1
|
Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Int J Mol Sci 2023; 24:15225. [PMID: 37894906 PMCID: PMC10607001 DOI: 10.3390/ijms242015225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Richard Harbottle
- cDNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.V.A.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
2
|
Kranert K, Woźny M, Podlasz P, Wąsowicz K, Brzuzan P. MiR92b-3p synthetic analogue impairs zebrafish embryonic development, leading to ocular defects, decreased movement and hatching rate, and increased mortality. J Appl Genet 2023; 64:145-157. [PMID: 36274083 PMCID: PMC9837005 DOI: 10.1007/s13353-022-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 01/17/2023]
Abstract
The aim of this study was to examine the effect of microRNA 92b-3p (MiR92b-3p) overexpression on the embryonic development of zebrafish. A synthetic MiR92b-3p analogue (mirVana™ mimic, in vivo-ready) was injected at doses up to 5 ng/embryo into the yolk sac of embryos (2-16 cell stage). At 24 h post fertilization (hpf), the locomotor activity of the embryos was measured, and after hatching (72 hpf), the rates of malformation occurrence, hatching, and mortality were determined. Next, the larvae were fixed for histological and molecular examinations. Exposure to the MiR92b-3p mimic impaired embryonic development, leading to increased occurrence of malformations (i.e., pericardial edema, spine curvature, smaller eyes), decreased locomotor activity and hatching rate, and increased mortality. Importantly, the mimic affected retinal differentiation and lens formation during zebrafish embryogenesis, which suggests that MiR92b-3p could be an important factor in the regulation of fish embryogenesis and ocular development. The expression level of MiR92b-3p was substantially higher in the exposed larvae than in the untreated larvae, indicating that the mimic was successfully delivered to the zebrafish. Although screening of potential MiR92b-3p target genes suggested some changes in their expression levels, these results were inconclusive. Together, this study indicates that MiR92b-3p mimic impairs zebrafish embryonic development, and further research is necessary to identify the MiR92b-3p-regulated cell pathways involved in the impairment of the fish's development.
Collapse
Affiliation(s)
- Kilian Kranert
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Maciej Woźny
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Piotr Podlasz
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Krzysztof Wąsowicz
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Paweł Brzuzan
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| |
Collapse
|
3
|
Beryozkin A, Samanta A, Gopalakrishnan P, Khateb S, Banin E, Sharon D, Nagel-Wolfrum K. Translational Read-Through Drugs (TRIDs) Are Able to Restore Protein Expression and Ciliogenesis in Fibroblasts of Patients with Retinitis Pigmentosa Caused by a Premature Termination Codon in FAM161A. Int J Mol Sci 2022; 23:ijms23073541. [PMID: 35408898 PMCID: PMC8998412 DOI: 10.3390/ijms23073541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Ataluren and Gentamicin are translational readthrough drugs (TRIDs) that induce premature termination codon (PTC) readthrough, resulting in the production of full-length proteins that usually harbor a single missense substitution. FAM161A is a ciliary protein which is expressed in photoreceptors, and pathogenic variants in this gene cause retinitis pigmentosa (RP). Applying TRIDs on fibroblasts from RP patients due to PTC in the FAM161A (p.Arg523*) gene may uncover whether TRIDs can restore expression, localization and function of this protein. Fibroblasts from six patients and five age-matched controls were starved prior to treatment with ataluren or gentamicin, and later FAM161A expression, ciliogenesis and cilia length were analyzed. In contrast to control cells, fibroblasts of patients did not express the FAM161A protein, showed a lower percentage of ciliated cells and grew shorter cilia after starvation. Ataluren and Gentamicin treatment were able to restore FAM161A expression, localization and co-localization with α-tubulin. Ciliogenesis and cilia length were restored following Ataluren treatment almost up to a level which was observed in control cells. Gentamicin was less efficient in ciliogenesis compared to Ataluren. Our results provide a proof-of-concept that PTCs in FAM161A can be effectively suppressed by Ataluren or Gentamicin, resulting in a full-length functional protein.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Ananya Samanta
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
- Institute of Development Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Prakadeeswari Gopalakrishnan
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Samer Khateb
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Eyal Banin
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Dror Sharon
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
- Institute of Development Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
- Correspondence:
| |
Collapse
|
4
|
Yu J, Tang B, He X, Zou P, Zeng Z, Xiao R. Nonsense Suppression Therapy: An Emerging Treatment for Hereditary Skin Diseases. Acta Derm Venereol 2022; 102:adv00658. [DOI: 10.2340/actadv.v102.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsense mutations cause the premature termination of protein translation via premature termination codons (PTCs), leading to the synthesis of incomplete functional proteins and causing large numbers of genetic disorders. The emergence of nonsense suppression therapy is considered to be an effective method for the treatment of hereditary diseases, but its application in hereditary skin diseases is relatively limited. This review summarizes the current research status of nonsense suppression therapy for hereditary skin diseases, and discusses the potential opportunities and challenges of applying new technologies related to nonsense suppression therapy to dermatology. Further research is needed into the possible use of nonsense suppression therapy as a strategy for the safer and specific treatment of hereditary skin diseases.
