1
|
Liang J, Zhu Y, Liu S, Kuang B, Tian Z, Zhang L, Yang S, Lin M, Chen N, Liu X, Ai Q, Yang Y. Progress of Exosomal MicroRNAs and Traditional Chinese Medicine Monomers in Neurodegenerative Diseases. Phytother Res 2024. [PMID: 39225243 DOI: 10.1002/ptr.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Exosomes, extracellular vesicles secreted by various cells, actively participate in intercellular communication by facilitating the exchange of crucial molecular information such as DNA, RNA, and lipids. Within this intricate network, microRNAs, endogenous non-coding small RNAs, emerge as pivotal regulators of post-transcriptional gene expression, significantly influencing the development of neurodegenerative diseases. The historical prominence of traditional Chinese medicine (TCM) in clinical practice in China underscores its enduring significance. Notably, TCM monomers, serving as active constituents within herbal medicine, assume a critical role in the treatment of neurodegenerative diseases, particularly in mitigating oxidative stress, inhibiting apoptosis, and reducing inflammation. This comprehensive review aims to delineate the specific involvement of exosomal microRNAs in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. Furthermore, the exploration extends to the application of TCM monomers, elucidating their efficacy as therapeutic agents in these conditions. Additionally, the review examines the utilization of exosomes as drug delivery carriers in the context of neurodegenerative diseases, providing a nuanced understanding of the potential synergies between TCM and modern therapeutic approaches. This synthesis of knowledge aims to contribute to the advancement of our comprehension of the intricate molecular mechanisms underlying neurodegeneration and the potential therapeutic avenues offered by TCcom interventions.
Collapse
Affiliation(s)
- Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuchen Zhu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Boyu Kuang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ling Zhang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Zhang T, Jing M, Fei L, Zhang Z, Yi P, Sun Y, Wang Y. Tetramethylpyrazine nitrone delays the aging process of C. elegans by improving mitochondrial function through the AMPK/mTORC1 signaling pathway. Biochem Biophys Res Commun 2024; 723:150220. [PMID: 38850811 DOI: 10.1016/j.bbrc.2024.150220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Aging is characterized as the process of functional decline in an organism from adulthood, often marked by a progressive loss of cellular function and systemic deterioration of multiple tissues. Among the numerous molecular, cellular, and systemic hallmarks associated with aging, mitochondrial dysfunction is considered one of the pivotal factors that initiates the aging process. During aging, mitochondria undergo varying degrees of damage, resulting in impaired energy production and disruption of the homeostatic regulation of mitochondrial quality control systems, which in turn affects cellular energy metabolism and results in cellular dysfunction, accelerating the aging process. AMP-activated protein kinase (AMPK) and the mechanistic target of rapamycin complex 1 (mTORC1) are two central kinase complexes responsible for sensing intracellular nutrient levels, regulating metabolic homeostasis, modulating aging and play a crucial role in maintaining the homeostatic balance of mitochondria. Our previous studies found that the novel compound tetramethylpyrazine nitrone (TBN) can protect mitochondria via the AMPK/mTOR pathway in many animal models, extending healthy lifespan through the Nrf2 signaling pathway in nematodes. Building upon this foundation, we have posited a reasonable hypothesis, TBN can improve mitochondrial function to delay aging by regulating the AMPK/mTORC1 signaling pathway. This study focuses on the C. elegans, exploring the impact and underlying mechanisms of TBN on aging and mitochondrial function (especially the mitochondrial quality control system) during the aging process. The present studies demonstrated that TBN extends lifespan of wild-type nematodes and is associated with the AMPK/mTORC1 signaling pathway. TBN elevated ATP and NAD+ levels in aging nematodes while orchestrating mitochondrial biogenesis and mitophagy. Moreover, TBN was observed to significantly enhance normal activities during aging in C. elegans, such as mobility and pharyngeal pumping, concurrently impeding lipofuscin accumulation that were closely associated with AMPK and mTORC1. This study not only highlights the delayed effects of TBN on aging but also underscores its potential application in strategies aimed at improving mitochondrial function via the AMPK/mTOR pathway in C. elegans.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Mei Jing
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Lili Fei
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Peng Yi
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Yewei Sun
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Yuqiang Wang
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| |
Collapse
|
3
|
Xin J, Huang S, Wen J, Li Y, Li A, Satyanarayanan SK, Yao X, Su H. Drug Screening and Validation Targeting TDP-43 Proteinopathy for Amyotrophic Lateral Sclerosis. Aging Dis 2024:AD.2024.0440. [PMID: 38739934 DOI: 10.14336/ad.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as a rare, yet severely debilitating disorder marked by the deterioration of motor neurons (MNs) within the brain and spinal cord, which is accompanied by degenerated corticobulbar/corticospinal tracts and denervation in skeletal muscles. Despite ongoing research efforts, ALS remains incurable, attributed to its intricate pathogenic mechanisms. A notable feature in the pathology of ALS is the prevalence of TAR DNA-binding protein 43 (TDP-43) proteinopathy, detected in approximately 97% of ALS cases, underscoring its significance in the disease's progression. As a result, strategies targeting the aberrant TDP-43 protein have garnered attention as a potential avenue for ALS therapy. This review delves into the existing drug screening systems aimed at TDP-43 proteinopathy and the models employed for drug efficacy validation. It also explores the hurdles encountered in the quest to develop potent medications against TDP-43 proteinopathy, offering insights into the intricacies of drug discovery and development for ALS. Through this comprehensive analysis, the review sheds light on the critical aspects of identifying and advancing therapeutic solutions for ALS.
