1
|
Kapp FG, Bazgir F, Mahammadzade N, Mehrabipour M, Vassella E, Bernhard SM, Döring Y, Holm A, Karow A, Seebauer C, Platz Batista da Silva N, Wohlgemuth WA, Oppenheimer A, Kröning P, Niemeyer CM, Schanze D, Zenker M, Eng W, Ahmadian MR, Baumgartner I, Rössler J. Somatic RIT1 delins in arteriovenous malformations hyperactivate RAS-MAPK signaling amenable to MEK inhibition. Angiogenesis 2024; 27:739-752. [PMID: 38969873 PMCID: PMC11564399 DOI: 10.1007/s10456-024-09934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Arteriovenous malformations (AVM) are benign vascular anomalies prone to pain, bleeding, and progressive growth. AVM are mainly caused by mosaic pathogenic variants of the RAS-MAPK pathway. However, a causative variant is not identified in all patients. Using ultra-deep sequencing, we identified novel somatic RIT1 delins variants in lesional tissue of three AVM patients. RIT1 encodes a RAS-like protein that can modulate RAS-MAPK signaling. We expressed RIT1 variants in HEK293T cells, which led to a strong increase in ERK1/2 phosphorylation. Endothelial-specific mosaic overexpression of RIT1 delins in zebrafish embryos induced AVM formation, highlighting their functional importance in vascular development. Both ERK1/2 hyperactivation in vitro and AVM formation in vivo could be suppressed by pharmacological MEK inhibition. Treatment with the MEK inhibitor trametinib led to a significant decrease in bleeding episodes and AVM size in one patient. Our findings implicate RIT1 in AVM formation and provide a rationale for clinical trials with targeted treatments.
Collapse
Affiliation(s)
- Friedrich G Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, VASCERN VASCA European Reference Centre, 79106, Freiburg, Germany.
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nagi Mahammadzade
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, VASCERN VASCA European Reference Centre, 79106, Freiburg, Germany
| | - Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Erik Vassella
- Institute of Pathology and Tissue Medicine, University of Bern, Bern, Switzerland
| | - Sarah M Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Pettenkoferstr 9, 80336, Munich, Germany
| | - Annegret Holm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, VASCERN VASCA European Reference Centre, 79106, Freiburg, Germany
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Axel Karow
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Caroline Seebauer
- Department of Otorhinolaryngology, Regensburg University Medical Center, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | - Walter A Wohlgemuth
- University Clinic and Policlinic of Radiology at the Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Aviv Oppenheimer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, VASCERN VASCA European Reference Centre, 79106, Freiburg, Germany
| | - Pia Kröning
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, VASCERN VASCA European Reference Centre, 79106, Freiburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Whitney Eng
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, VASCERN VASCA European Reference Centre, 79106, Freiburg, Germany.
- Department of Vascular Medicine, National Reference Center of Rare Lymphatic and Vascular Diseases, UA11 INSERM - UM IDESP, Campus Santé, Montpellier Cedex 5, France.
- Division of Paediatric Hematology and Oncology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
De Bortoli M, Queisser A, Pham VC, Dompmartin A, Helaers R, Boutry S, Claus C, De Roo AK, Hammer F, Brouillard P, Abdelilah-Seyfried S, Boon LM, Vikkula M. Somatic Loss-of-Function PIK3R1 and Activating Non-hotspot PIK3CA Mutations Associated with Capillary Malformation with Dilated Veins (CMDV). J Invest Dermatol 2024; 144:2066-2077.e6. [PMID: 38431221 DOI: 10.1016/j.jid.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/05/2024]
Abstract
Common capillary malformations are red vascular skin lesions, most commonly associated with somatic activating GNAQ or GNA11 mutations. We focused on capillary malformations lacking such a mutation to identify previously unreported genetic causes. We used targeted next-generation sequencing on 82 lesions. Bioinformatic analysis allowed the identification of 9 somatic pathogenic variants in PIK3R1 and PIK3CA, encoding for the regulatory and catalytic subunits of phosphoinositide 3-kinase, respectively. Recharacterization of these lesions unraveled a common phenotype: a pale capillary malformation associated with visible dilated veins. Primary endothelial cells from 2 PIK3R1-mutated lesions were isolated, and PI3k-Akt-mTOR and RAS-RAF-MAPK signaling were assessed by western blot. This unveiled an abnormal increase in Akt phosphorylation, effectively reduced by PI3K pathway inhibitors, such as mTOR, Akt, and PIK3CA inhibitors. The effects of mutant PIK3R1 were further studied using zebrafish embryos. Endothelium-specific expression of PIK3R1 mutants resulted in abnormal development of the posterior capillary-venous plexus. In summary, capillary malformation associated with visible dilated veins emerges as a clinical entity associated with somatic pathogenic variants in PIK3R1 or PIK3CA (nonhotspot). Our findings suggest that the activated Akt signaling can be effectively reversed by PI3K pathway inhibitors. In addition, the proposed zebrafish model holds promise as a valuable tool for future drug screening aimed at developing patient-tailored treatments.
Collapse
Affiliation(s)
- Martina De Bortoli
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Angela Queisser
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Van Cuong Pham
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Anne Dompmartin
- Department of Dermatology, VASCERN VASCA European Reference Center, Université de Caen Basse Normandie, Caen, France
| | - Raphaël Helaers
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Simon Boutry
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Cathy Claus
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - An-Katrien De Roo
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; Service d'anatomopathologie, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Frank Hammer
- Department of Medical Imaging, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Pascal Brouillard
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Laurence M Boon
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|