1
|
Saldivia N, Heller G, Zelada D, Whitehair J, Venkat N, Konjeti A, Savitzky R, Samano S, Simchuk D, van Breemen R, Givogri MI, Bongarzone ER. Deficiency of galactosyl-ceramidase in adult oligodendrocytes worsens disease severity during chronic experimental allergic encephalomyelitis. Mol Ther 2024; 32:3163-3176. [PMID: 38937968 PMCID: PMC11403238 DOI: 10.1016/j.ymthe.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Galactosyl-ceramidase (GALC) is a ubiquitous lysosomal enzyme crucial for the correct myelination of the mammalian nervous system during early postnatal development. However, the physiological consequence of GALC deficiency in the adult brain remains unknown. In this study, we found that mice with conditional ablation of GALC activity in post-myelinating oligodendrocytes were lethally sensitized when challenged with chronic experimental allergic encephalomyelitis (EAE), in contrast with the non-lethal dysmyelination observed in Galc-ablated mice without the EAE challenge. Mechanistically, we found strong inflammatory demyelination without remyelination and an impaired fusion of lysosomes and autophagosomes with accumulation of myelin debris after a transcription factor EB-dependent increase in the lysosomal autophagosome flux. These results indicate that the physiological impact of GALC deficiency is highly influenced by the cell context (oligodendroglial vs. global expression), the presence of inflammation, and the developmental time when it happens (pre-myelination vs. post-myelination). We conclude that Galc expression in adult oligodendrocytes is crucial for the maintenance of adult central myelin and to decrease vulnerability to additional demyelinating insults.
Collapse
Affiliation(s)
- Natalia Saldivia
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Diego Zelada
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jason Whitehair
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nikhil Venkat
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashna Konjeti
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Reina Savitzky
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shayla Samano
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel Simchuk
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Zanetti A, Tomanin R. Targeting Neurological Aspects of Mucopolysaccharidosis Type II: Enzyme Replacement Therapy and Beyond. BioDrugs 2024; 38:639-655. [PMID: 39177874 PMCID: PMC11358193 DOI: 10.1007/s40259-024-00675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare, pediatric, neurometabolic disorder due to the lack of activity of the lysosomal hydrolase iduronate 2-sulfatase (IDS), normally degrading heparan sulfate and dermatan sulfate within cell lysosomes. The deficit of activity is caused by mutations affecting the IDS gene, leading to the pathological accumulation of both glycosaminoglycans in the lysosomal compartment and in the extracellular matrix of most body districts. Although a continuum of clinical phenotypes is described, two main forms are commonly recognized-attenuated and severe-the latter being characterized by an earlier and faster clinical progression and by a progressive impairment of central nervous system (CNS) functions. However, attenuated forms have also been recently described as presenting some neurological involvement, although less deep, such as deficits of attention and hearing loss. The main treatment for the disease is represented by enzyme replacement therapy (ERT), applied in several countries since 2006, which, albeit showing partial efficacy on some peripheral organs, exhibited a very poor efficacy on bones and heart, and a total inefficacy on CNS impairment, due to the inability of the recombinant enzyme to cross the blood-brain barrier (BBB). Together with ERT, whose design enhancements, performed in the last few years, allowed a possible brain penetration of the drug through the BBB, other therapeutic approaches aimed at targeting CNS involvement in MPS II were proposed and evaluated in the last decades, such as intrathecal ERT, intracerebroventricular ERT, ex vivo gene therapy, or adeno-associated viral vector (AAV) gene therapy. The aim of this review is to summarize the main clinical aspects of MPS II in addition to current therapeutic options, with particular emphasis on the neurological ones and on the main CNS-targeted therapeutic approaches explored through the years.
Collapse
Affiliation(s)
- Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health SDB, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padua, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health SDB, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy.
