1
|
Farrokhi A, Atre T, Rever J, Fidanza M, Duey W, Salitra S, Myung J, Guo M, Jo S, Uzozie A, Baharvand F, Rolf N, Auer F, Hauer J, Grupp SA, Eydoux P, Lange PF, Seif AE, Maxwell CA, Reid GSD. The Eμ-Ret mouse is a novel model of hyperdiploid B-cell acute lymphoblastic leukemia. Leukemia 2024; 38:969-980. [PMID: 38519798 PMCID: PMC11073968 DOI: 10.1038/s41375-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eμ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eμ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eμ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.
Collapse
Affiliation(s)
- Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jenna Rever
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Mario Fidanza
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Wendy Duey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Junia Myung
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Meiyun Guo
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Anuli Uzozie
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Fatemeh Baharvand
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Franziska Auer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephan A Grupp
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrice Eydoux
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philipp F Lange
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alix E Seif
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Maxwell
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signal 2022; 6:NS20210054. [PMID: 35449591 PMCID: PMC8996251 DOI: 10.1042/ns20210054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.
Collapse
|
3
|
Herault Y, Delabar JM, Fisher EMC, Tybulewicz VLJ, Yu E, Brault V. Rodent models in Down syndrome research: impact and future opportunities. Dis Model Mech 2018; 10:1165-1186. [PMID: 28993310 PMCID: PMC5665454 DOI: 10.1242/dmm.029728] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. Summary: Mouse models have boosted therapeutic options for Down syndrome, and improved models are being developed to better understand the pathophysiology of this genetic condition.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris
| | - Jean M Delabar
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, 75205 Paris, France.,INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICM, 75013 Paris, France.,Brain and Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, 75013 Paris, France
| | - Elizabeth M C Fisher
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK.,LonDownS Consortium, London, W1T 7NF UK
| | - Victor L J Tybulewicz
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,LonDownS Consortium, London, W1T 7NF UK.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Eugene Yu
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Veronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
4
|
Choong XY, Tosh JL, Pulford LJ, Fisher EMC. Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav Neurosci 2015; 9:268. [PMID: 26528151 PMCID: PMC4602094 DOI: 10.3389/fnbeh.2015.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Collapse
Affiliation(s)
- Xun Yu Choong
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| |
Collapse
|
5
|
Natesuntorn W, Iwami K, Matsubara Y, Sasano Y, Sugiyama M, Kaneko Y, Harashima S. Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae. Sci Rep 2015. [PMID: 26224198 PMCID: PMC4519793 DOI: 10.1038/srep12510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Segmental aneuploidy can play an important role in environmental adaptation. However, study of segmental aneuploids is severely hampered by the difficulty of creating them in a designed fashion. Here, we describe a PCR-mediated chromosome duplication (PCDup) technology that enables the generation of segmental aneuploidy at any desired chromosomal region in Saccharomyces cerevisiae. We constructed multiple strains harboring 100 kb to 200 kb segmental duplications covering the whole of the S. cerevisiae genome. Interestingly, some segmental aneuploidies confer stress tolerance, such as to high temperature, ethanol and strong acids, while others induce cell lethality and stress sensitivity, presumably as result of the simultaneous increases in dosages of multiple genes. We suggest that our PCDup technology will accelerate studies into the phenotypic changes resulting from alteration of gene dosage balance of multiple genes and will provide new insights into the adaptive molecular mechanisms in the genome in segmental aneuploidy-derived human diseases.
Collapse
Affiliation(s)
- Waranya Natesuntorn
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kotaro Iwami
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Matsubara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu Sasano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minetaka Sugiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Kaneko
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Harashima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome. PLoS One 2013; 8:e60482. [PMID: 23596509 PMCID: PMC3626651 DOI: 10.1371/journal.pone.0060482] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.
