce P, Petrucci TC. A splice variant of Dp71 lacking the syntrophin binding site is expressed in early stages of human neural development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 103:77-82. [PMID: 9370062 DOI: 10.1016/s0165-3806(97)00122-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dp71, a 71 kDa C-terminal isoform of dystrophin, is the major product of the DMD gene in brain. Two alternatively spliced transcripts of Dp71 were amplified by RT-PCR from different areas of human fetal neural tissue. Both transcripts were spliced out of exons 71 and 78. The shorter transcript was also alternatively spliced of exons 72-74, a region comprising the coding sequence for the binding site to syntrophin, one component of the dystrophin-associated protein complex. Results indicate that alternatively spliced forms of Dp71 are regulated during human neural development.
Collapse
Affiliation(s)
- M Ceccarini
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Tian M, Jacobson C, Gee SH, Campbell KP, Carbonetto S, Jucker M. Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci 1996; 8:2739-47. [PMID: 8996823 DOI: 10.1111/j.1460-9568.1996.tb01568.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dystroglycan is a core component of the dystrophin receptor complex in skeletal muscle which links the extracellular matrix to the muscle cytoskeleton. Dystrophin, dystrophin-related protein (DRP, utrophin) and dystroglycan are present not only in muscles but also in the brain. Dystrophin is expressed in certain neuronal populations while DRP is associated with perivascular astrocytes. To gain insights into the function and molecular interactions of dystroglycan in the brain, we examined the localization of alpha- and beta-dystroglycan at the cellular and subcellular levels in the rat cerebellum. In blood vessels, we find alpha-dystroglycan associated with the laminin alpha 2-chain-rich parenchymal vascular basement membrane and beta-dystroglycan associated with the endfeet of perivascular astrocytes. We also show that alpha-dystroglycan purified from the brain binds alpha 2-chain-containing laminin-2. These observations suggest a dystroglycan-mediated linkage between DRP in perivascular astrocytic endfeet and laminin-2 in the parenchymal basement membrane similar to that described in skeletal muscle. This linkage of the astrocytic endfeet to the vascular basement membrane is likely to be important for blood vessel formation and stabilization and for maintaining the integrity of the blood-brain barrier. In addition to blood vessel labelling, we show that alpha-dystroglycan in the rat cerebellum is associated with the surface of Purkinje cell bodies, dendrites and dendritic spines. Dystrophin has previously been localized to the inner surface of the plasma membrane of Purkinje cells and is enriched at postsynaptic sites. Thus, the present results also support the hypothesis that dystrophin interacts with dystroglycan in cerebellar Purkinje neurons.
Collapse
Affiliation(s)
- M Tian
- Gerontology Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
30
|
Roberts RG, Freeman TC, Kendall E, Vetrie DL, Dixon AK, Shaw-Smith C, Bone Q, Bobrow M. Characterization of DRP2, a novel human dystrophin homologue. Nat Genet 1996; 13:223-6. [PMID: 8640231 DOI: 10.1038/ng0696-223] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The currently recognised dystrophin protein family comprises the archetype, dystrophin, its close relative, utrophin or dystrophin-related protein (DRP), and a distantly related protein known as the 87K tyrosine kinase substrate. During the course of a phylogenetic study of sequences encoding the characteristic C-terminal domains of dystrophin-related proteins, we identified an unexpected novel class of vertebrate dystrophin-related sequences. We term this class dystrophin-related protein 2 (DRP2), and suggest that utrophin/DRP be renamed DRP1 to simplify future nomenclature. DRP2 is a relatively small protein, encoded in man by a 45 kb gene localized to Xq22. It is expressed principally in the brain and spinal cord, and is similar in overall structure to the Dp116 dystrophin isoform. The discovery of a novel relative of dystrophin substantially broadens the scope for study of this interesting group of proteins and their associated glycoprotein complexes.