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padua, Italy.
| |
Collapse
|
3
|
Groeschel S, Beerepoot S, Amedick LB, Krӓgeloh-Mann I, Li J, Whiteman DAH, Wolf NI, Port JD. The effect of intrathecal recombinant arylsulfatase A therapy on structural brain magnetic resonance imaging in children with metachromatic leukodystrophy. J Inherit Metab Dis 2024; 47:778-791. [PMID: 38321717 DOI: 10.1002/jimd.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024]
Abstract
This study aimed to evaluate the effect of intrathecal (IT) recombinant human arylsulfatase A (rhASA) on magnetic resonance imaging (MRI)-assessed brain tissue changes in children with metachromatic leukodystrophy (MLD). In total, 510 MRI scans were collected from 12 intravenous (IV) rhASA-treated children with MLD, 24 IT rhASA-treated children with MLD, 32 children with untreated MLD, and 156 normally developing children. Linear mixed models were fitted to analyze the time courses of gray matter (GM) volume and fractional anisotropy (FA) in the posterior limb of the internal capsule. Time courses for demyelination load and FA in the centrum semiovale were visualized using locally estimated scatterplot smoothing regression curves. All assessed imaging parameters demonstrated structural evidence of neurological deterioration in children with MLD. GM volume was significantly lower at follow-up (median duration, 104 weeks) in IV rhASA-treated versus IT rhASA-treated children. GM volume decline over time was steeper in children receiving low-dose (10 or 30 mg) versus high-dose (100 mg) IT rhASA. Similar effects were observed for demyelination. FA in the posterior limb of the internal capsule showed a higher trend over time in IT rhASA-treated versus children with untreated MLD, but FA parameters were not different between children receiving the low doses versus those receiving the high dose. GM volume in IT rhASA-treated children showed a strong positive correlation with 88-item Gross Motor Function Measure score over time. In some children with MLD, IT administration of high-dose rhASA may delay neurological deterioration (assessed using MRI), offering potential therapeutic benefit.
Collapse
Affiliation(s)
- Samuel Groeschel
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience-Cellular and Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Lucas Bastian Amedick
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ingeborg Krӓgeloh-Mann
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Jing Li
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience-Cellular and Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
| | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Gauthier C, El Cheikh K, Basile I, Daurat M, Morère E, Garcia M, Maynadier M, Morère A, Gary-Bobo M. Cation-independent mannose 6-phosphate receptor: From roles and functions to targeted therapies. J Control Release 2024; 365:759-772. [PMID: 38086445 DOI: 10.1016/j.jconrel.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The cation-independent mannose 6-phosphate receptor (CI-M6PR) is a ubiquitous transmembrane receptor whose main intracellular role is to direct enzymes carrying mannose 6-phosphate moieties to lysosomal compartments. Recently, the small membrane-bound portion of this receptor has appeared to be implicated in numerous pathophysiological processes. This review presents an overview of the main ligand partners and the roles of CI-M6PR in lysosomal storage diseases, neurology, immunology and cancer fields. Moreover, this membrane receptor has already been noted for its strong potential in therapeutic applications thanks to its cellular internalization activity and its ability to address pathogenic factors to lysosomes for degradation. A number of therapeutic delivery approaches using CI-M6PR, in particular with enzymes, antibodies or nanoparticles, are currently being proposed.
