1
|
Helgadottir H. Does the Germline Genome Encode for the Invasiveness of a Cutaneous Melanoma? JAMA Dermatol 2024; 160:922-924. [PMID: 39141377 DOI: 10.1001/jamadermatol.2024.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Tarr I, Hesselson S, Troup M, Young P, Thompson JL, McGrath-Cadell L, Fatkin D, Dunwoodie SL, Muller DWM, Iismaa SE, Kovacic JC, Graham RM, Giannoulatou E. Polygenic Risk in Families With Spontaneous Coronary Artery Dissection. JAMA Cardiol 2024; 9:254-261. [PMID: 38265806 PMCID: PMC10809133 DOI: 10.1001/jamacardio.2023.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/06/2023] [Indexed: 01/25/2024]
Abstract
Importance Spontaneous coronary artery dissection (SCAD) is a poorly understood cause of acute coronary syndrome that predominantly affects women. Evidence to date suggests a complex genetic architecture, while a family history is reported for a minority of cases. Objective To determine the contribution of rare and common genetic variants to SCAD risk in familial cases, the latter via the comparison of a polygenic risk score (PRS) with those with sporadic SCAD and healthy controls. Design, Setting, and Participants This genetic association study analyzed families with SCAD, individuals with sporadic SCAD, and healthy controls. Genotyping was undertaken for all participants. Participants were recruited between 2017 and 2021. A PRS for SCAD was calculated for all participants. The presence of rare variants in genes associated with connective tissue disorders (CTD) was also assessed. Individuals with SCAD were recruited via social media or from a single medical center. A previously published control database of older healthy individuals was used. Data were analyzed from January 2022 to October 2023. Exposures PRS for SCAD comprised of 7 single-nucleotide variants. Main Outcomes and Measures Disease status (familial SCAD, sporadic SCAD, or healthy control) associated with PRS. Results A total of 13 families with SCAD (27 affected and 12 unaffected individuals), 173 individuals with sporadic SCAD, and 1127 healthy controls were included. A total of 188 individuals with SCAD (94.0%) were female, including 25 of 27 with familial SCAD and 163 of 173 with sporadic SCAD; of 12 unaffected individuals from families with SCAD, 6 (50%) were female; and of 1127 healthy controls, 672 (59.6%) were female. Compared with healthy controls, the odds of being an affected family member or having sporadic SCAD was significantly associated with a SCAD PRS (where the odds ratio [OR] represents an increase in odds per 1-SD increase in PRS) (affected family member: OR, 2.14; 95% CI, 1.78-2.50; adjusted P = 1.96 × 10-4; sporadic SCAD: OR, 1.63; 95% CI, 1.37-1.89; adjusted P = 5.69 × 10-4). This association was not seen for unaffected family members (OR, 1.03; 95% CI, 0.46-1.61; adjusted P = .91) compared with controls. Further, those with familial SCAD were overrepresented in the top quintile of the control PRS distribution (OR, 3.70; 95% CI, 2.93-4.47; adjusted P = .001); those with sporadic SCAD showed a similar pattern (OR, 2.51; 95% CI, 1.98-3.04; adjusted P = .001). Affected individuals within a family did not share any rare deleterious variants in CTD-associated genes. Conclusions and Relevance Extreme aggregation of common genetic risk appears to play a significant role in familial clustering of SCAD as well as in sporadic case predisposition, although further study is required.