Collapse
|
5
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
6
|
Kalatzis V, Roux AF, Meunier I. Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date. Mol Diagn Ther 2021; 25:661-675. [PMID: 34661884 DOI: 10.1007/s40291-021-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Collapse
Affiliation(s)
- Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
7
|
Lusk S, Kwan KM. Pax2a, but not pax2b, influences cell survival and periocular mesenchyme localization to facilitate zebrafish optic fissure closure. Dev Dyn 2021; 251:625-644. [PMID: 34535934 PMCID: PMC8930785 DOI: 10.1002/dvdy.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
Background Pax2 is required for optic fissure development in many organisms, including humans and zebrafish. Zebrafish loss‐of‐function mutations in pax2a display coloboma, yet the etiology of the morphogenetic defects is unclear. Further, pax2 is duplicated in zebrafish, and a role for pax2b in optic fissure development has not been examined. Results Using a combination of imaging and molecular genetics, we interrogated a potential role for pax2b and examined how loss of pax2 affects optic fissure development. Although optic fissure formation appears normal in pax2 mutants, an endothelial‐specific subset of periocular mesenchyme (POM) fails to initially localize within the optic fissure, yet both neural crest and endothelial‐derived POM ectopically accumulate at later stages in pax2a and pax2a; pax2b mutants. Apoptosis is not up‐regulated within the optic fissure in pax2 mutants, yet cell death is increased in tissues outside of the optic fissure, and when apoptosis is inhibited, coloboma is partially rescued. In contrast to pax2a, loss of pax2b does not appear to affect optic fissure morphogenesis. Conclusions Our results suggest that pax2a, but not pax2b, supports cell survival outside of the optic fissure and POM abundance within it to facilitate optic fissure closure. Zebrafish pax2a null mutants display a defect in optic fissure closure and coloboma Loss of pax2b does not affect optic fissure development An endothelial‐specific subset of periocular mesenchyme cells fails to initially localize to the optic fissure in pax2a mutants At a later stage of optic fissure development both neural crest and endothelial‐derived periocular mesenchyme ectopically accumulate within the optic fissure Pax2a mutants have increased apoptosis in surrounding tissues, but not within the optic fissure margin cells, and apoptosis in part underlies the coloboma phenotype
Collapse
Affiliation(s)
- Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Martins-Dias P, Romão L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 2021; 78:4677-4701. [PMID: 33751142 PMCID: PMC11073055 DOI: 10.1007/s00018-021-03809-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.
Collapse
Affiliation(s)
- Patrícia Martins-Dias
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
9
|
Han RC, Fry LE, Kantor A, McClements ME, Xue K, MacLaren RE. Is subretinal AAV gene replacement still the only viable treatment option for choroideremia? Expert Opin Orphan Drugs 2021; 9:13-24. [PMID: 34040899 PMCID: PMC7610829 DOI: 10.1080/21678707.2021.1882300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Choroideremia is an X-linked inherited retinal degeneration resulting from mutations in the CHM gene, encoding Rab escort protein-1 (REP1), a protein regulating intracellular vesicular transport. Loss-of-function mutations in CHM lead to progressive loss of retinal pigment epithelium (RPE) with photoreceptor and choriocapillaris degeneration, leading to progressive visual field constriction and loss of visual acuity. Three hundred and fifty-four unique mutations have been reported in CHM. While gene augmentation remains an ideal therapeutic option for choroideremia, other potential future clinical strategies may exist. AREAS COVERED The authors examine the pathophysiology and genetic basis of choroideremia. They summarize the status of ongoing gene therapy trials and discuss CHM mutations amenable to other therapeutic approaches including CRISPR/Cas-based DNA and RNA editing, nonsense suppression of premature termination codons, and antisense oligonucleotides for splice modification. The authors undertook a literature search in PubMed and NIH Clinical Trials in October 2020. EXPERT OPINION The authors conclude that AAV-mediated gene augmentation remains the most effective approach for choroideremia. Given the heterogeneity of CHM mutations and potential risks and benefits, genome-editing approaches currently do not offer significant advantages. Nonsense suppression strategies and antisense oligonucleotides are exciting novel therapeutic options; however, their clinical viability remains to be determined.
