1
|
Megalizzi D, Trastulli G, Colantoni L, Proietti Piorgo E, Primiano G, Sancricca C, Caltagirone C, Cascella R, Strafella C, Giardina E. Deciphering the Complexity of FSHD: A Multimodal Approach as a Model for Rare Disorders. Int J Mol Sci 2024; 25:10949. [PMID: 39456731 PMCID: PMC11507453 DOI: 10.3390/ijms252010949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Rare diseases are heterogeneous diseases characterized by various symptoms and signs. Due to the low prevalence of such conditions (less than 1 in 2000 people), medical expertise is limited, knowledge is poor and patients' care provided by medical centers is inadequate. An accurate diagnosis is frequently challenging and ongoing research is also insufficient, thus complicating the understanding of the natural progression of the rarest disorders. This review aims at presenting the multimodal approach supported by the integration of multiple analyses and disciplines as a valuable solution to clarify complex genotype-phenotype correlations and promote an in-depth examination of rare disorders. Taking into account the literature from large-scale population studies and ongoing technological advancement, this review described some examples to show how a multi-skilled team can improve the complex diagnosis of rare diseases. In this regard, Facio-Scapulo-Humeral muscular Dystrophy (FSHD) represents a valuable example where a multimodal approach is essential for a more accurate and precise diagnosis, as well as for enhancing the management of patients and their families. Given their heterogeneity and complexity, rare diseases call for a distinctive multidisciplinary approach to enable diagnosis and clinical follow-up.
Collapse
Affiliation(s)
- Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
- Department of System Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
| | - Emma Proietti Piorgo
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
| | - Guido Primiano
- Neurophysiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (G.P.); (C.S.)
| | - Cristina Sancricca
- Neurophysiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (G.P.); (C.S.)
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy;
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy; (D.M.); (G.T.); (L.C.); (E.P.P.); (R.C.); (C.S.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
2
|
Deenen JCW, Horlings CGC, Voermans NC, van Doorn PA, Faber CG, van der Kooi AJ, Kuks JBM, Notermans NC, Visser LH, Broekgaarden RHA, Horemans AMC, Verschuuren JJGM, Verbeek ALM, van Engelen BGM. Population-based incidence rates of 15 neuromuscular disorders: a nationwide capture-recapture study in the Netherlands. Neuromuscul Disord 2024; 42:27-35. [PMID: 39116821 DOI: 10.1016/j.nmd.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Most neuromuscular disorders are rare, but as a group they are not. Nevertheless, epidemiological data of specific neuromuscular disorders are scarce, especially on the incidence. We applied a capture-recapture approach to a nationwide hospital-based dataset and a patients association-based dataset to estimate the annual incidence rates for fifteen neuromuscular disorders in the Netherlands. The annual incidence rates per 100,000 population varied from 0.03/100,000 (95% CI 0.00 ‒ 0.06) for glycogenosis type 5 to 0.9/100,000 (95% confidence interval 0.7 ‒ 1.0) for myotonic dystrophy type 1. The summed annual incidence rate of these disorders was 4.1 per 100,000 per population. Nine of the provided incidence rates were previously unavailable, three rates were similar to the rates in the literature, and three rates were generally higher compared to previous findings but with overlapping confidence intervals. This study provides nationwide incidence rates for fifteen neuromuscular disorders predominantly diagnosed in adult life, nine which were previously unavailable. The capture-recapture approach provided estimates of the total number of individuals with neuromuscular disorders. To complete the gaps in the knowledge of disease frequencies, there is a need for estimates from an automated, obligatory data collection system of diagnosed and newly diagnosed patients with neuromuscular disorders.
Collapse
Affiliation(s)
- Johanna C W Deenen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, PO Box 9101, Nijmegen 6500 HB, the Netherlands; Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, PO Box 9101, Nijmegen 6500 HB the Netherlands
| | - Corinne G C Horlings
- Department of Neurology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, PO Box 9101, Nijmegen 6500 HB, the Netherlands.
