1
|
Atienzar-Aroca S, Kat M, López-Castel A. Decoding Nucleotide Repeat Expansion Diseases: Novel Insights from Drosophila melanogaster Studies. Int J Mol Sci 2024; 25:11794. [PMID: 39519345 PMCID: PMC11546515 DOI: 10.3390/ijms252111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Drosophila melanogaster usage has provided substantial insights into the pathogenesis of several nucleotide repeat expansion diseases (NREDs), a group of genetic diseases characterized by the abnormal expansion of DNA repeats. Leveraging the genetic simplicity and manipulability of Drosophila, researchers have successfully modeled close to 15 NREDs such as Huntington's disease (HD), several spinocerebellar ataxias (SCA), and myotonic dystrophies type 1 and 2 (DM1/DM2). These models have been instrumental in characterizing the principal associated molecular mechanisms: protein aggregation, RNA toxicity, and protein function loss, thus recapitulating key features of human disease. Used in chemical and genetic screenings, they also enable us to identify promising small molecules and genetic modifiers that mitigate the toxic effects of expanded repeats. This review summarizes the close to 150 studies performed in this area during the last seven years. The relevant highlights are the achievement of the first fly-based models for some NREDs, the incorporation of new technologies such as CRISPR for developing or evaluating transgenic flies containing repeat expanded motifs, and the evaluation of less understood toxic mechanisms in NREDs such as RAN translation. Overall, Drosophila melanogaster remains a powerful platform for research in NREDs.
Collapse
Affiliation(s)
- Sandra Atienzar-Aroca
- Department of Dentristy, Faculty of Health Sciences, European University of Valencia, 46010 Valencia, Spain;
| | - Marleen Kat
- Institute for Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, NL-3584 Utrecht, The Netherlands;
| | - Arturo López-Castel
- Human Translational Genomics Group, University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjasot, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Ibrahim KA, Grußmayer KS, Riguet N, Feletti L, Lashuel HA, Radenovic A. Label-free identification of protein aggregates using deep learning. Nat Commun 2023; 14:7816. [PMID: 38016971 PMCID: PMC10684545 DOI: 10.1038/s41467-023-43440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
Protein misfolding and aggregation play central roles in the pathogenesis of various neurodegenerative diseases (NDDs), including Huntington's disease, which is caused by a genetic mutation in exon 1 of the Huntingtin protein (Httex1). The fluorescent labels commonly used to visualize and monitor the dynamics of protein expression have been shown to alter the biophysical properties of proteins and the final ultrastructure, composition, and toxic properties of the formed aggregates. To overcome this limitation, we present a method for label-free identification of NDD-associated aggregates (LINA). Our approach utilizes deep learning to detect unlabeled and unaltered Httex1 aggregates in living cells from transmitted-light images, without the need for fluorescent labeling. Our models are robust across imaging conditions and on aggregates formed by different constructs of Httex1. LINA enables the dynamic identification of label-free aggregates and measurement of their dry mass and area changes during their growth process, offering high speed, specificity, and simplicity to analyze protein aggregation dynamics and obtain high-fidelity information.
Collapse
Affiliation(s)
- Khalid A Ibrahim
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kristin S Grußmayer
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lely Feletti
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Matlahov I, Boatz JC, C.A. van der Wel P. Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils. J Struct Biol X 2022; 6:100077. [PMID: 36419510 PMCID: PMC9677204 DOI: 10.1016/j.yjsbx.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mutant huntingtin exon 1 fibrils feature a broad range of molecular dynamics. Molecular motion is coupled to water dynamics outside the fiber core. Dynamics-based spectral editing ssNMR reveals mobile non-core residues. Intermediate-motion selection via dipolar dephasing of rigid sites. Semi-mobile glutamines outside the fiber core observed and identified.