Collapse
Affiliation(s)
- Corentin Gauthier
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | | - Elodie Morère
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Alain Morère
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
5
|
Yaghootfam C, Sylvester M, Turk B, Gieselmann V, Matzner U. Engineered arylsulfatase A with increased activity, stability and brain delivery for therapy of metachromatic leukodystrophy. Mol Ther 2023; 31:2962-2974. [PMID: 37644722 PMCID: PMC10556224 DOI: 10.1016/j.ymthe.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
A deficiency of human arylsulfatase A (hASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disease characterized by sulfatide accumulation and central nervous system (CNS) demyelination. Efficacy of enzyme replacement therapy (ERT) is increased by genetic engineering of hASA to elevate its activity and transfer across the blood-brain barrier (BBB), respectively. To further improve the enzyme's bioavailability in the CNS, we mutated a cathepsin cleavage hot spot and obtained hASAs with substantially increased half-lives. We then combined the superstabilizing exchange E424A with the activity-promoting triple substitution M202V/T286L/R291N and the ApoEII-tag for BBB transfer in a trimodal modified neoenzyme called SuPerTurbo-ASA. Compared with wild-type hASA, half-life, activity, and M6P-independent uptake were increased more than 7-fold, about 3-fold, and more than 100-fold, respectively. ERT of an MLD-mouse model with immune tolerance to wild-type hASA did not induce antibody formation, indicating absence of novel epitopes. Compared with wild-type hASA, SuPerTurbo-ASA was 8- and 12-fold more efficient in diminishing sulfatide storage of brain and spinal cord. In both tissues, storage was reduced by ∼60%, roughly doubling clearance achieved with a 65-fold higher cumulative dose of wild-type hASA previously. Due to its enhanced therapeutic potential, SuPerTurbo-ASA might be a decisive advancement for ERT and gene therapy of MLD.
Collapse
Affiliation(s)
- Claudia Yaghootfam
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Marc Sylvester
- Core Facility Analytical Proteomics, Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Ulrich Matzner
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Jonckheere AI, Kingma SDK, Eyskens F, Bordon V, Jansen AC. Metachromatic leukodystrophy: To screen or not to screen? Eur J Paediatr Neurol 2023; 46:1-7. [PMID: 37354699 DOI: 10.1016/j.ejpn.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/11/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Metachromatic leukodystrophy (MLD) is a neurodegenerative lysosomal storage disorder caused by biallelic pathogenic variants in the gene encoding arylsulfatase A. Disease onset is variable (with late infantile, early and late juvenile, and adult forms) and treatment options depend on age and disease symptoms at onset. In the past, allo-hematopoietic stem cell transplantation (allo-HSCT) has been the best treatment option, following strict selection criteria. The outcome however is variable and morbidity remains high. This paved the way to the development of new treatment options, some of them aiming to be curative. In the light of this changing therapeutic field, newborn screening is becoming a valuable option. This narrative review aims to describe the outcome of allo-HSCT in the different MLD disease forms, and, in addition, reviews new treatment options. Finally, the shift of the field towards newborn screening for MLD is discussed.
Collapse
Affiliation(s)
- An I Jonckheere
- Department of Child Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium; Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Belgium.
| | - Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - François Eyskens
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - Victoria Bordon
- Department of Child Oncology, Ghent University Hospital, Ghent, Belgium
| | - Anna C Jansen
- Department of Child Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| |
Collapse
|
7
|
Al‐Saady M, Beerepoot S, Plug BC, Breur M, Galabova H, Pouwels PJW, Boelens J, Lindemans C, van Hasselt PM, Matzner U, Vanderver A, Bugiani M, van der Knaap MS, Wolf NI. Neurodegenerative disease after hematopoietic stem cell transplantation in metachromatic leukodystrophy. Ann Clin Transl Neurol 2023; 10:1146-1159. [PMID: 37212343 PMCID: PMC10351661 DOI: 10.1002/acn3.51796] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVE Metachromatic leukodystrophy is a lysosomal storage disease caused by deficient arylsulfatase A. It is characterized by progressive demyelination and thus mainly affects the white matter. Hematopoietic stem cell transplantation may stabilize and improve white matter damage, yet some patients deteriorate despite successfully treated leukodystrophy. We hypothesized that post-treatment decline in metachromatic leukodystrophy might be caused by gray matter pathology. METHODS Three metachromatic leukodystrophy patients treated with hematopoietic stem cell transplantation with a progressive clinical course despite stable white matter pathology were clinically and radiologically analyzed. Longitudinal volumetric MRI was used to quantify atrophy. We also examined histopathology in three other patients deceased after treatment and compared them with six untreated patients. RESULTS The three clinically progressive patients developed cognitive and motor deterioration after transplantation, despite stable mild white matter abnormalities on MRI. Volumetric MRI identified cerebral and thalamus atrophy in these patients, and cerebellar atrophy in two. Histopathology showed that in brain tissue of transplanted patients, arylsulfatase A expressing macrophages were clearly present in the white matter, but absent in the cortex. Arylsulfatase A expression within patient thalamic neurons was lower than in controls, the same was found in transplanted patients. INTERPRETATION Neurological deterioration may occur after hematopoietic stem cell transplantation in metachromatic leukodystrophy despite successfully treated leukodystrophy. MRI shows gray matter atrophy, and histological data demonstrate absence of donor cells in gray matter structures. These findings point to a clinically relevant gray matter component of metachromatic leukodystrophy, which does not seem sufficiently affected by transplantation.