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC University Medical Centre Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, PO Box 5800, Maastricht 6202 AZ, the Netherlands
| | - Anneke J van der Kooi
- Department of Neurology, Amsterdam University Medical Center, location AMC, Neuroscience institute, PO Box 22660, Amsterdam 1100 DD, the Netherlands
| | - Jan B M Kuks
- University of Groningen, UMC Groningen, Department of Neurology, Groningen 9713 AV, the Netherlands
| | - Nicolette C Notermans
- University Medical Centre Utrecht, Department of Neurology, Rudolf Magnus Brain Center, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Leo H Visser
- Department of Neurology, ETZ, location St. Elisabeth Hospital, PO Box 90151, Tilburg 5000 LC, the Netherlands
| | - Ria H A Broekgaarden
- Dutch Association for Neuromuscular Diseases, Lt. Gen. van Heutszlaan 6, Baarn 3743 JN, the Netherlands
| | - Anja M C Horemans
- Dutch Association for Neuromuscular Diseases, Lt. Gen. van Heutszlaan 6, Baarn 3743 JN, the Netherlands
| | - Jan J G M Verschuuren
- Department of Neurology, Leiden University Medical Center, PO Box 9600, Leiden 2300 RC, the Netherlands
| | - André L M Verbeek
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, PO Box 9101, Nijmegen 6500 HB the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| |
Collapse
|
3
|
Lemmers RJLF, Butterfield R, van der Vliet PJ, de Bleecker JL, van der Pol L, Dunn DM, Erasmus CE, D'Hooghe M, Verhoeven K, Balog J, Bigot A, van Engelen B, Statland J, Bugiardini E, van der Stoep N, Evangelista T, Marini-Bettolo C, van den Bergh P, Tawil R, Voermans NC, Vissing J, Weiss RB, van der Maarel SM. Autosomal dominant in cis D4Z4 repeat array duplication alleles in facioscapulohumeral dystrophy. Brain 2024; 147:414-426. [PMID: 37703328 PMCID: PMC10834250 DOI: 10.1093/brain/awad312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) has a unique genetic aetiology resulting in partial chromatin relaxation of the D4Z4 macrosatellite repeat array on 4qter. This D4Z4 chromatin relaxation facilitates inappropriate expression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded by a retrogene that is embedded within the distal region of the D4Z4 repeat array. In the European population, the D4Z4 repeat array is usually organized in a single array that ranges between 8 and 100 units. D4Z4 chromatin relaxation and DUX4 derepression in FSHD is most often caused by repeat array contraction to 1-10 units (FSHD1) or by a digenic mechanism requiring pathogenic variants in a D4Z4 chromatin repressor like SMCHD1, combined with a repeat array between 8 and 20 units (FSHD2). With a prevalence of 1.5% in the European population, in cis duplications of the D4Z4 repeat array, where two adjacent D4Z4 arrays are interrupted by a spacer sequence, are relatively common but their relationship to FSHD is not well understood. In cis duplication alleles were shown to be pathogenic in FSHD2 patients; however, there is inconsistent evidence for the necessity of an SMCHD1 mutation for disease development. To explore the pathogenic nature of these alleles we compared in cis duplication alleles in FSHD patients with or without pathogenic SMCHD1 variant. For both groups we showed duplication-allele-specific DUX4 expression. We studied these alleles in detail using pulsed-field gel electrophoresis-based Southern blotting and molecular combing, emphasizing the challenges in the characterization of these rearrangements. Nanopore sequencing was instrumental to study the composition and methylation of the duplicated D4Z4 repeat arrays and to identify the breakpoints and the spacer sequence between the arrays. By comparing the composition of the D4Z4 repeat array of in cis duplication alleles in both groups, we found that specific combinations of proximal and distal repeat array sizes determine their pathogenicity. Supported by our algorithm to predict pathogenicity, diagnostic laboratories should now be furnished to accurately interpret these in cis D4Z4 repeat array duplications, alleles that can easily be missed in routine settings.
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | - Patrick J van der Vliet
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | - Ludo van der Pol
- University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Corrie E Erasmus
- Neuromuscular Centre Nijmegen, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Marc D'Hooghe
- Department of Neurology, Algemeen Ziekenhuis Sint-Jan, 8000, Brugge, Belgium
| | - Kristof Verhoeven
- Department of Neurology, Algemeen Ziekenhuis Sint-Jan, 8000, Brugge, Belgium
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Anne Bigot
- Sorbonne Université, Inserm UMRS974, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Baziel van Engelen
- Neuromuscular Centre Nijmegen, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | | | - Enrico Bugiardini
- National Hospital For Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Teresinha Evangelista
- Unité de Morphologie Neuromusculaire, Institut de Myologie, AP-HP, F-75013, Paris, France
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Faculty of Medical Sciences, Newcastle upon Tyne, NE1 3BZ, UK
| | | | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, NY 14642, Rochester, USA
| | - Nicol C Voermans
- Neuromuscular Centre Nijmegen, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - John Vissing
- Department of Neurology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
4
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res 2023; 33:1439-1454. [PMID: 37798116 PMCID: PMC10620044 DOI: 10.1101/gr.277871.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the Chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult because of the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA;
- Department of Neurology, University of Utah, Salt Lake City, Utah 84132, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brett Duval
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Duranti E, Villa C. Influence of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Possible Treatments. Int J Mol Sci 2023; 24:ijms24119503. [PMID: 37298453 DOI: 10.3390/ijms24119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) represents the third most common form of muscular dystrophy and is characterized by muscle weakness and atrophy. FSHD is caused by the altered expression of the transcription factor double homeobox 4 (DUX4), which is involved in several significantly altered pathways required for myogenesis and muscle regeneration. While DUX4 is normally silenced in the majority of somatic tissues in healthy individuals, its epigenetic de-repression has been linked to FSHD, resulting in DUX4 aberrant expression and cytotoxicity in skeletal muscle cells. Understanding how DUX4 is regulated and functions could provide useful information not only to further understand FSHD pathogenesis, but also to develop therapeutic approaches for this disorder. Therefore, this review discusses the role of DUX4 in FSHD by examining the possible molecular mechanisms underlying the disease as well as novel pharmacological strategies targeting DUX4 aberrant expression.