Collapse
Affiliation(s)
- Ruofan Connie Han
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Lewis E. Fry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ariel Kantor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Kanmin Xue
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
10
|
Jaroszynska N, Harding P, Moosajee M. Metabolism in the Zebrafish Retina. J Dev Biol 2021; 9:10. [PMID: 33804189 PMCID: PMC8006245 DOI: 10.3390/jdb9010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal photoreceptors are amongst the most metabolically active cells in the body, consuming more glucose as a metabolic substrate than even the brain. This ensures that there is sufficient energy to establish and maintain photoreceptor functions during and after their differentiation. Such high dependence on glucose metabolism is conserved across vertebrates, including zebrafish from early larval through to adult retinal stages. As the zebrafish retina develops rapidly, reaching an adult-like structure by 72 hours post fertilisation, zebrafish larvae can be used to study metabolism not only during retinogenesis, but also in functionally mature retinae. The interplay between rod and cone photoreceptors and the neighbouring retinal pigment epithelium (RPE) cells establishes a metabolic ecosystem that provides essential control of their individual functions, overall maintaining healthy vision. The RPE facilitates efficient supply of glucose from the choroidal vasculature to the photoreceptors, which produce metabolic products that in turn fuel RPE metabolism. Many inherited retinal diseases (IRDs) result in photoreceptor degeneration, either directly arising from photoreceptor-specific mutations or secondary to RPE loss, leading to sight loss. Evidence from a number of vertebrate studies suggests that the imbalance of the metabolic ecosystem in the outer retina contributes to metabolic failure and disease pathogenesis. The use of larval zebrafish mutants with disease-specific mutations that mirror those seen in human patients allows us to uncover mechanisms of such dysregulation and disease pathology with progression from embryonic to adult stages, as well as providing a means of testing novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Philippa Harding
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
11
|
Fabian L, Dowling JJ. Zebrafish Models of LAMA2-Related Congenital Muscular Dystrophy (MDC1A). Front Mol Neurosci 2020; 13:122. [PMID: 32742259 PMCID: PMC7364686 DOI: 10.3389/fnmol.2020.00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also referred to as merosin deficient CMD (MDC1A), is a severe neonatal onset muscle disease caused by recessive mutations in the LAMA2 gene. LAMA2 encodes laminin α2, a subunit of the extracellular matrix (ECM) oligomer laminin 211. There are currently no treatments for MDC1A, and there is an incomplete understanding of disease pathogenesis. Zebrafish, due to their high degree of genetic conservation with humans, large clutch sizes, rapid development, and optical clarity, have emerged as an excellent model system for studying rare Mendelian diseases. They are particularly suitable as a model for muscular dystrophy because they contain at least one orthologue to all major human MD genes, have muscle that is similar to human muscle in structure and function, and manifest obvious and easily measured MD related phenotypes. In this review article, we present the existing zebrafish models of MDC1A, and discuss their contribution to the understanding of MDC1A pathomechanisms and therapy development.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada.,Departments of Pediatrics and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Weaver ML, Piedade WP, Meshram NN, Famulski JK. Hyaloid vasculature and mmp2 activity play a role during optic fissure fusion in zebrafish. Sci Rep 2020; 10:10136. [PMID: 32576859 PMCID: PMC7311462 DOI: 10.1038/s41598-020-66451-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 02/03/2023] Open
Abstract
Vertebrate retinal development requires timely and precise fusion of the optic fissure (OF). Failure of this event leads to congenital vision impairment in the form of coloboma. Recent studies have suggested hyaloid vasculature to be involved in OF fusion. In order to examine this link, we analyzed OF fusion and hyaloid vasculogenesis in the zebrafish pax2a noi mutant line. We first determined that pax2a-/- embryos fail to accumulate F-actin in the OF prior to basement membrane (BM) degradation. Furthermore, using 3D and live imaging we observed reduced OF hyaloid vascularization in pax2a-/- embryos. When examining the connection between pax2a loss of function and hyaloid vasculature, we observed significant reduction of talin1 expression, a regulator of hyaloid vasculature. In addition, cranial VEGF expression was found to be reduced in pax2a-/- embryos. Pharmacological inhibition of VEGF signaling phenocopied the pax2a-/- vasculature, F-actin and BM degradation phenotypes. Lastly, we determined that OF associated hyaloid vasculature is a source of mmp2, mmp14a and mmp14b expression and showed that mmp2 is functionally necessary for degradation of OF BM. Taken together we propose a pax2a driven mechanism that ensures proper and timely hyaloid vasculature invasion of the OF in order to facilitate availability of the BM remodeler mmp2.