Collapse
Affiliation(s)
- Jiaqi Xin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yunhao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
4
|
Nie L, He K, Qiu C, Li Q, Xiong B, Gao C, Zhang X, Jing M, Wu W, Liu J, Zhang G, Zhang Z, Yang X, Sun Y, Wang Y. Tetramethylpyrazine Nitrone alleviates D-galactose-induced murine skeletal muscle aging and motor deficits by activating the AMPK signaling pathway. Biomed Pharmacother 2024; 173:116415. [PMID: 38479182 DOI: 10.1016/j.biopha.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Tetramethylpyrazine nitrone (TBN), a novel derivative of tetramethylpyrazine (TMP) designed and synthesized by our group, possesses multi-functional mechanisms of action and displays broad protective effects in vitro and in animal models of age-related brain disorders such as stroke, Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Parkinson's disease (PD). In the present report, we investigated the effects of TBN on aging, specifically on muscle aging and the associated decline of motor functions. Using a D-galactose-induced aging mouse model, we found that TBN could reverse the levels of several senescence and aging markers including p16, p21, ceramides, and telomere length and increase the wet-weight ratio of gastrocnemius muscle tissue, demonstrating its efficacy in ameliorating muscle aging. Additionally, the pharmacological effects of TBN on motor deficits (gait analysis, pole-climbing test and grip strength test), muscle fibrosis (hematoxylin & eosin (HE), Masson staining, and αSMA staining), inflammatory response (IL-1β, IL-6, and TNF-α), and mitochondrial function (ATP, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were also confirmed in the D-galactose-induced aging models. Further experiments demonstrated that TBN alleviated muscle aging and improved the decline of age-related motor deficits through an AMPK-dependent mechanism. These findings highlight the significance of TBN as a potential anti-aging agent to combat the occurrence and development of aging and age-related diseases.
Collapse
Affiliation(s)
- Lulin Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Kaiwu He
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Chaoming Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qing Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Bocheng Xiong
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chuanyue Gao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiufen Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Mei Jing
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Wei Wu
- Department of Hematology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| |
Collapse
|
5
|
Feng F, Xu DQ, Yue SJ, Chen YY, Tang YP. Neuroprotection by tetramethylpyrazine and its synthesized analogues for central nervous system diseases: a review. Mol Biol Rep 2024; 51:159. [PMID: 38252346 DOI: 10.1007/s11033-023-09068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Due to the global increase in aging populations and changes in modern lifestyles, the prevalence of neurodegenerative diseases, cerebrovascular disorders, neuropsychiatrcic conditions, and related ailments is rising, placing an increasing burden on the global public health system. MATERIALS AND METHODS All studies on tetramethylpyrazine (TMP) and its derivatives were obtained from reputable sources such as PubMed, Elsevier, Library Genesis, and Google Scholar. Comprehensive data on TMP and its derivatives was meticulously compiled. RESULTS This comprehensive analysis explains the neuroprotective effects demonstrated by TMP and its derivatives in diseases of the central nervous system. These compounds exert their influence on various targets and signaling pathways, playing crucial roles in the development of various central nervous system diseases. Their multifaceted mechanisms include inhibiting oxidative damage, inflammation, cell apoptosis, calcium overload, glutamate excitotoxicity, and acetylcholinesterase activity. CONCLUSION This review provides a brief summary of the most recent advancements in research on TMP and its derivatives in the context of central nervous system diseases. It involves synthesizing analogs of TMP and evaluating their effectiveness in models of central nervous system diseases. The ultimate goal is to facilitate the practical application of TMP and its derivatives in the future treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Fan Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| |
Collapse
|
6
|
Li C, Lin Y, Chen Y, Song X, Zheng X, Li J, He J, Chen X, Huang C, Wang W, Wu J, Wu J, Gao J, Tu Z, Li XJ, Yan S, Li S. A Specific Mini-Intrabody Mediates Lysosome Degradation of Mutant Huntingtin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301120. [PMID: 37688357 PMCID: PMC10625127 DOI: 10.1002/advs.202301120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Accumulation of misfolded proteins leads to many neurodegenerative diseases that can be treated by lowering or removing mutant proteins. Huntington's disease (HD) is characterized by the intracellular accumulation of mutant huntingtin (mHTT) that can be soluble and aggregated in the central nervous system and causes neuronal damage and death. Here, an intracellular antibody (intrabody) fragment is generated that can specifically bind mHTT and link to the lysosome for degradation. It is found that delivery of this peptide by either brain injection or intravenous administration can efficiently clear the soluble and aggregated mHTT by activating the lysosomal degradation pathway, resulting in amelioration of gliosis and dyskinesia in HD knock-in (KI-140Q) mice. These findings suggest that the small intrabody peptide linked to lysosomes can effectively lower mutant proteins and provide a new approach for treating neurodegenerative diseases that are caused by the accumulation of mutant proteins.