Many amyloid-forming proteins, which are normally intrinsically disordered, undergo a disorder-to-order transition to form fibrils with a rigid β-sheet core flanked by disordered domains. Solid-state NMR (ssNMR) and cryogenic electron microscopy (cryoEM) excel at resolving the rigid structures within amyloid cores but studying the dynamically disordered domains remains challenging. This challenge is exemplified by mutant huntingtin exon 1 (HttEx1), which self-assembles into pathogenic neuronal inclusions in Huntington disease (HD). The mutant protein’s expanded polyglutamine (polyQ) segment forms a fibril core that is rigid and sequestered from the solvent. Beyond the core, solvent-exposed surface residues mediate biological interactions and other properties of fibril polymorphs. Here we deploy magic angle spinning ssNMR experiments to probe for semi-rigid residues proximal to the fibril core and examine how solvent dynamics impact the fibrils’ segmental dynamics. Dynamic spectral editing (DYSE) 2D ssNMR based on a combination of cross-polarization (CP) ssNMR with selective dipolar dephasing reveals the weak signals of solvent-mobilized glutamine residues, while suppressing the normally strong background of rigid core signals. This type of ‘intermediate motion selection’ (IMS) experiment based on cross-polarization (CP) ssNMR, is complementary to INEPT- and CP-based measurements that highlight highly flexible or highly rigid protein segments, respectively. Integration of the IMS-DYSE element in standard CP-based ssNMR experiments permits the observation of semi-rigid residues in a variety of contexts, including in membrane proteins and protein complexes. We discuss the relevance of semi-rigid solvent-facing residues outside the fibril core to the latter’s detection with specific dyes and positron emission tomography tracers.
Collapse
|
4
|
van der Bent ML, Evers MM, Vallès A. Emerging Therapies for Huntington's Disease - Focus on N-Terminal Huntingtin and Huntingtin Exon 1. Biologics 2022; 16:141-160. [PMID: 36213816 PMCID: PMC9532260 DOI: 10.2147/btt.s270657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022]
Abstract
Huntington's disease is a devastating heritable neurodegenerative disorder that is caused by the presence of a trinucleotide CAG repeat expansion in the Huntingtin gene, leading to a polyglutamine tract in the protein. Various mechanisms lead to the production of N-terminal Huntingtin protein fragments, which are reportedly more toxic than the full-length protein. In this review, we summarize the current knowledge on the production and toxicity of N-terminal Huntingtin protein fragments. Further, we expand on various therapeutic strategies targeting N-terminal Huntingtin on the protein, RNA and DNA level. Finally, we compare the therapeutic approaches that are clinically most advanced, including those that do not target N-terminal Huntingtin, discussing differences in mode of action and translational applicability.
Collapse
Affiliation(s)
| | - Melvin M Evers
- uniQure biopharma B.V., Department of Research and Development, Amsterdam, the Netherlands
| | - Astrid Vallès
- uniQure biopharma B.V., Department of Research and Development, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Chongtham A, Yoo JH, Chin TM, Akingbesote ND, Huda A, Marsh JL, Khoshnan A. Gut Bacteria Regulate the Pathogenesis of Huntington's Disease in Drosophila Model. Front Neurosci 2022; 16:902205. [PMID: 35757549 PMCID: PMC9215115 DOI: 10.3389/fnins.2022.902205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Changes in the composition of gut microbiota are implicated in the pathogenesis of several neurodegenerative disorders. Here, we investigated whether gut bacteria affect the progression of Huntington’s disease (HD) in transgenic Drosophila melanogaster (fruit fly) models expressing full-length or N-terminal fragments of human mutant huntingtin (HTT) protein. We find that elimination of commensal gut bacteria by antibiotics reduces the aggregation of amyloidogenic N-terminal fragments of HTT and delays the development of motor defects. Conversely, colonization of HD flies with Escherichia coli (E. coli), a known pathobiont of human gut with links to neurodegeneration and other morbidities, accelerates HTT aggregation, aggravates immobility, and shortens lifespan. Similar to antibiotics, treatment of HD flies with small compounds such as luteolin, a flavone, or crocin a beta-carotenoid, ameliorates disease phenotypes, and promotes survival. Crocin prevents colonization of E. coli in the gut and alters the levels of commensal bacteria, which may be linked to its protective effects. The opposing effects of E. coli and crocin on HTT aggregation, motor defects, and survival in transgenic Drosophila models support the involvement of gut-brain networks in the pathogenesis of HD.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Jung Hyun Yoo
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Theodore M Chin
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Ngozi D Akingbesote
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Ainul Huda
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - J Lawrence Marsh
- Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ali Khoshnan
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|
6
|
Huelsmeier J, Walker E, Bakthavachalu B, Ramaswami M. A C-terminal ataxin-2 disordered region promotes Huntingtin protein aggregation and neurodegeneration in Drosophila models of Huntington’s disease. G3 GENES|GENOMES|GENETICS 2021; 11:6385240. [PMID: 34718534 PMCID: PMC8664476 DOI: 10.1093/g3journal/jkab355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022]
Abstract
