1
|
Williams DM, Gungordu L, Jackson-Crawford A, Lowe M. Assessment of endocytic traffic and Ocrl function in the developing zebrafish neuroepithelium. J Cell Sci 2022; 135:276669. [PMID: 35979861 PMCID: PMC9592051 DOI: 10.1242/jcs.260339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
Endocytosis allows cells to internalise a wide range of molecules from their environment and to maintain their plasma membrane composition. It is vital during development and for maintenance of tissue homeostasis. The ability to visualise endocytosis in vivo requires suitable assays to monitor the process. Here, we describe imaging-based assays to visualise endocytosis in the neuroepithelium of living zebrafish embryos. Injection of fluorescent tracers into the brain ventricles followed by live imaging was used to study fluid-phase or receptor-mediated endocytosis, for which we used receptor-associated protein (RAP, encoded by Lrpap1) as a ligand for low-density lipoprotein receptor-related protein (LRP) receptors. Using dual-colour imaging combined with expression of endocytic markers, it is possible to track the progression of endocytosed tracers and to monitor trafficking dynamics. Using these assays, we reveal a role for the Lowe syndrome protein Ocrl in endocytic trafficking within the neuroepithelium. We also found that the RAP-binding receptor Lrp2 (encoded by lrp2a) appears to contribute only partially to neuroepithelial RAP endocytosis. Altogether, our results provide a basis to track endocytosis within the neuroepithelium in vivo and support a role for Ocrl in this process. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel M Williams
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Lale Gungordu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anthony Jackson-Crawford
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
2
|
Morgan J, Yarwood R, Starborg T, Yan G, Lowe M. Pacsin2 is required for endocytosis in the zebrafish pronephric tubule. Biol Open 2022; 11:275521. [PMID: 35616009 PMCID: PMC9235069 DOI: 10.1242/bio.059150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Endocytosis mediates the cellular uptake of numerous molecules from the extracellular space and is a fundamentally important process. In the renal proximal tubule, the scavenger receptor megalin and its co-receptor cubilin mediate endocytosis of low molecular weight proteins from the renal filtrate. However, the extent to which megalin endocytosis relies on different components of the trafficking machinery remains relatively poorly defined in vivo. In this study, we identify a functional requirement for the F-BAR protein pacsin2 in endocytosis in the renal proximal tubule of zebrafish larvae. Pacsin2 is expressed throughout development and in all zebrafish tissues, similar to the mammalian orthologue. Within renal tubular epithelial cells, pacsin2 is enriched at the apical pole where it is localised to endocytic structures. Loss of pacsin2 results in reduced endocytosis within the proximal tubule, which is accompanied by a reduction in the abundance of megalin and endocytic organelles. Our results indicate that pacsin2 is required for efficient endocytosis in the proximal tubule, where it likely cooperates with other trafficking machinery to maintain endocytic uptake and recycling of megalin. Summary: We identify a role for the F-BAR protein pacsin2 in endocytosis in the renal tubule of zebrafish larvae.
Collapse
Affiliation(s)
- Joseph Morgan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tobias Starborg
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Guanhua Yan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|