Collapse
Affiliation(s)
- Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yingqi Lin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, 510632, China
| | - Xiusheng Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Martinez-Gonzalez L, Martinez A. Emerging clinical investigational drugs for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2023; 32:141-160. [PMID: 36762798 DOI: 10.1080/13543784.2023.2178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder caused by motoneuron death with a median survival time of 3-5 years since disease onset. There are no effective treatments to date. However, a variety of innovative investigational drugs and biological-based therapies are under clinical development. AREAS COVERED This review provides an overview of the clinical investigational small molecules as well as a brief summary of the biological-based therapies that are currently undergoing clinical trials for the treatment of ALS. All the data were obtained from ClinicalTrials.gov (registered through November 1). EXPERT OPINION Drug discovery for ALS is an active and evolving field, where many investigational clinical drugs are in different trials. There are several mechanisms of action supporting all these new therapies, although proteostasis is gaining stage. Probably, small orally bioavailable molecules able to recover functional TDP-43 homeostasis may have solid chances to modify ALS progression.
Collapse
Affiliation(s)
- Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Lan J, Zhou Y, Wang H, Tang J, Kang Y, Wang P, Liu X, Peng Y. Protective effect of human umbilical cord mesenchymal stem cell derived conditioned medium in a mutant TDP-43 induced motoneuron-like cellular model of ALS. Brain Res Bull 2023; 193:106-116. [PMID: 36563944 DOI: 10.1016/j.brainresbull.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-factor neurodegenerative disease, characterized by the loss of motor neurons. TAR DNA-binding protein 43 (TDP-43) mutation, accumulation and aggregation, as well as oxidative stress are recognized as major pathological denominators and biochemical markers for ALS. Recently, human umbilical cord mesenchymal stem cell-derived conditioned medium (UC-CM) has been introduced to treat ALS patients. However, there is no research for the protective effect of UC-CM on the TDP-43 model of ALS. In this study, we evaluated the potential neuroprotective effect of UC-CM on a cellular ALS model expressing TDP-43mutant M337V, as well as its underlying mechanism. We found that 24 h UC-CM treatment could protect M337V expressing motor neurons by increasing cell viability and reducing LDH leakage. Furthermore, the aggregation of M337V, generation of ROS, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), protein carbonyl and 8-OHdG were also reduced by UC-CM, indicating that UC-CM protected cells by reducing oxidative damage. Moreover, UC-CM significantly increased the expression of nuclear Nrf2 and its downstream enzyme HO1. The Nrf2 translocation inhibitor ML385 could inhibit the effect of UC-CM on the cell viability and aggregate of M337V. Our results suggest that UC-CM protect cells against M337V expression by its strong antioxidative effect via Nrf-2/HO-1 axis activation.