The Ataxin-2 (Atx2) protein contributes to the progression of neurodegenerative phenotypes in animal models of amyotrophic lateral sclerosis (ALS), type 2 spinocerebellar ataxia (SCA-2), Parkinson’s disease, and Huntington’s disease (HD). However, because the Atx2 protein contains multiple separable activities, deeper understanding requires experiments to address the exact mechanisms by which Atx2 modulates neurodegeneration (ND) progression. Recent work on two ALS models, C9ORF72 and FUS, in Drosophila has shown that a C-terminal intrinsically disordered region (cIDR) of Atx2 protein, required for assembly of ribonucleoprotein (RNP) granules, is essential for the progression of neurodegenerative phenotypes as well as for accumulation of protein inclusions associated with these ALS models. Here, we show that the Atx2-cIDR also similarly contributes to the progression of degenerative phenotypes and accumulation of Huntingtin protein aggregates in Drosophila models of HD. Because Huntingtin is not an established component of RNP granules, these observations support a recently hypothesized, unexpected protein-handling function for RNP granules, which could contribute to the progression of Huntington’s disease and, potentially, other proteinopathies.
Collapse
Affiliation(s)
- Joern Huelsmeier
- School of Genetics and Microbiology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Emily Walker
- School of Genetics and Microbiology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Baskar Bakthavachalu
- School of Basic Science, Indian Institute of Technology, Mandi, Suran 175075, India
| | - Mani Ramaswami
- School of Genetics and Microbiology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| |
Collapse
|
7
|
Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties. Nat Commun 2021; 12:6579. [PMID: 34772920 PMCID: PMC8589980 DOI: 10.1038/s41467-021-26684-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington's disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt cytoplasmic and nuclear inclusions in mammalian cells and primary neurons overexpressing mutant exon1 of the Htt protein. Our findings provide unique insight into the ultrastructural properties of cytoplasmic and nuclear Htt inclusions and their mechanisms of formation. We show that Htt inclusion formation and maturation are complex processes that, although initially driven by polyQ-dependent Htt aggregation, also involve the polyQ and PRD domain-dependent sequestration of lipids and cytoplasmic and cytoskeletal proteins related to HD dysregulated pathways; the recruitment and accumulation of remodeled or dysfunctional membranous organelles, and the impairment of the protein quality control and degradation machinery. We also show that nuclear and cytoplasmic Htt inclusions exhibit distinct biochemical compositions and ultrastructural properties, suggesting different mechanisms of aggregation and toxicity.
Collapse
|
8
|
Vieweg S, Mahul-Mellier AL, Ruggeri FS, Riguet N, DeGuire SM, Chiki A, Cendrowska U, Dietler G, Lashuel HA. The Nt17 Domain and its Helical Conformation Regulate the Aggregation, Cellular Properties and Neurotoxicity of Mutant Huntingtin Exon 1. J Mol Biol 2021; 433:167222. [PMID: 34492254 DOI: 10.1016/j.jmb.2021.167222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays important roles in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity.
Collapse
Affiliation(s)
- Sophie Vieweg
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Francesco S Ruggeri
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Urszula Cendrowska
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Kolla R, Gopinath P, Ricci J, Reif A, Rostami I, Lashuel HA. A New Chemoenzymatic Semisynthetic Approach Provides Insight into the Role of Phosphorylation beyond Exon1 of Huntingtin and Reveals N-Terminal Fragment Length-Dependent Distinct Mechanisms of Aggregation. J Am Chem Soc 2021; 143:9798-9812. [PMID: 34161085 DOI: 10.1021/jacs.1c03108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington's disease is a neurodegenerative disorder caused by the expansion of a polyglutamine repeat (>36Q) in the N-terminal domain of the huntingtin protein (Htt), which renders the protein or fragments thereof more prone to aggregate and form inclusions. Although several Htt N-terminal fragments of different lengths have been identified within Htt inclusions, most studies on the mechanisms, sequence, and structural determinants of Htt aggregation have focused on the Httexon1 (Httex1). Herein, we investigated the aggregation properties of mutant N-terminal Htt fragments of various lengths (Htt171, Htt140, and Htt104) in comparison to mutant Httex1 (mHttex1). We also present a new chemoenzymatic semisynthetic strategy that enables site-specific phosphorylation of Htt beyond Httex1. These advances yielded insights into how post-translational modifications (PTMs) and structured domains beyond Httex1 influence aggregation mechanisms, kinetics, and fibril morphology of longer N-terminal Htt fragments. We demonstrate that phosphorylation at T107 significantly slows the aggregation of mHtt171, whereas phosphorylation at T107 and S116 accelerates the aggregation, underscoring the importance of crosstalk between different PTMs. The mHtt171 proteins aggregate via a different mechanism and form oligomers and fibrillar aggregates with morphological properties that are distinct from that of mHttex1. These observations suggest that different N-terminal fragments could have distinct aggregation mechanisms and that a single polyQ-targeting antiaggregation strategy may not effectively inhibit the aggregation of all N-terminal Htt fragments. Finally, our results underscore the need for further studies to investigate the aggregation mechanisms of Htt fragments and how the various fragments interact with each other and influence Htt toxicity and disease progression.