Collapse
Affiliation(s)
- Murtadha Al‐Saady
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
| | - Shanice Beerepoot
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Nierkens and Lindemans GroupPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Bonnie C. Plug
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Hristina Galabova
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam University Medical CentersVU universityAmsterdamthe Netherlands
| | - Petra J. W. Pouwels
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam University Medical CentersVU universityAmsterdamthe Netherlands
| | - Jaap‐Jan Boelens
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Caroline Lindemans
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Pediatric Blood and Bone Marrow Transplantation, Princess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Peter M. van Hasselt
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ulrich Matzner
- Institute of Biochemistry and Molecular Biology, Medical FacultyRheinische Friedrich‐Wilhelm UniversityBonnGermany
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marianna Bugiani
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Integrative NeurophysiologyVU UniversityAmsterdamthe Netherlands
| | - Nicole I. Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
| |
Collapse
|
8
|
Mucopolysaccharidoses and the blood-brain barrier. Fluids Barriers CNS 2022; 19:76. [PMID: 36117162 PMCID: PMC9484072 DOI: 10.1186/s12987-022-00373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Mucopolysaccharidoses comprise a set of genetic diseases marked by an enzymatic dysfunction in the degradation of glycosaminoglycans in lysosomes. There are eight clinically distinct types of mucopolysaccharidosis, some with various subtypes, based on which lysosomal enzyme is deficient and symptom severity. Patients with mucopolysaccharidosis can present with a variety of symptoms, including cognitive dysfunction, hepatosplenomegaly, skeletal abnormalities, and cardiopulmonary issues. Additionally, the onset and severity of symptoms can vary depending on the specific disorder, with symptoms typically arising during early childhood. While there is currently no cure for mucopolysaccharidosis, there are clinically approved therapies for the management of clinical symptoms, such as enzyme replacement therapy. Enzyme replacement therapy is typically administered intravenously, which allows for the systemic delivery of the deficient enzymes to peripheral organ sites. However, crossing the blood-brain barrier (BBB) to ameliorate the neurological symptoms of mucopolysaccharidosis continues to remain a challenge for these large macromolecules. In this review, we discuss the transport mechanisms for the delivery of lysosomal enzymes across the BBB. Additionally, we discuss the several therapeutic approaches, both preclinical and clinical, for the treatment of mucopolysaccharidoses.