Collapse
Affiliation(s)
- R G Roberts
- Division of Medical and Molecular Genetics, UMDS, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Fabbrizio E, Latouche J, Rivier F, Hugon G, Mornet D. Re-evaluation of the distributions of dystrophin and utrophin in sciatic nerve. Biochem J 1995; 312 ( Pt 1):309-14. [PMID: 7492329 PMCID: PMC1136260 DOI: 10.1042/bj3120309] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Differential expression of proteins belonging to the dystrophin family was analysed in peripheral nerves. In agreement with previous reports, no full-size dystrophin was detectable, only Dp116, one of the short dystrophin products of the Duchenne muscular dystrophy (DMD) gene. We used specific monoclonal antibodies to fully investigate the presence of utrophin, a dystrophin homologue encoded by a gene located on chromosome 6q24. Evidence is presented here of the presence of two potential isoforms of full-length utrophin in different nerve structures, which may differ by alternative splicing of the 3'-terminal part of the utrophin gene according to the specificities of the monoclonal antiobodies used. One full-length utrophin was co-localized with Dp116 in the sheath around each separate Schwann cell-axon unit, but the other utrophin isoform was found to be perineurium-specific. We also highlighted a potential 80 kDa utrophin-related protein. The utrophin distribution in peripheral nerves was re-evaluated and utrophin isoforms were detected at the protein level. This preliminary indication will require more concrete molecular evidence to confirm the presence of these two utrophin isoforms as well as the potential 80 kDa utrophin isoform, but the results strongly suggest that each isoform must have a specialized role and function within each specific nervous structure.
Collapse
Affiliation(s)
- E Fabbrizio
- INSERM U 300, Faculté de Pharmacie, Montpellier, France
| | | | | | | | | |
Collapse
|
33
|
Vaillend C, Rendon A, Misslin R, Ungerer A. Influence of dystrophin-gene mutation on mdx mouse behavior. I. Retention deficits at long delays in spontaneous alternation and bar-pressing tasks. Behav Genet 1995; 25:569-79. [PMID: 8540895 DOI: 10.1007/bf02327580] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
X-linked Duchenne muscular dystrophy (DMD) is frequently associated with a nonprogressive, cognitive defect attributed to the absence of dystrophin in the brain of DMD patients. The mutant mdx mouse, lacking in 427-kDa dystrophin in both muscle and brain tissues, is considered to be a valuable model of human DMD. In the present study, we compared mdx and C57BL/10 control mice and showed that mdx mice had impaired retention in a T-maze, delayed spontaneous alternation task 24 h, but not 6 h, after acquisition. mdx mice were not impaired in acquisition of a bar-pressing task on 4 consecutive days but showed poor retention 22 days after the last training session. Mutants and controls showed similar behavioral responses in free exploration and light/dark choice situations and did not differ in spontaneous locomotor activity or motor coordination. Retention impairments at long delays in mdx mice suggest a role of dystrophin in long-term consolidation processes.
Collapse
Affiliation(s)
- C Vaillend
- Laboratoire de Psychophysiologie, ULP, URA CNRS 1295, Strasbourg, France
| | | | | | | |
Collapse
|
34
|
Schofield JN, Górecki DC, Blake DJ, Davies K, Edwards YH. Dystroglycan mRNA expression during normal and mdx mouse embryogenesis: a comparison with utrophin and the apo-dystrophins. Dev Dyn 1995; 204:178-85. [PMID: 8589441 DOI: 10.1002/aja.1002040208] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alpha dystroglycan (156 kDa DAG) and beta dystroglycan (43 kDa DAG) are encoded by the same gene and are components of the dystrophin-associated membrane glycoprotein complex. The dystroglycans together with dystrophin form a link between the extracellular matrix and the intracellular cytoskeleton of the muscle fibre. Using in situ hybridisation to mRNA in embryo sections we have examined the expression of the mouse dystroglycan gene. Dystroglycan transcripts are ubiquitously expressed throughout development but are most abundant in cardiac, skeletal and smooth muscle and in ependymal cells lining the developing neural tube and brain. The expression patterns of dystroglycan and dystrophin overlap in major muscle systems during development, suggesting that the dystrophin-dystroglycan complex plays an important role during myogenesis. In contrast, the major sites of utrophin expression do not co-localize with those of dystroglycan suggesting that utrophin may interact with a distinct membrane-associated complex in these non-muscle sites. In mdx embryos the pattern of distribution of dystroglycan mRNA remains unchanged, as do those of utrophin and apo-dystrophin mRNAs. This observation implies that the observed changes in the relative abundance of DAGs and utrophin in dystrophin-deficient muscle occur post-transcriptionally.
