1
|
Cain TL, Derecka M, McKinney-Freeman S. The role of the haematopoietic stem cell niche in development and ageing. Nat Rev Mol Cell Biol 2025; 26:32-50. [PMID: 39256623 DOI: 10.1038/s41580-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Blood production depends on rare haematopoietic stem cells (HSCs) and haematopoietic stem and progenitor cells (HSPCs) that ultimately take up residence in the bone marrow during development. HSPCs and HSCs are subject to extrinsic regulation by the bone marrow microenvironment, or niche. Studying the interactions between HSCs and their niche is critical for improving ex vivo culturing conditions and genetic manipulation of HSCs, which is pivotal for improving autologous HSC therapies and transplantations. Additionally, understanding how the complex molecular network in the bone marrow is altered during ageing is paramount for developing novel therapeutics for ageing-related haematopoietic disorders. HSCs are unique amongst stem and progenitor cell pools in that they engage with multiple physically distinct niches during their ontogeny. HSCs are specified from haemogenic endothelium in the aorta, migrate to the fetal liver and, ultimately, colonize their final niche in the bone marrow. Recent studies employing single-cell transcriptomics and microscopy have identified novel cellular interactions that govern HSC specification and engagement with their niches throughout ontogeny. New lineage-tracing models and microscopy tools have raised questions about the numbers of HSCs specified, as well as the functional consequences of HSCs interacting with each developmental niche. Advances have also been made in understanding how these niches are modified and perturbed during ageing, and the role of these altered interactions in haematopoietic diseases. In this Review, we discuss these new findings and highlight the questions that remain to be explored.
Collapse
Affiliation(s)
- Terri L Cain
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Derecka
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
2
|
Feng C, Fan H, Tie R, Xin S, Chen M. Deciphering the evolving niche interactome of human hematopoietic stem cells from ontogeny to aging. Front Mol Biosci 2024; 11:1479605. [PMID: 39698109 PMCID: PMC11652281 DOI: 10.3389/fmolb.2024.1479605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Hematopoietic stem cells (HSC) reside within specialized microenvironments that undergo dynamic changes throughout development and aging to support HSC function. However, the evolving cell-cell communication networks within these niches remain largely unexplored. This study integrates single-cell RNA sequencing datasets to systematically characterize the HSC niche interactome from ontogeny to aging. We reconstructed single-cell atlases of HSC niches at different developmental stages, revealing stage-specific cellular compositions and interactions targeting HSC. During HSC maturation, our analysis identified distinct patterns of ligand-receptor interactions and signaling pathways that govern HSC emergence, expansion, and maintenance. HSC aging was accompanied by a decrease in supportive niche interactions, followed by an adaptive increase in interaction strength in old adult bone marrow. This complex aging process involved the emergence of interactions associated with inflammation, altered stem cell function, and a decline in the efficacy of key signaling pathways. Our findings provide a comprehensive understanding of the dynamic remodeling of the HSC niche interactome throughout life, paving the way for targeted interventions to maintain HSC function and promote healthy aging. This study offers valuable insights into the intricate cell-cell communication networks that govern HSC behavior and fate, with implications for hematological disorders and regenerative medicine.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoyan Fan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Citterio E, Ronchi AE. Deubiquitinases at the interplay between hematopoietic stem cell aging and myelodysplastic transformation. FEBS Lett 2024; 598:2807-2808. [PMID: 39108012 PMCID: PMC11586589 DOI: 10.1002/1873-3468.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 11/26/2024]
Abstract
Hematopoietic stem cells (HSC) maintain blood production throughout life. Nevertheless, HSC functionality deteriorates upon physiological aging leading to the increased prevalence of haematological diseases and hematopoietic malignancies in the elderly. Deubiquitinating enzymes (DUBs) by reverting protein ubiquitination ensure proper proteostasis, a key process in HSC maintenance and fitness.