Collapse
Affiliation(s)
- Ingrid Tarr
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Michael Troup
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Paul Young
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Lucy McGrath-Cadell
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- University of New South Wales Sydney, Kensington, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- University of New South Wales Sydney, Kensington, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
| | - Sally L. Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- University of New South Wales Sydney, Kensington, Australia
| | - David W. M. Muller
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- University of New South Wales Sydney, Kensington, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- University of New South Wales Sydney, Kensington, Australia
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- University of New South Wales Sydney, Kensington, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- University of New South Wales Sydney, Kensington, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- University of New South Wales Sydney, Kensington, Australia
| |
Collapse
|
3
|
Helgadottir H, Schultz K, Lapins J, Höiom V. Familial features affecting the melanoma risk in CDKN2A-negative melanoma families: a study based on the Swedish Cancer Registry. Acta Oncol 2023; 62:1967-1972. [PMID: 37801364 DOI: 10.1080/0284186x.2023.2265052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Karina Schultz
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Lapins
- Department of Dermatology, Karolinska University Hospital, Stockholm
- Dermatology and Venereology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Bhave P, Wong J, McInerney-Leo A, Cust AE, Lawn C, Janda M, Mar VJ. Management of cutaneous melanoma in Australia: a narrative review. Med J Aust 2023; 218:426-431. [PMID: 37120760 DOI: 10.5694/mja2.51910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 05/01/2023]
Affiliation(s)
- Prachi Bhave
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC
- Alfred Hospital, Melbourne, VIC
| | | | - Aideen McInerney-Leo
- Dermatology Research Centre, University of Queensland Diamantina Institute for Cancer Immunology and Metabolic Medicine, Brisbane, QLD
- Australian Centre of Excellence in Melanoma Imaging, Brisbane, QLD
| | - Anne E Cust
- Australian Centre of Excellence in Melanoma Imaging, Brisbane, QLD
- Melanoma Institute Australia, Sydney, NSW
| | - Craig Lawn
- Melanoma Institute Australia, Sydney, NSW
- Centre of Excellence in Melanoma Imaging, Brisbane, QLD
| | - Monika Janda
- Centre for Health Services Research, University of Queensland, Brisbane, QLD
| | - Victoria J Mar
- Alfred Hospital, Melbourne, VIC
- Monash University, Melbourne, VIC
| |
Collapse
|
5
|
Steinberg J, Iles MM, Lee JY, Wang X, Law MH, Smit AK, Nguyen‐Dumont T, Giles GG, Southey MC, Milne RL, Mann GJ, Bishop DT, MacInnis RJ, Cust AE. Independent evaluation of melanoma polygenic risk scores in UK and Australian prospective cohorts. Br J Dermatol 2022; 186:823-834. [PMID: 34921685 PMCID: PMC9545863 DOI: 10.1111/bjd.20956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/11/2021] [Accepted: 12/11/2021] [Indexed: 12/05/2022]
Abstract
BACKGROUND Previous studies suggest that polygenic risk scores (PRSs) may improve melanoma risk stratification. However, there has been limited independent validation of PRS-based risk prediction, particularly assessment of calibration (comparing predicted to observed risks). OBJECTIVES To evaluate PRS-based melanoma risk prediction in prospective UK and Australian cohorts with European ancestry. METHODS We analysed invasive melanoma incidence in the UK Biobank (UKB; n = 395 647, 1651 cases) and a case-cohort nested within the Melbourne Collaborative Cohort Study (MCCS, Australia; n = 4765, 303 cases). Three PRSs were evaluated: 68 single-nucleotide polymorphisms (SNPs) at 54 loci from a 2020 meta-analysis (PRS68), 50 SNPs significant in the 2020 meta-analysis excluding UKB (PRS50) and 45 SNPs at 21 loci known in 2018 (PRS45). Ten-year melanoma risks were calculated from population-level cancer registry data by age group and sex, with and without PRS adjustment. RESULTS Predicted absolute melanoma risks based on age and sex alone underestimated melanoma incidence in the UKB [ratio of expected/observed cases: E/O = 0·65, 95% confidence interval (CI) 0·62-0·68] and MCCS (E/O = 0·63, 95% CI 0·56-0·72). For UKB, calibration was improved by PRS adjustment, with PRS50-adjusted risks E/O = 0·91, 95% CI 0·87-0·95. The discriminative ability for PRS68- and PRS50-adjusted absolute risks was higher than for risks based on age and sex alone (Δ area under the curve 0·07-0·10, P < 0·0001), and higher than for PRS45-adjusted risks (Δ area under the curve 0·02-0·04, P < 0·001). CONCLUSIONS A PRS derived from a larger, more diverse meta-analysis improves risk prediction compared with an earlier PRS, and might help tailor melanoma prevention and early detection strategies to different risk levels. Recalibration of absolute risks may be necessary for application to specific populations.