Collapse
|
7
|
Sheppard O, Wiseman FK, Ruparelia A, Tybulewicz VLJ, Fisher EMC. Mouse models of aneuploidy. ScientificWorldJournal 2012; 2012:214078. [PMID: 22262951 PMCID: PMC3259538 DOI: 10.1100/2012/214078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 11/16/2011] [Indexed: 02/07/2023] Open
Abstract
Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population. Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are also known as segmental aneuploidies, are also associated with deleterious effects. Here we examine how aneuploidy of whole chromosomes and segmental aneuploidy of chromosomal regions are modeled in the mouse. These models provide a whole animal system in which we aim to investigate the complex phenotype-genotype interactions that arise from alteration in the copy number of genes. Although our understanding of this subject is still in its infancy, already research in mouse models is highlighting possible therapies that might help alleviate the cognitive effects associated with changes in gene number. Thus, creating and studying mouse models of aneuploidy and copy number variation is important for understanding what it is to be human, in both the normal and genomically altered states.
Collapse
Affiliation(s)
- Olivia Sheppard
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Frances K. Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Aarti Ruparelia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Victor L. J. Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
8
|
Devoy A, Bunton-Stasyshyn RKA, Tybulewicz VL, Smith AJ, Fisher EM. Genomically humanized mice: technologies and promises. Nat Rev Genet 2011; 13:14-20. [PMID: 22179716 PMCID: PMC4782217 DOI: 10.1038/nrg3116] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse models have become an invaluable tool for understanding human health and disease owing to our ability to manipulate the mouse genome exquisitely. Recent progress in genomic analysis has led to an increase in the number and type of disease-causing mutations detected and has also highlighted the importance of non-coding regions. As a result, there is increasing interest in creating 'genomically' humanized mouse models, in which entire human genomic loci are transferred into the mouse genome. The technical challenges towards achieving this aim are large but are starting to be tackled with success.
Collapse
Affiliation(s)
- Anny Devoy
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK , +44 203 456 7890
| | - Rosie KA Bunton-Stasyshyn
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK, , +44 203 456 7890
| | - Victor L.J. Tybulewicz
- MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK, ; +44 20 8816 2184
| | - Andrew J.H. Smith
- Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK; and the MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, ; +44 131 651 7244
| | - Elizabeth M.C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK, ; +44 203 456 7890
| |
Collapse
|
9
|
Kerkel K, Schupf N, Hatta K, Pang D, Salas M, Kratz A, Minden M, Murty V, Zigman WB, Mayeux RP, Jenkins EC, Torkamani A, Schork NJ, Silverman W, Croy BA, Tycko B. Altered DNA methylation in leukocytes with trisomy 21. PLoS Genet 2010; 6:e1001212. [PMID: 21124956 PMCID: PMC2987931 DOI: 10.1371/journal.pgen.1001212] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/19/2010] [Indexed: 11/24/2022] Open
Abstract
The primary abnormality in Down syndrome (DS), trisomy 21, is well known; but how this chromosomal gain produces the complex DS phenotype, including immune system defects, is not well understood. We profiled DNA methylation in total peripheral blood leukocytes (PBL) and T-lymphocytes from adults with DS and normal controls and found gene-specific abnormalities of CpG methylation in DS, with many of the differentially methylated genes having known or predicted roles in lymphocyte development and function. Validation of the microarray data by bisulfite sequencing and methylation-sensitive Pyrosequencing (MS-Pyroseq) confirmed strong differences in methylation (p<0.0001) for each of 8 genes tested: TMEM131, TCF7, CD3Z/CD247, SH3BP2, EIF4E, PLD6, SUMO3, and CPT1B, in DS versus control PBL. In addition, we validated differential methylation of NOD2/CARD15 by bisulfite sequencing in DS versus control T-cells. The differentially methylated genes were found on various autosomes, with no enrichment on chromosome 21. Differences in methylation were generally stable in a given individual, remained significant after adjusting for age, and were not due to altered cell counts. Some but not all of the differentially methylated genes showed different mean mRNA expression in DS versus control PBL; and the altered expression of 5 of these genes, TMEM131, TCF7, CD3Z, NOD2, and NPDC1, was recapitulated by exposing normal lymphocytes to the demethylating drug 5-aza-2′deoxycytidine (5aza-dC) plus mitogens. We conclude that altered gene-specific DNA methylation is a recurrent and functionally relevant downstream response to trisomy 21 in human cells. Down syndrome (DS; trisomy 21) is caused by the gain of a single extra chromosome 21. However, the mechanisms by which this extra chromosome produces the medical abnormalities seen in DS, including not only mental retardation but also susceptibility to autoimmune diseases and recurrent infections, are still not understood. DNA methylation is a mechanism that might contribute to these abnormalities. To test this possibility, we profiled DNA methylation in white blood cells from adults with DS and normal controls and found recurrent abnormalities of gene methylation in DS, with several of the differentially methylated genes having roles in blood cells. Among the genes with hypo- or hyper-methylation in white blood cells or purified T-lymphocytes from adults with DS, compared to these same types of cells from normal adults, were TMEM131, TCF7, CD3Z, SH3BP2, EIF4E, SUMO3, CPT1B, NOD2/CARD15, NPDC1, and PLD6. Several of these genes showed not only different methylation but also different expression in DS versus control blood cells, which was recapitulated by exposing normal white blood cells to a demethylating drug. These findings show that altered DNA methylation of a specific group of genes is a fundamental cellular response to the gain of an extra chromosome 21 in humans. The abnormally methylated genes identified here may contribute to immune system abnormalities in people with DS.
Collapse
Affiliation(s)
- Kristi Kerkel
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, United States of America
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
- Departments of Human Genetics, Epidemiology, and Psychiatry, Institute for Basic Research on Developmental Disabilities, New York, New York, United States of America
| | - Kota Hatta
- Departments of Anatomy and Cell Biology and Microbiology and Immunology, Queen's University, Kingston, Canada
| | - Deborah Pang
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Martha Salas
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, United States of America
| | - Alexander Kratz
- Department of Pathology, Columbia University Medical Center, New York, New York, United States of America
| | - Mark Minden
- Department of Medical Oncology and Hematology and Department of Medical Biophysics, University of Toronto and Princess Margaret Hospital, Toronto, Canada
| | - Vundavalli Murty
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, United States of America
- Department of Pathology, Columbia University Medical Center, New York, New York, United States of America
| | - Warren B. Zigman
- Departments of Human Genetics, Epidemiology, and Psychiatry, Institute for Basic Research on Developmental Disabilities, New York, New York, United States of America
| | - Richard P. Mayeux
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Edmund C. Jenkins
- Departments of Human Genetics, Epidemiology, and Psychiatry, Institute for Basic Research on Developmental Disabilities, New York, New York, United States of America
| | - Ali Torkamani
- Scripps Translational Science Institute, La Jolla, California, United States of America
| | - Nicholas J. Schork
- Scripps Translational Science Institute, La Jolla, California, United States of America
| | - Wayne Silverman
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - B. Anne Croy
- Departments of Anatomy and Cell Biology and Microbiology and Immunology, Queen's University, Kingston, Canada
| | - Benjamin Tycko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
- Department of Pathology, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Fisher EMC, Lana-Elola E, Watson SD, Vassiliou G, Tybulewicz VLJ. New approaches for modelling sporadic genetic disease in the mouse. Dis Model Mech 2010; 2:446-53. [PMID: 19726804 DOI: 10.1242/dmm.001644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sporadic diseases, which occur as single, scattered cases, are among the commonest causes of human morbidity and death. They result in a variety of diseases, including many cancers, premature aging, neurodegeneration and skeletal defects. They are often pathogenetically complex, involving a mosaic distribution of affected cells, and are difficult to model in the mouse. Faithful models of sporadic diseases require innovative forms of genetic manipulation to accurately recreate their initiation and pathogenesis. Such modelling is crucial to understanding these diseases and, by extension, to the development of therapeutic approaches to treat them. This article focuses on sporadic diseases with a genetic aetiology, the challenges they pose to biomedical researchers, and the different current and developing approaches used to model such disorders in the mouse.
