1
|
Srivastava RM, Thounaojam M, Marincola FM, Shanker A. Editorial: Lymphocyte functional crosstalk and regulation, volume II. Front Immunol 2023; 14:1214843. [PMID: 37266417 PMCID: PMC10231030 DOI: 10.3389/fimmu.2023.1214843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Raghvendra M. Srivastava
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, United States
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Menaka Thounaojam
- Department of Ophthalmology, Augusta University, Augusta, GA, United States
| | | | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, United States
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
2
|
Shapiro DD, Dolan B, Laklouk IA, Rassi S, Lozar T, Emamekhoo H, Wentland AL, Lubner MG, Abel EJ. Understanding the Tumor Immune Microenvironment in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15092500. [PMID: 37173966 PMCID: PMC10177515 DOI: 10.3390/cancers15092500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Scientific understanding of how the immune microenvironment interacts with renal cell carcinoma (RCC) has substantially increased over the last decade as a result of research investigations and applying immunotherapies, which modulate how the immune system targets and eliminates RCC tumor cells. Clinically, immune checkpoint inhibitor therapy (ICI) has revolutionized the treatment of advanced clear cell RCC because of improved outcomes compared to targeted molecular therapies. From an immunologic perspective, RCC is particularly interesting because tumors are known to be highly inflamed, but the mechanisms underlying the inflammation of the tumor immune microenvironment are atypical and not well described. While technological advances in gene sequencing and cellular imaging have enabled precise characterization of RCC immune cell phenotypes, multiple theories have been suggested regarding the functional significance of immune infiltration in RCC progression. The purpose of this review is to describe the general concepts of the anti-tumor immune response and to provide a detailed summary of the current understanding of the immune response to RCC tumor development and progression. This article describes immune cell phenotypes that have been reported in the RCC microenvironment and discusses the application of RCC immunophenotyping to predict response to ICI therapy and patient survival.
Collapse
Affiliation(s)
- Daniel D Shapiro
- Department of Urology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Division of Urology, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Brendan Dolan
- Department of Urology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Israa A Laklouk
- Department of Pathology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sahar Rassi
- Department of Urology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Taja Lozar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Hamid Emamekhoo
- Department of Medical Oncology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Andrew L Wentland
- Department of Radiology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Meghan G Lubner
- Department of Radiology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Edwin Jason Abel
- Department of Urology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| |
Collapse
|
3
|
Lee CH, DiNatale RG, Chowell D, Krishna C, Makarov V, Valero C, Vuong L, Lee M, Weiss K, Hoen D, Morris L, Reznik E, Murray S, Kotecha R, Voss MH, Carlo MI, Feldman D, Sachdev P, Adachi Y, Minoshima Y, Matsui J, Funahashi Y, Nomoto K, Hakimi AA, Motzer RJ, Chan TA. High Response Rate and Durability Driven by HLA Genetic Diversity in Patients with Kidney Cancer Treated with Lenvatinib and Pembrolizumab. Mol Cancer Res 2021; 19:1510-1521. [PMID: 34039647 DOI: 10.1158/1541-7786.mcr-21-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Immune checkpoint blockade (ICB) therapy has substantially improved the outcomes of patients with many types of cancers, including renal cell carcinoma (RCC). Initially studied as monotherapy, immunotherapy-based combination regimens have improved the clinical benefit achieved by ICB monotherapy and have revolutionized RCC treatment. While biomarkers like PD-L1 and tumor mutational burden (TMB) are FDA approved as biomarkers for ICB monotherapy, there are no known biomarkers for combination immunotherapies. Here, we describe the clinical outcomes and genomic determinants of response from a phase Ib/II clinical trial on patients with advanced RCC evaluating the efficacy of lenvatinib, a multi-kinase inhibitor mainly targeting VEGFR and FGFR plus pembrolizumab, an anti-PD1 immunotherapy. Concurrent treatment with lenvatinib and pembrolizumab resulted in an objective response rate of 79% (19/24) and tumor shrinkage in 96% (23/24) of patients. While tumor mutational burden (TMB) did not predict for clinical benefit, germline HLA-I diversity strongly impacted treatment efficacy. Specifically, HLA-I evolutionary divergence (HED), which measures the breadth of a patient's immunopeptidome, was associated with both improved clinical benefit and durability of response. Our results identify lenvatinib plus pembrolizumab as a highly active treatment strategy in RCC and reveal HLA-I diversity as a critical determinant of efficacy for this combination. HED also predicted better survival in a separate cohort of patients with RCC following therapy with anti-PD-1-based combination therapy. IMPLICATIONS: These findings have substantial implications for RCC therapy and for understanding immunogenetic mechanisms of efficacy and warrants further investigation.
Collapse
Affiliation(s)
- Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Renzo G DiNatale
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diego Chowell
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chirag Krishna
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina Valero
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynda Vuong
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark Lee
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kate Weiss
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Doug Hoen
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luc Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ed Reznik
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Computational Oncology, Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Murray
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritesh Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | | | | | | | - A Ari Hakimi
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|