Collapse
|
9
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
10
|
Hordeaux J, Jeffrey BA, Jian J, Choudhury GR, Michalson K, Mitchell TW, Buza EL, Chichester J, Dyer C, Bagel J, Vite CH, Bradbury AM, Wilson JM. Efficacy and Safety of a Krabbe Disease Gene Therapy. Hum Gene Ther 2022; 33:499-517. [PMID: 35333110 PMCID: PMC9142772 DOI: 10.1089/hum.2021.245] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brianne A Jeffrey
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinlong Jian
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gourav R Choudhury
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristofer Michalson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas W Mitchell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Beerepoot S, Heijst H, Roos B, Wamelink MMC, Boelens JJ, Lindemans CA, van Hasselt PM, Jacobs EH, van der Knaap MS, Teunissen CE, Wolf NI. Neurofilament light chain and glial fibrillary acidic protein levels in metachromatic leukodystrophy. Brain 2021; 145:105-118. [PMID: 34398223 PMCID: PMC8967093 DOI: 10.1093/brain/awab304] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/02/2022] Open
Abstract
Metachromatic leukodystrophy is a lethal metabolic leukodystrophy, with emerging treatments for early disease stages. Biomarkers to measure disease activity are required for clinical assessment and treatment follow-up. This retrospective study compared neurofilament light chain and glial fibrillary acidic protein (GFAP) levels in CSF (n = 11) and blood (n = 92) samples of 40 patients with metachromatic leukodystrophy (aged 0–42 years) with 38 neurologically healthy children (aged 0–17 years) and 38 healthy adults (aged 18–45 years), and analysed the associations between these levels with clinical phenotype and disease evolution in untreated and transplanted patients. Metachromatic leukodystrophy subtype was determined based on the (expected) age of symptom onset. Disease activity was assessed by measuring gross motor function deterioration and brain MRI. Longitudinal analyses with measurements up to 23 years after diagnosis were performed using linear mixed models. CSF and blood neurofilament light chain and GFAP levels in paediatric controls were negatively associated with age (all P < 0.001). Blood neurofilament light chain level at diagnosis (median, interquartile range; picograms per millilitre) was significantly increased in both presymptomatic (14.7, 10.6–56.7) and symptomatic patients (136, 40.8–445) compared to controls (5.6, 4.5–7.1), and highest among patients with late-infantile (456, 201–854) or early-juvenile metachromatic leukodystrophy (291.0, 104–445) and those ineligible for treatment based on best practice (291, 57.4–472). GFAP level (median, interquartile range; picogram per millilitre) was only increased in symptomatic patients (591, 224–1150) compared to controls (119, 78.2–338) and not significantly associated with treatment eligibility (P = 0.093). Higher blood neurofilament light chain and GFAP levels at diagnosis were associated with rapid disease progression in late-infantile (P = 0.006 and P = 0.051, respectively) and early-juvenile patients (P = 0.048 and P = 0.039, respectively). Finally, blood neurofilament light chain and GFAP levels decreased during follow-up in untreated and transplanted patients but remained elevated compared with controls. Only neurofilament light chain levels were associated with MRI deterioration (P < 0.001). This study indicates that both proteins may be considered as non-invasive biomarkers for clinical phenotype and disease stage at clinical assessment, and that neurofilament light chain might enable neurologists to make better informed treatment decisions. In addition, neurofilament light chain holds promise assessing treatment response. Importantly, both biomarkers require paediatric reference values, given that their levels first decrease before increasing with advancing age.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Nierkens and Lindemans group, Princess Máxima Center for pediatric oncology, 3584 CS Utrecht, The Netherlands
| | - Hans Heijst
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Birthe Roos
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HV Amsterdam, The Netherlands
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HV Amsterdam, The Netherlands
| | - Jaap Jan Boelens
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Department of Pediatrics, Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, 10065 New York, USA
| | - Caroline A Lindemans
- Nierkens and Lindemans group, Princess Máxima Center for pediatric oncology, 3584 CS Utrecht, The Netherlands.,Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Peter M van Hasselt
- Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Yaghootfam C, Gehrig B, Sylvester M, Gieselmann V, Matzner U. Deletion of fatty acid amide hydrolase reduces lyso-sulfatide levels but exacerbates metachromatic leukodystrophy in mice. J Biol Chem 2021; 297:101064. [PMID: 34375644 PMCID: PMC8435702 DOI: 10.1016/j.jbc.2021.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
An inherited deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy (MLD) characterized by massive intralysosomal storage of the acidic glycosphingolipid sulfatide and progressive demyelination. Lyso-sulfatide, which differs from sulfatide by the lack of the N-linked fatty acid also accumulates in MLD and is considered a key driver of pathology although its concentrations are far below sulfatide levels. However, the metabolic origin of lyso-sulfatide is unknown. We show here that ASA-deficient murine macrophages and microglial cells express an endo-N-deacylase that cleaves the N-linked fatty acid from sulfatide. An ASA-deficient astrocytoma cell line devoid of this activity was used to identify the enzyme by overexpressing 13 deacylases with potentially matching substrate specificities. Hydrolysis of sulfatide was detected only in cells overexpressing the enzyme fatty acid amide hydrolase (FAAH). A cell-free assay with recombinant FAAH confirmed the novel role of this enzyme in sulfatide hydrolysis. Consistent with the in vitro data, deletion of FAAH lowered lyso-sulfatide levels in a mouse model of MLD. Regardless of the established cytotoxicity of lyso-sulfatide and the anti-inflammatory effects of FAAH inhibition seen in mouse models of several neurological diseases, genetic inactivation of FAAH did not mitigate, but rather exacerbated the disease phenotype of MLD mice. This unexpected finding was reflected by worsening of rotarod performance, increase of anxiety-related exploratory activity, aggravation of peripheral neuropathy and reduced life expectancy. Thus, we conclude that FAAH has a protective function in MLD and may represent a novel therapeutic target for treatment of this fatal condition.