Collapse
Affiliation(s)
- Elisa Duranti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
6
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528868. [PMID: 36824722 PMCID: PMC9949141 DOI: 10.1101/2023.02.17.528868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult due to the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, UT
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Diane M Dunn
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Brett Duval
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Robert B Weiss
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| |
Collapse
|
7
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
8
|
Hiramuki Y, Kure Y, Saito Y, Ogawa M, Ishikawa K, Mori-Yoshimura M, Oya Y, Takahashi Y, Kim DS, Arai N, Mori C, Matsumura T, Hamano T, Nakamura K, Ikezoe K, Hayashi S, Goto Y, Noguchi S, Nishino I. Simultaneous measurement of the size and methylation of chromosome 4qA-D4Z4 repeats in facioscapulohumeral muscular dystrophy by long-read sequencing. J Transl Med 2022; 20:517. [DOI: 10.1186/s12967-022-03743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder characterized by asymmetric muscle wasting and weakness. FSHD can be subdivided into two types: FSHD1, caused by contraction of the D4Z4 repeat on chromosome 4q35, and FSHD2, caused by mild contraction of the D4Z4 repeat plus aberrant hypomethylation mediated by genetic variants in SMCHD1, DNMT3B, or LRIF1. Genetic diagnosis of FSHD is challenging because of the complex procedures required.
Methods
We applied Nanopore CRISPR/Cas9-targeted resequencing for the diagnosis of FSHD by simultaneous detection of D4Z4 repeat length and methylation status at nucleotide level in genetically-confirmed and suspected patients.
Results
We found significant hypomethylation of contracted 4q-D4Z4 repeats in FSHD1, and both 4q- and 10q-D4Z4 repeats in FSHD2. We also found that the hypomethylation in the contracted D4Z4 in FSHD1 is moderately correlated with patient phenotypes.
Conclusions
Our method contributes to the development for the diagnosis of FSHD using Nanopore long-read sequencing. This finding might give insight into the mechanisms by which repeat contraction causes disease pathogenesis.
Collapse
|
9
|
Ganassi M, Figeac N, Reynaud M, Ortuste Quiroga HP, Zammit PS. Antagonism Between DUX4 and DUX4c Highlights a Pathomechanism Operating Through β-Catenin in Facioscapulohumeral Muscular Dystrophy. Front Cell Dev Biol 2022; 10:802573. [PMID: 36158201 PMCID: PMC9490378 DOI: 10.3389/fcell.2022.802573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant expression of the transcription factor DUX4 from D4Z4 macrosatellite repeats on chromosome 4q35, and its transcriptome, associate with pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Forced DUX4 expression halts skeletal muscle cell proliferation and induces cell death. DUX4 binds DNA via two homeodomains that are identical in sequence to those of DUX4c (DUX4L9): a closely related transcriptional regulator encoded by a single, inverted, mutated D4Z4 unit located centromeric to the D4Z4 macrosatellite array on chromosome 4. However, the function and contribution of DUX4c to FSHD pathogenesis are unclear. To explore interplay between DUX4, DUX4c, and the DUX4-induced phenotype, we investigated whether DUX4c interferes with DUX4 function in human myogenesis. Constitutive expression of DUX4c rescued the DUX4-induced inhibition of proliferation and reduced cell death in human myoblasts. Functionally, DUX4 promotes nuclear translocation of β-CATENIN and increases canonical WNT signalling. Concomitant constitutive expression of DUX4c prevents β-CATENIN nuclear accumulation and the downstream transcriptional program. DUX4 reduces endogenous DUX4c levels, whereas constitutive expression of DUX4c robustly suppresses expression of DUX4 target genes, suggesting molecular antagonism. In line, DUX4 expression in FSHD myoblasts correlates with reduced DUX4c levels. Addressing the mechanism, we identified a subset of genes involved in the WNT/β-CATENIN pathway that are differentially regulated between DUX4 and DUX4c, whose expression pattern can separate muscle biopsies from severely affected FSHD patients from healthy. Finally, blockade of WNT/β-CATENIN signalling rescues viability of FSHD myoblasts. Together, our study highlights an antagonistic interplay whereby DUX4 alters cell viability via β-CATENIN signalling and DUX4c counteracts aspects of DUX4-mediated toxicity in human muscle cells, potentially acting as a gene modifier for FSHD severity. Importantly, direct DUX4 regulation of the WNT/β-CATENIN pathway informs future therapeutic interventions to ameliorate FSHD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|