Collapse
Affiliation(s)
- Rajasekhar Kolla
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pushparathinam Gopinath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Andreas Reif
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Iman Rostami
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Groover SE, Beasley M, Ramamurthy V, Legleiter J. Phosphomimetic Mutations Impact Huntingtin Aggregation in the Presence of a Variety of Lipid Systems. Biochemistry 2020; 59:4681-4693. [PMID: 33256402 DOI: 10.1021/acs.biochem.0c00788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of a polyglutamine (polyQ) tract in the first exon of the htt protein (htt). PolyQ expansion triggers the aggregation of htt into a variety of structures, including oligomers and fibrils. This aggregation is impacted by the first 17 N-terminal amino acids (Nt17) of htt that directly precedes the polyQ domain. Beyond impacting aggregation, Nt17 associates with lipid membranes by forming an amphipathic α-helix. Post-translational modifications within Nt17 are known to modify HD pathology, and in particular, phosphorylation at T3, S13, and/or S16 retards fibrillization and ameliorates the phenotype in HD models. Due to Nt17's propensity to interact with lipid membranes, the impact of introducing phosphomimetic mutations (T3D, S13D, and S16D) into htt-exon1 on aggregation in the presence of a variety of model lipid membranes (total brain lipid extract, 1-palmitoyl-2-oleoyl-glycero-3-phosphatidylcholine, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1'-rac-glycerol) was investigated. Phosphomimetic mutations altered htt's interaction with and aggregation in the presence of lipids; however, this was dependent on the lipid system.
Collapse
Affiliation(s)
- Sharon E Groover
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Maryssa Beasley
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Visvanathan Ramamurthy
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States.,Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States.,Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
| |
Collapse
|
11
|
Chatterjee M, Steffan JS, Lukacsovich T, Marsh JL, Agrawal N. Serine residues 13 and 16 are key modulators of mutant huntingtin induced toxicity in Drosophila. Exp Neurol 2020; 338:113463. [PMID: 32941796 DOI: 10.1016/j.expneurol.2020.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Poly-glutamine expansion near the N-terminus of the huntingtin protein (HTT) is the prime determinant of Huntington's disease (HD) pathology; however, post-translational modifications and protein context are also reported to influence poly-glutamine induced HD toxicity. The impact of phosphorylating serine 13/16 of mutant HTT (mHTT) on HD has been documented in cell culture and murine models. However, endogenous processing of the human protein in mammalian systems complicates the interpretations. Therefore, to study the impact of S13/16 phosphorylation on the subcellular behavior of HTT under a controlled genetic background with minimal proteolytic processing of the human protein, we employed Drosophila as the model system. We ectopically expressed full-length (FL) and exon1 fragment of human HTT with phosphomimetic and resistant mutations at serines 13 and 16 in different neuronal populations. Phosphomimetic mHTT aggravates and the phosphoresistant mutation ameliorates mHTT-induced toxicity in the context of both FL- and exon1- mHTT in Drosophila although in all cases FL appears less toxic than exon1. Our observations strongly indicate that the phosphorylation status of S13/16 can affect HD pathology in Drosophila and these residues can be potential targets for affecting HD pathogenesis.
Collapse
Affiliation(s)
- Megha Chatterjee
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92697-1705, USA
| | - Tamas Lukacsovich
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, USA
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|