Collapse
Affiliation(s)
- Claudia Yaghootfam
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Bernd Gehrig
- Medical Faculty, Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Marc Sylvester
- Medical Faculty, Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Volkmar Gieselmann
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Ulrich Matzner
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
13
|
New disease modifying therapies for two genetic childhood-onset neurometabolic disorders (metachromatic leucodystrophy and adrenoleucodystrophy). Neurol Sci 2021; 42:2603-2606. [PMID: 34212263 DOI: 10.1007/s10072-021-05412-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
|
14
|
Cachón-González MB, Wang S, Cox TM. Expression of Ripk1 and DAM genes correlates with severity and progression of Krabbe disease. Hum Mol Genet 2021; 30:2082-2099. [PMID: 34172992 PMCID: PMC8561423 DOI: 10.1093/hmg/ddab159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023] Open
Abstract
Krabbe disease, an inherited leukodystrophy, is a sphingolipidosis caused by deficiency of β-galactocerebrosidase: it is characterized by myelin loss, and pathological activation of macrophage/microglia and astrocytes. To define driving pathogenic factors, we explored the expression repertoire of candidate neuroinflammatory genes: upregulation of receptor interacting protein kinase 1 (Ripk1) and disease-associated microglia (DAM) genes, including Cst7 and Ch25h, correlated with severity of Krabbe disease genetically modelled in the twitcher mouse. Upregulation of Ripk1 in Iba1/Mac2-positive microglia/macrophage associated with the pathognomic hypertrophic/globoid phenotype of this disease. Widespread accumulation of ubiquitinin1 in white and grey matter co-localised with p62. In Sandhoff disease, another sphingolipid disorder, neuroinflammation, accumulation of p62 and increased Ripk1 expression was observed. The upregulated DAM genes and macrophage/microglia expression of Ripk1 in the authentic model of Krabbe disease strongly resemble those reported in Alzheimer disease associating with disturbed autophagosomal/lysosomal homeostasis. Activation of this shared molecular repertoire, suggests the potential for therapeutic interdiction at a common activation step, irrespective of proximal causation. To clarify the role of Ripk1 in the pathogenesis of Krabbe disease, we first explored the contribution of its kinase function, by intercrossing twitcher and the K45A kinase-dead Ripk1 mouse and breeding to homozygosity. Genetic ablation of Ripk1 kinase activity neither altered the neuropathological features nor the survival of twitcher mice. We conclude that Ripk1 kinase-dependent inflammatory and degenerative capabilities play no instrumental role in Krabbe disease; however, putative kinase-independent functions of Ripk1 remain formally to be explored in its molecular pathogenesis.
Collapse
Affiliation(s)
- María B Cachón-González
- Department of Medicine, University of Cambridge, Level 5, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Susan Wang
- Department of Medicine, University of Cambridge, Level 5, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Level 5, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|