Collapse
Affiliation(s)
- Elisabetta Citterio
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca20126MilanItaly
| | | |
Collapse
|
4
|
Kumar S, Vassallo JD, Nattamai KJ, Hassan A, Vollmer A, Karns R, Sacma M, Nemkov T, D'Alessandro A, Geiger H. Rejuvenation of the reconstitution potential and reversal of myeloid bias of aged HSCs upon pH treatment. Aging Cell 2024; 23:e14324. [PMID: 39236298 PMCID: PMC11464122 DOI: 10.1111/acel.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Aged hematopoietic stem cells (HSCs) show reduced reconstitution potential, limiting their use in transplantation settings in the clinic. We demonstrate here that exposure of aged HSCs ex vivo to a pH of 6.9 instead of the commonly used pH of 7.4 results in enhanced HSCs potential that is consistent with rejuvenation, including attenuation of the myeloid bias of aged HSC and restoration of a youthful frequency of epigenetic polarity. Rejuvenation of aged HSCs by pH 6.9 is, at least in part, due to alterations in the polyamine/methionine pathway within pH 6.9 HSCs, and consequently, attenuation of the production of spermidine also attenuated aging of HSCs. Exposure of aged HSCs to pH 6.9, or pharmacological targeting of the polyamine pathway, might thus extend the use of HSCs from aged donors for therapeutic applications.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Research FoundationCincinnatiOhioUSA
- Pharmacology DivisionCSIR‐Central Drug Research InstituteLucknowIndia
| | - Jeffrey D. Vassallo
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Research FoundationCincinnatiOhioUSA
| | - Kalpana J. Nattamai
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Research FoundationCincinnatiOhioUSA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Research FoundationCincinnatiOhioUSA
| | | | - Rebekah Karns
- Division of Gastroenterology, Hepatology and NutritionCincinnati Children's Hospital Medical Center and University of CincinnatiCincinnatiOhioUSA
| | - Mehmet Sacma
- Institute of Molecular MedicineUlm UniversityUlmGermany
| | - Travis Nemkov
- University of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | | | - Hartmut Geiger
- Institute of Molecular MedicineUlm UniversityUlmGermany
- Aging Research CenterUlm UniversityUlmGermany
| |
Collapse
|
5
|
Yokomizo T, Oshima M, Iwama A. Epigenetics of hematopoietic stem cell aging. Curr Opin Hematol 2024; 31:207-216. [PMID: 38640057 DOI: 10.1097/moh.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW The development of new antiaging medicines is of great interest to the current elderly and aging population. Aging of the hematopoietic system is attributed to the aging of hematopoietic stem cells (HSCs), and epigenetic alterations are the key effectors driving HSC aging. Understanding the epigenetics of HSC aging holds promise of providing new insights for combating HSC aging and age-related hematological malignancies. RECENT FINDINGS Aging is characterized by the progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. During aging, the HSCs undergo both quantitative and qualitative changes. These functional changes in HSCs cause dysregulated hematopoiesis, resulting in anemia, immune dysfunction, and an increased risk of hematological malignancies. Various cell-intrinsic and cell-extrinsic effectors influencing HSC aging have also been identified. Epigenetic alterations are one such mechanism. SUMMARY Cumulative epigenetic alterations in aged HSCs affect their fate, leading to aberrant self-renewal, differentiation, and function of aged HSCs. In turn, these factors provide an opportunity for aged HSCs to expand by modulating their self-renewal and differentiation balance, thereby contributing to the development of hematological malignancies.
Collapse
Affiliation(s)
- Takako Yokomizo
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Ye L, Tian C, Li Y, Pan H, Hu J, Shu L, Pan X. Hematopoietic aging: Cellular, molecular, and related mechanisms. Chin Med J (Engl) 2024; 137:1303-1312. [PMID: 37898877 PMCID: PMC11191024 DOI: 10.1097/cm9.0000000000002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 10/30/2023] Open
Abstract
ABSTRACT Aging is accompanied by significant inhibition of hematopoietic and immune system function and disruption of bone marrow structure. Aging-related alterations in the inflammatory response, immunity, and stem cell niches are at the root of hematopoietic aging. Understanding the molecular mechanisms underlying hematopoietic and bone marrow aging can aid the clinical treatment of aging-related diseases. In particular, it is unknown how the niche reprograms hematopoietic stem cells (HSCs) in an age-dependent manner to maintain normal hematopoiesis in elderly individuals. Recently, specific inhibitors and blood exchange methods have been shown to reshape the hematopoietic niche and reverse hematopoietic aging. Here, we present the latest scientific discoveries related to hematopoietic aging and hematopoietic system rejuvenation, discuss the relationships between hematopoietic niche aging and HSC aging, and describe related studies on stem cell-mediated regulation of hematopoietic aging, aiming to provide new ideas for further study.
Collapse
Affiliation(s)
- Li Ye
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Chuan Tian
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| | - Ye Li
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Hang Pan
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Jinxiu Hu
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| | - Liping Shu
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Xinghua Pan
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| |
Collapse
|
7
|
Mansell E, Lin DS, Loughran SJ, Milsom MD, Trowbridge JJ. New insight into the causes, consequences, and correction of hematopoietic stem cell aging. Exp Hematol 2023; 125-126:1-5. [PMID: 37433369 DOI: 10.1016/j.exphem.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Aging of hematopoietic stem cells (HSCs) is characterized by lineage bias, increased clonal expansion, and functional decrease. At the molecular level, aged HSCs typically display metabolic dysregulation, upregulation of inflammatory pathways, and downregulation of DNA repair pathways. Cellular aging of HSCs, driven by cell-intrinsic and cell-extrinsic factors, causes a predisposition to anemia, adaptive immune compromise, myelodys, plasia, and malignancy. Most hematologic diseases are strongly associated with age. But what is the biological foundation for decreased fitness with age? And are there therapeutic windows to resolve age-related hematopoietic decline? These questions were the focus of the International Society for Experimental Hematology (ISEH) New Investigator Committee Fall 2022 Webinar. This review touches on the latest insights from two leading laboratories into inflammatory- and niche-driven stem cell aging and includes speculation on strategies to prevent or correct age-related decline in HSC function.