Collapse
Affiliation(s)
- J N Schofield
- MRC Human Biochemical Genetics Department, London, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Millwood IY, Blake DJ, Gauguier D, Monaco AP. Two polymorphic dinucleotide repeats in the rat dystrophin gene, including the conserved 3' UTR repeat. Mamm Genome 1995; 6:668-9. [PMID: 8535080 DOI: 10.1007/bf00352379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- I Y Millwood
- Imperial Cancer Research Fund Human Genetics Laboratory, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | |
Collapse
|
36
|
Dodson HC, Piper TA, Clarke JD, Quinlivan RM, Dickson G. Dystrophin expression in the hair cells of the cochlea. JOURNAL OF NEUROCYTOLOGY 1995; 24:625-32. [PMID: 7595670 DOI: 10.1007/bf01257377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dystrophin is normally expressed in a number of tissues including muscle, brain and the outer plexiform layer of the retina. In Duchenne and Becker muscular dystrophy abnormal or deficient dystrophin expression leads to muscle degeneration and has been implicated in mental retardation and a form of night blindness. We have examined the expression of dystrophin immunoreactivity in cochlear tissues of normal guinea-pig and mouse, and whether expression is perturbed in the cochlea of the dystrophic MDX mouse. A single band of approximately 427 kDa, corresponding to a full-length isoform of dystrophin was detected in guinea-pig and normal mouse but was absent from the MDX mouse. Cochleae from guinea-pig, normal and MDX mouse also showed a second dystrophin isoform of 116 kDa molecular weight with the C-terminal specific antibody. Immunostained guinea pig cochlear half turns were examined by laser scanning confocal microscopy. Dystrophin was localized in both inner and outer hair cells with staining patterns which were qualitatively similar with both antibodies. In the outer hair cells labelling of the lateral wall was especially distinctive. The synaptic region of both hair cell types was also strongly labelled.
Collapse
Affiliation(s)
- H C Dodson
- Institute of Laryngology and Otology, University College London, UK
| | | | | | | | | |
Collapse
|
37
|
Blake DJ, Schofield JN, Zuellig RA, Górecki DC, Phelps SR, Barnard EA, Edwards YH, Davies KE. G-utrophin, the autosomal homologue of dystrophin Dp116, is expressed in sensory ganglia and brain. Proc Natl Acad Sci U S A 1995; 92:3697-701. [PMID: 7731967 PMCID: PMC42028 DOI: 10.1073/pnas.92.9.3697] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The utrophin gene is closely related to the dystrophin gene in both sequence and genomic structure. The Duchenne muscular dystrophy (DMD) locus encodes three 14-kb dystrophin transcripts in addition to several smaller isoforms, one of which, Dp116, is specific to peripheral nerve. We describe here the corresponding 5.5-kb mRNA from the utrophin locus. This transcript, designated G-utrophin, is of particular interest because it is specifically expressed in the adult mouse brain and appears to be the predominant utrophin transcript in this tissue. G-utrophin is expressed in brain sites generally different from the regions expressing beta-dystroglycan. During mouse embryogenesis G-utrophin is also seen in the developing sensory ganglia. Our data confirm the close evolutionary relationships between the DMD and utrophin loci; however, the functions for the corresponding proteins probably differ.
Collapse
Affiliation(s)
- D J Blake
- Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nguyen TM, Helliwell TR, Simmons C, Winder SJ, Kendrick-Jones J, Davies KE, Morris GE. Full-length and short forms of utrophin, the dystrophin-related protein. FEBS Lett 1995; 358:262-6. [PMID: 7843413 DOI: 10.1016/0014-5793(94)01441-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All previous studies of the localization of utrophin (the dystrophin-related protein) in muscle and other tissues have been performed only with antibodies against the C-terminal region of the protein. Since several short forms of dystrophin, the apo-dystrophins, are produced from the 3' end of the dystrophin gene, there is a possibility that similar short forms of utrophin exist and that these could be responsible for some of the many different localizations of 'utrophin' in muscle. We have produced a new panel of 15 mAbs against the N-terminal region of utrophin and we have used it together with mAbs against the C-terminal region to show that full-length utrophin is present at neuromuscular junctions, in nerves, blood vessels and capillaries in normal muscle and in the sarcolemma of patients with muscular dystrophy and dermatomyositis. However, two of the 15 mAbs also recognised rat/mouse utrophin and both of these detected an additional 62 kDa protein on Western blots of rat C6 glioma cells. This potential 62 kDa 'apo-utrophin' was not detected in human cerebral cortex, in rat Schwannoma cells nor in any of the non-nerve cells and tissues tested.
Collapse
Affiliation(s)
- T M Nguyen
- MRIC Biotechnology Group, N.E. Wales Institute, Deeside, Clwyd, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Dunckley MG, Piper TA, Dickson G. Toward a gene therapy for duchenne muscular dystrophy. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mrdd.1410010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Fabbrizio E, Pons F, Robert A, Hugon G, Bonet-Kerrache A, Mornet D. The dystrophin superfamily: variability and complexity. J Muscle Res Cell Motil 1994; 15:595-606. [PMID: 7706416 DOI: 10.1007/bf00121067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E Fabbrizio
- INSERM U300, Faculté de Pharmacie, Montpellier, France
| | | | | | | | | | | |
Collapse
|