Collapse
Affiliation(s)
- Julia Steinberg
- The Daffodil CentreThe University of Sydney, a joint venture with Cancer Council NSWSydneyNSWAustralia
| | - Mark M. Iles
- Leeds Institute for Data AnalyticsUniversity of LeedsLeedsUK
| | - Jin Yee Lee
- School of Public HealthThe University of SydneySydneyNSWAustralia
| | - Xiaochuan Wang
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVICAustralia
| | - Matthew H. Law
- Statistical Genetics LaboratoryQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQLDAustralia
| | - Amelia K. Smit
- The Daffodil CentreThe University of Sydney, a joint venture with Cancer Council NSWSydneyNSWAustralia
| | - Tu Nguyen‐Dumont
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVICAustralia
- Department of Clinical PathologyThe University of MelbourneMelbourneVICAustralia
| | - Graham G. Giles
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVICAustralia
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVICAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneMelbourneVICAustralia
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVICAustralia
| | - Roger L. Milne
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVICAustralia
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVICAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneMelbourneVICAustralia
| | - Graham J. Mann
- John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | | | - Robert J. MacInnis
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVICAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneMelbourneVICAustralia
| | - Anne E. Cust
- The Daffodil CentreThe University of Sydney, a joint venture with Cancer Council NSWSydneyNSWAustralia
- Melanoma Institute AustraliaThe University of SydneySydneyNSWAustralia
| |
Collapse
|
6
|
Truderung OAH, Sagi JC, Semsei AF, Szalai C. Melanoma susceptibility: an update on genetic and epigenetic findings. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2021; 12:71-89. [PMID: 34853632 PMCID: PMC8611230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Malignant melanoma is one of the most highly ranked cancers in terms of years of life lost. Hereditary melanoma with its increased familial susceptibility is thought to affect up to 12% of all melanoma patients. In the past, only a few high-penetrance genes associated with familial melanoma, such as CDKN2A and CDK4, have been clinically tested. However, findings now indicate that melanoma is a cancer most likely to develop not only due to high-penetrance variants but also due to polygenic inheritance patterns, leaving no clear division between the hereditary and sporadic development of malignant melanoma. Various pathogenic low-penetrance variants were recently discovered through genome-wide association studies, and are now translated into polygenic risk scores. These can show superior sensitivity rates for the prediction of melanoma susceptibility and related mixed cancer syndromes than risk scores based on phenotypic traits of the patients, with odds ratios of up to 5.7 for patients in risk groups. In addition to describing genetic findings, we also review the first results of epigenetic research showing constitutional methylation changes that alter the susceptibility to cutaneous melanoma and its risk factors.
Collapse
Affiliation(s)
- Ole AH Truderung
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Judit C Sagi
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Agnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
- Heim Pal Children’s HospitalH-1089 Budapest, Hungary
| |
Collapse
|
7
|
Pellegrini S, Elefanti L, Dall’Olmo L, Menin C. The Interplay between Nevi and Melanoma Predisposition Unravels Nevi-Related and Nevi-Resistant Familial Melanoma. Genes (Basel) 2021; 12:1077. [PMID: 34356093 PMCID: PMC8303673 DOI: 10.3390/genes12071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Genetic susceptibility to nevi may affect the risk of developing melanoma, since common and atypical nevi are the main host risk factors implicated in the development of cutaneous melanoma. Recent genome-wide studies defined a melanoma polygenic risk score based on variants in genes involved in different pathways, including nevogenesis. Moreover, a predisposition to nevi is a hereditary trait that may account for melanoma clustering in some families characterized by cases with a high nevi density. On the other hand, familial melanoma aggregation may be due to a Mendelian inheritance of high/moderate-penetrance pathogenic variants affecting melanoma risk, regardless of the nevus count. Based on current knowledge, this review analyzes the complex interplay between nevi and melanoma predisposition in a familial context. We review familial melanoma, starting from Whiteman's divergent pathway model to overall melanoma development, distinguishing between nevi-related (cases with a high nevus count and a high polygenic risk score) and nevi-resistant (high/moderate-penetrance variant-carrier cases) familial melanoma. This distinction could better direct future research on genetic factors useful to identify high-risk subjects.
Collapse
Affiliation(s)
- Stefania Pellegrini
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy; (S.P.); (L.D.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Lisa Elefanti
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Luigi Dall’Olmo
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy; (S.P.); (L.D.)
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| |
Collapse
|
8
|
Lee KJ, Janda M, Stark MS, Sturm RA, Soyer HP. On Naevi and Melanomas: Two Sides of the Same Coin? Front Med (Lausanne) 2021; 8:635316. [PMID: 33681261 PMCID: PMC7933521 DOI: 10.3389/fmed.2021.635316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Benign naevi are closely linked to melanoma, as risk factors, simulators, or sites of melanoma formation. There is a heavy genetic overlap between the two lesions, a shared environmental influence of ultraviolet radiation, and many similar cellular features, yet naevi remain locally situated while melanomas spread from their primary site and may progress systemically to distal organs. Untangling the overlapping contributors and predictors of naevi and melanoma is an ongoing area of research and should eventually lead to more personalized prevention and treatment strategies, through the development of melanoma risk stratification tools and early detection of evolving melanomas. This will be achieved through a range of complementary strategies: risk-adjusted primary prevention counseling; the use of lesion imaging technologies such as sequential 3D total body photography and consumer-performed lesion imaging; artificial intelligence deep phenotyping and clinical assistance; a better understanding of genetic drivers of malignancy, risk variants, clinical genetics, and polygenic effects; and the interplay between genetics, phenotype and the environment.
Collapse
Affiliation(s)
- Katie J Lee
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Monika Janda
- Centre for Health Services Research, The University of Queensland, Brisbane, QLD, Australia
| | - Mitchell S Stark
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - H Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.,Department of Dermatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|