Collapse
Affiliation(s)
- Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peishen Wang
- Department of Cell Transplantation, The third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xuebin Liu
- Department of Cell Transplantation, The third Medical Center of Chinese PLA General Hospital, Beijing 100039, China; Beijing Zhongguang Tianyi Biotechnology Co., Ltd, Beijing 100026, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Sekar D, Tusubira D, Ross K. TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Front Cell Neurosci 2022; 16:954912. [PMID: 36385948 PMCID: PMC9650703 DOI: 10.3389/fncel.2022.954912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023] Open
Abstract
Understanding and ameliorating neurodegenerative diseases represents a key challenge for supporting the health span of the aging population. Diverse protein aggregates have been implicated in such neurodegenerative disorders, including amyloid-β, α-synuclein, tau, fused in sarcoma (FUS), and transactivation response element (TAR) DNA-binding protein 43 (TDP-43). Recent years have seen significant growth in our mechanistic knowledge of relationships between these proteins and some of the membrane-less nuclear structures that fulfill key roles in the cell function. These include the nucleolus, nuclear speckles, and paraspeckles. The ability of macromolecular protein:RNA complexes to partition these nuclear condensates through biophysical processes that involve liquid-liquid phase separation (LLPS) has also gained attention recently. The paraspeckle, which is scaffolded by the architectural long-non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) plays central roles in RNA processing and metabolism and has been linked dynamically to TDP-43. In this mini-review, we outline essential early and recent insights in relation to TDP-43 proteinopathies. We then appraise the relationships between TDP-43 and NEAT1 in the context of neuronal paraspeckles and neuronal stress. We highlight key areas for investigation based on recent advances in our understanding of how TDP-43 affects neuronal function, especially in relation to messenger ribosomal nucleic acid (mRNA) splicing. Finally, we offer perspectives that should be considered for translational pipelines in order to improve health outcomes for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, Uganda,*Correspondence: Deusdedit Tusubira, ; orcid.org/0000-0002-4698-424X
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom,Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom,Kehinde Ross, ; orcid.org/0000-0003-0252-1152
| |
Collapse
|
10
|
Lian L, Zheng M, He R, Lin J, Chen W, Pei Z, Yao X. Analysing the influencing factors on caregivers' burden among amyotrophic lateral sclerosis patients in China: a cross-sectional study based on data mining. BMJ Open 2022; 12:e066402. [PMID: 36130747 PMCID: PMC9494583 DOI: 10.1136/bmjopen-2022-066402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES There is significant burden on caregivers of patients with amyotrophic lateral sclerosis (ALS). However, only a few studies have focused on caregivers, and traditional research methods have obvious shortcomings in dealing with multiple influencing factors. This study was designed to explore influencing factors on caregiver burden among ALS patients and their caregivers from a new perspective. DESIGN Cross-sectional study. SETTING The data were collected at an affiliated hospital in Guangzhou, Guangdong, China. PARTICIPANTS Fifty-seven pairs of patients with ALS and their caregivers were investigated by standardised questionnaires. MAIN OUTCOME MEASURES This study primarily assessed the influencing factor of caregiver burden including age, gender, education level, economic status, anxiety, depression, social support, fatigue, sleep quality and stage of disease through data mining. Statistical analysis was performed using SPSS 24.0, and least absolute shrinkage and selection operator (LASSO) regression model was established by Python 3.8.1 to minimise the effect of multicollinearity. RESULTS According to LASSO regression model, we found 10 variables had weights. Among them, Milano-Torinos (MITOS) stage (0-1) had the highest weight (-12.235), followed by younger age group (-3.198), lower-educated group (2.136), fatigue (1.687) and social support (-0.455). Variables including sleep quality, anxiety, depression and sex (male) had moderate weights in this model. Economic status (common), economic status (better), household (city), household (village), educational level (high), sex (female), age (older) and MITOS stage (2-4) had a weight of zero. CONCLUSIONS Our study demonstrates that the severity of ALS patients is the most influencing factor in caregiver burden. Caregivers of ALS patients may suffer less from caregiver burden when the patients are less severe, and the caregivers are younger. Low educational status could increase caregiver burden. Caregiver burden is positively correlated with the degree of fatigue and negatively correlated with social support. Hopefully, more attention should be paid to caregivers of ALS, and effective interventions can be developed to relieve this burden.
Collapse
Affiliation(s)
- Ling Lian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Minying Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jianing Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| |
Collapse
|
11
|
Suzen S, Tucci P, Profumo E, Buttari B, Saso L. A Pivotal Role of Nrf2 in Neurodegenerative Disorders: A New Way for Therapeutic Strategies. Pharmaceuticals (Basel) 2022; 15:ph15060692. [PMID: 35745610 PMCID: PMC9227112 DOI: 10.3390/ph15060692] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Clinical and preclinical research indicates that neurodegenerative diseases are characterized by excess levels of oxidative stress (OS) biomarkers and by lower levels of antioxidant protection in the brain and peripheral tissues. Dysregulations in the oxidant/antioxidant balance are known to be a major factor in the pathogenesis of neurodegenerative diseases and involve mitochondrial dysfunction, protein misfolding, and neuroinflammation, all events that lead to the proteostatic collapse of neuronal cells and their loss. Nuclear factor-E2-related factor 2 (Nrf2) is a short-lived protein that works as a transcription factor and is related to the expression of many cytoprotective genes involved in xenobiotic metabolism and antioxidant responses. A major emerging function of Nrf2 from studies over the past decade is its role in resistance to OS. Nrf2 is a key regulator of OS defense and research supports a protective and defending role of Nrf2 against neurodegenerative conditions. This review describes the influence of Nrf2 on OS and in what way Nrf2 regulates antioxidant defense for neurodegenerative conditions. Furthermore, we evaluate recent research and evidence for a beneficial and potential role of specific Nrf2 activator compounds as therapeutic agents.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, 06100 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-391-5844
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|