Collapse
Affiliation(s)
- Els Mansell
- Erasmus MC Hematology, Rotterdam, The Netherlands; Division of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.
| | - Dawn S Lin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen J Loughran
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
8
|
Milsom MD, Essers MAG. Recent advances in understanding the impact of infection and inflammation on hematopoietic stem and progenitor cells. Cells Dev 2023; 174:203844. [PMID: 37100116 DOI: 10.1016/j.cdev.2023.203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Just over one decade ago, it was discovered that hematopoietic stem cells (HSCs) could directly respond to inflammatory cytokines by mounting a proliferative response thought to mediate the emergency production of mature blood cells. In the intervening years, we have gained mechanistic insight into this so-called activation process and have started to learn such a response may come at a cost in terms of ultimately resulting in HSC exhaustion and hematologic dysfunction. In this review article, we report the progress we have made in understanding the interplay between infection, inflammation and HSCs during the funding period of the Collaborative Research Center 873 "Maintenance and Differentiation of Stem Cells in Development and Disease", and place this work within the context of recent output by others working within this field.
Collapse
Affiliation(s)
- Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Divison of Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 2022; 29:1273-1284.e8. [PMID: 35858618 PMCID: PMC9357150 DOI: 10.1016/j.stem.2022.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.
Collapse
|
10
|
Andersson R, Florian MC. Living a longer life: unique lessons from the naked mole-rat blood system. EMBO J 2022; 41:e111759. [PMID: 35781819 PMCID: PMC9340484 DOI: 10.15252/embj.2022111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Analysis of functional deterioration of the blood system during ageing has been largely confined to the mouse and human system. In this issue, Emmrich et al (2022) report the first comprehensive characterisation of the haematopoietic system of the naked mole‐rat (NMR), an exceptionally long‐lived rodent, highlighting its unique features and uncovering potential strategies to sustain haematopoiesis during an extended lifetime.
Collapse
Affiliation(s)
- Rebecca Andersson
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
11
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Cellular and Molecular Mechanisms Involved in Hematopoietic Stem Cell Aging as a Clinical Prospect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2713483. [PMID: 35401928 PMCID: PMC8993567 DOI: 10.1155/2022/2713483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
There is a hot topic in stem cell research to investigate the process of hematopoietic stem cell (HSC) aging characterized by decreased self-renewal ability, myeloid-biased differentiation, impaired homing, and other abnormalities related to hematopoietic repair function. It is of crucial importance that HSCs preserve self-renewal and differentiation ability to maintain hematopoiesis under homeostatic states over time. Although HSC numbers increase with age in both mice and humans, this cannot compensate for functional defects of aged HSCs. The underlying mechanisms regarding HSC aging have been studied from various perspectives, but the exact molecular events remain unclear. Several cell-intrinsic and cell-extrinsic factors contribute to HSC aging including DNA damage responses, reactive oxygen species (ROS), altered epigenetic profiling, polarity, metabolic alterations, impaired autophagy, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, nuclear factor- (NF-) κB pathway, mTOR pathway, transforming growth factor-beta (TGF-β) pathway, and wingless-related integration site (Wnt) pathway. To determine how deficient HSCs develop during aging, we provide an overview of different hallmarks, age-related signaling pathways, and epigenetic modifications in young and aged HSCs. Knowing how such changes occur and progress will help researchers to develop medications and promote the quality of life for the elderly and possibly alleviate age-associated hematopoietic disorders. The present review is aimed at discussing the latest advancements of HSC aging and the role of HSC-intrinsic factors and related events of a bone marrow niche during HSC aging.