Collapse
Affiliation(s)
- Elizabeth M C Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N3BG, UK.
| | | | | | | | | |
Collapse
|
11
|
Dierssen M, Herault Y, Estivill X. Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev 2009; 89:887-920. [PMID: 19584316 DOI: 10.1152/physrev.00032.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Quantitative differences in gene expression emerge as a significant source of variation in natural populations, representing an important substrate for evolution and accounting for a considerable fraction of phenotypic diversity. However, perturbation of gene expression is also the main factor in determining the molecular pathogenesis of numerous aneuploid disorders. In this review, we focus on Down syndrome (DS) as the prototype of "genomic disorder" induced by copy number change. The understanding of the pathogenicity of the extra genomic material in trisomy 21 has accelerated in the last years due to the recent advances in genome sequencing, comparative genome analysis, functional genome exploration, and the use of model organisms. We present recent data on the role of genome-altering processes in the generation of diversity in DS neural phenotypes focusing on the impact of trisomy on brain structure and mental retardation and on biological pathways and cell types in target brain regions (including prefrontal cortex, hippocampus, cerebellum, and basal ganglia). We also review the potential that genetically engineered mouse models of DS bring into the understanding of the molecular biology of human learning disorders.
Collapse
Affiliation(s)
- Mara Dierssen
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr Aiguader 88, PRBB building E, Barcelona 08003, Catalonia, Spain.
| | | | | |
Collapse
|
12
|
Wiseman FK, Alford KA, Tybulewicz VLJ, Fisher EMC. Down syndrome--recent progress and future prospects. Hum Mol Genet 2009; 18:R75-83. [PMID: 19297404 PMCID: PMC2657943 DOI: 10.1093/hmg/ddp010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and is associated with a number of deleterious phenotypes, including learning disability, heart defects, early-onset Alzheimer's disease and childhood leukaemia. Individuals with DS are affected by these phenotypes to a variable extent; understanding the cause of this variation is a key challenge. Here, we review recent research progress in DS, both in patients and relevant animal models. In particular, we highlight exciting advances in therapy to improve cognitive function in people with DS and the significant developments in understanding the gene content of Hsa21. Moreover, we discuss future research directions in light of new technologies. In particular, the use of chromosome engineering to generate new trisomic mouse models and large-scale studies of genotype–phenotype relationships in patients are likely to significantly contribute to the future understanding of DS.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London, UK.
| | | | | | | |
Collapse
|
13
|
Nguyen D, Xu T. The expanding role of mouse genetics for understanding human biology and disease. Dis Model Mech 2009; 1:56-66. [PMID: 19048054 DOI: 10.1242/dmm.000232] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has taken about 100 years since the mouse first captured our imagination as an intriguing animal for it to become the premier genetic model organism. An expanding repertoire of genetic technology, together with sequencing of the genome and biological conservation, place the mouse at the foremost position as a model to decipher mechanisms underlying biological and disease processes. The combined approaches of embryonic stem cell-based technologies, chemical and insertional mutagenesis have enabled the systematic interrogation of the mouse genome with the aim of creating, for the first time, a library of mutants in which every gene is disrupted. The hope is that phenotyping the mutants will reveal novel and interesting phenotypes that correlate with genes, to define the first functional map of a mammalian genome. This new milestone will have a great impact on our understanding of mammalian biology, and could significantly change the future of medical diagnosis and therapeutic development, where databases can be queried in silico for potential drug targets or underlying genetic causes of illnesses. Emerging innovative genetic strategies, such as somatic genetics, modifier screens and humanized mice, in combination with whole-genome mutagenesis will dramatically broaden the utility of the mouse. More significantly, allowing genome-wide genetic interrogations in the laboratory, will liberate the creativity of individual investigators and transform the mouse as a model for making original discoveries and establishing novel paradigms for understanding human biology and disease.
Collapse
Affiliation(s)
- Duc Nguyen
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | |
Collapse
|