1
|
Tan X, Testoni G, Sullivan MA, López-Soldado I, Vilaplana F, Gilbert RG, Guinovart JJ, Schulz BL, Duran J. Glycogenin is dispensable for normal liver glycogen metabolism and body glucose homeostasis. Int J Biol Macromol 2024; 291:139084. [PMID: 39716709 DOI: 10.1016/j.ijbiomac.2024.139084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Glycogen is a glucose-storage polysaccharide molecule present in animals, fungi and bacteria. The enzyme glycogenin can self-glycosylate, forming an oligosaccharide chain that primes glycogen synthesis. This priming role of glycogenin was first believed to be essential for glycogen synthesis, but glycogen was then found in the skeletal muscle, heart, liver and brain of glycogenin-knockout mice (Gyg KO), thereby showing that glycogen can be synthesized without glycogenin. Within the liver, glycogen is present in the form of individual glycogen particles, called β particles, and larger composite aggregates of linked β particles, called α particles. Previous studies suggested that liver glycogenin plays a role in linking β particles into α particles and thus participating in glucose homeostasis, which implies that α particles would be absent in Gyg KO mice liver. Here we test this through targeted characterization of glycogen structure and through proteomic and metabolic studies on Gyg KO mice. The results show that, contrary to what had been believed, glycogenin is not necessary for normal liver-glycogen metabolism.
Collapse
Affiliation(s)
- Xinle Tan
- Centre for Animal Science and Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Giorgia Testoni
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Mitchell A Sullivan
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Iliana López-Soldado
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Joan J Guinovart
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona 08017, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| |
Collapse
|
2
|
Brewer MK, Torres P, Ayala V, Portero-Otin M, Pamplona R, Andrés-Benito P, Ferrer I, Guinovart JJ, Duran J. Glycogen accumulation modulates life span in a mouse model of amyotrophic lateral sclerosis. J Neurochem 2024; 168:744-759. [PMID: 37401737 PMCID: PMC10764643 DOI: 10.1111/jnc.15906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.
Collapse
Affiliation(s)
- M. Kathryn Brewer
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pascual Torres
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRB Lleida, Lleida, Spain
| | - Victòria Ayala
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRB Lleida, Lleida, Spain
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRB Lleida, Lleida, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRB Lleida, Lleida, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Hospitalet de Llobregat, Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
3
|
Laforêt P, Oldfors A, Malfatti E, Vissing J. 251st ENMC international workshop: Polyglucosan storage myopathies 13-15 December 2019, Hoofddorp, the Netherlands. Neuromuscul Disord 2021; 31:466-477. [PMID: 33602551 DOI: 10.1016/j.nmd.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Pascal Laforêt
- Neurology Unit, Raymond Poincaré Hospital, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Anders Oldfors
- Department of Laboratory Medicine, Sahlgrenska University Hospital, Institute of Biomedicine, University of Gothenburg, Sweden.
| | - Edoardo Malfatti
- Neuromuscular Reference Center, Henri Mondor University Hospital, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | | |
Collapse
|