Collapse
|
13
|
Afzal MW, Duan K, Zhang Y, Gao Y, Qin B, Wang G, Lei L, Tang H, Guo Y. A rhodol-based fluorescent probe with a pair of hydrophilic and rotatable wings for sensitively monitoring intracellular polarity. Chem Asian J 2022; 17:e202200063. [PMID: 35191194 DOI: 10.1002/asia.202200063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Indexed: 11/06/2022]
Abstract
Cell polarity, as a vital intracellular microenvironment characteristic, has immense effects on numerous pathological and biological processes. Therefore, the tracking of polarity variations is highly essential to explore the role and mechanism of the polarity in pathophysiological processes. Herein, we designed and synthesized a novel rhodol-based fluorescent probe RDS sensitive to polarity by introducing a bis(2-hydroxyethylthio)methyl group, like a pair of hydrophilic and rotatable wings, into the rhodol skeleton. This unique design makes RDS adopt the colorless and non-fluorescent spirocyclic form in low polarity medium while the colored and fluorescent ring-open form in high polarity system, resulting in a positive-correlation response of fluorescence intension to polarity. Importantly, RDS was successfully applied to monitor the polarity changes in living cells including cancer cells, healthy cells and senescent healthy cells, visualizing that the polarity of cancer cells is lower than that of healthy cells in which the more senescent ones have higher polarity.
Collapse
Affiliation(s)
| | - Kaixuan Duan
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Yanhui Zhang
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Ying Gao
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Bo Qin
- Xi'an University of Posts and Telecommunications, School of Automation, CHINA
| | - Guangwei Wang
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Lin Lei
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Haoyang Tang
- Xi'an University of Posts and Telecommunications, School of Automation, CHINA
| | - Yuan Guo
- Northwest University, College of Chemistry and Materials Science, 1 Xuefu Road, Chang'an district, 710127, Xi'an, CHINA
| |
Collapse
|
14
|
Kandi R, Senger K, Grigoryan A, Soller K, Sakk V, Schuster T, Eiwen K, Menon MB, Gaestel M, Zheng Y, Florian MC, Geiger H. Cdc42-Borg4-Septin7 axis regulates HSC polarity and function. EMBO Rep 2021; 22:e52931. [PMID: 34661963 PMCID: PMC8647144 DOI: 10.15252/embr.202152931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aging of hematopoietic stem cells (HSCs) is caused by the elevated activity of the small RhoGTPase Cdc42 and an apolar distribution of proteins. Mechanisms by which Cdc42 activity controls polarity of HSCs are not known. Binder of RhoGTPases proteins (Borgs) are known effector proteins of Cdc42 that are able to regulate the cytoskeletal Septin network. Here, we show that Cdc42 interacts with Borg4, which in turn interacts with Septin7 to regulate the polar distribution of Cdc42, Borg4, and Septin7 within HSCs. Genetic deletion of either Borg4 or Septin7 results in a reduced frequency of HSCs polar for Cdc42 or Borg4 or Septin7, a reduced engraftment potential and decreased lymphoid‐primed multipotent progenitor (LMPP) frequency in the bone marrow. Taken together, our data identify a Cdc42‐Borg4‐Septin7 axis essential for the maintenance of polarity within HSCs and for HSC function and provide a rationale for further investigating the role of Borgs and Septins in the regulation of compartmentalization within stem cells.
Collapse
Affiliation(s)
- Ravinder Kandi
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | | | - Ani Grigoryan
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Tanja Schuster
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karina Eiwen
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Manoj B Menon
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
16
|
Grigoryan A, Pospiech J, Krämer S, Lipka D, Liehr T, Geiger H, Kimura H, Mulaw MA, Florian MC. Attrition of X Chromosome Inactivation in Aged Hematopoietic Stem Cells. Stem Cell Reports 2021; 16:708-716. [PMID: 33798450 PMCID: PMC8072063 DOI: 10.1016/j.stemcr.2021.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023] Open
Abstract
During X chromosome inactivation (XCI), the inactive X chromosome (Xi) is recruited to the nuclear lamina at the nuclear periphery. Beside X chromosome reactivation resulting in a highly penetrant aging-like hematopoietic malignancy, little is known about XCI in aged hematopoietic stem cells (HSCs). Here, we demonstrate that LaminA/C defines a distinct repressive nuclear compartment for XCI in young HSCs, and its reduction in aged HSCs correlates with an impairment in the overall control of XCI. Integrated omics analyses reveal higher variation in gene expression, global hypomethylation, and significantly increased chromatin accessibility on the X chromosome (Chr X) in aged HSCs. In summary, our data support the role of LaminA/C in the establishment of a special repressive compartment for XCI in HSCs, which is impaired upon aging.
Collapse
Affiliation(s)
- Ani Grigoryan
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081 Ulm, Germany
| | - Johannes Pospiech
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081 Ulm, Germany
| | - Stephen Krämer
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany; Bioinformatics and Omics Data Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany; Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Daniel Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081 Ulm, Germany
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Medhanie A Mulaw
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081 Ulm, Germany; Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany.
| | - Maria Carolina Florian
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081 Ulm, Germany; Stem Cell Aging Group, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|