Collapse
Affiliation(s)
- Megan L Weaver
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Warlen P Piedade
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | | | - Jakub K Famulski
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
13
|
Wang X, Shan X, Gregory-Evans K, Gregory-Evans CY. RNA-based therapies in animal models of Leber congenital amaurosis causing blindness. PRECISION CLINICAL MEDICINE 2020; 3:113-126. [PMID: 35692607 PMCID: PMC8985810 DOI: 10.1093/pcmedi/pbaa009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Leber congenital amaurosis (LCA) is a severe, genetically heterogeneous recessive eye disease in which ~ 35% of gene mutations are in-frame nonsense mutations coding for loss-of-function premature termination codons (PTCs) in mRNA. Nonsense suppression therapy allows read-through of PTCs leading to production of full-length protein. A limitation of nonsense suppression is that nonsense-mediated decay (NMD) degrades PTC-containing RNA transcripts. The purpose of this study was to determine whether inhibition of NMD could improve nonsense suppression efficacy in vivo. Using a high-throughput approach in the recessive cep290 zebrafish model of LCA (cep290;Q1223X), we first tested the NMD inhibitor Amlexanox in combination with the nonsense suppression drug Ataluren. We observed reduced retinal cell death and improved visual function. With these positive data, we next investigated whether this strategy was also applicable across species in two mammalian models: Rd12 (rpe65;R44X) and Rd3 (rd3;R107X) mouse models of LCA. In the Rd12 model, cell death was reduced, RPE65 protein was produced, and in vivo visual function testing was improved. We establish for the first time that the mechanism of action of Amlexanox in Rd12 retina was through reduced UPF1 phosphorylation. In the Rd3 model, however, no beneficial effect was observed with Ataluren alone or in combination with Amlexanox. This variation in response establishes that some forms of nonsense mutation LCA can be targeted by RNA therapies, but that this needs to be verified for each genotype. The implementation of precision medicine by identifying better responders to specific drugs is essential for development of validated retinal therapies.
Collapse
Affiliation(s)
- Xia Wang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Xianghong Shan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| |
Collapse
|
14
|
Way CM, Lima Cunha D, Moosajee M. Translational readthrough inducing drugs for the treatment of inherited retinal dystrophies. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1762489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Christopher M Way
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Dulce Lima Cunha
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Cehajic Kapetanovic J, Barnard AR, MacLaren RE. Molecular Therapies for Choroideremia. Genes (Basel) 2019; 10:genes10100738. [PMID: 31548516 PMCID: PMC6826983 DOI: 10.3390/genes10100738] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Advances in molecular research have culminated in the development of novel gene-based therapies for inherited retinal diseases. We have recently witnessed several groundbreaking clinical studies that ultimately led to approval of Luxturna, the first gene therapy for an inherited retinal disease. In parallel, international research community has been engaged in conducting gene therapy trials for another more common inherited retinal disease known as choroideremia and with phase III clinical trials now underway, approval of this therapy is poised to follow suit. This chapter discusses new insights into clinical phenotyping and molecular genetic testing in choroideremia with review of molecular mechanisms implicated in its pathogenesis. We provide an update on current gene therapy trials and discuss potential inclusion of female carries in future clinical studies. Alternative molecular therapies are discussed including suitability of CRISPR gene editing, small molecule nonsense suppression therapy and vision restoration strategies in late stage choroideremia.
Collapse
Affiliation(s)
- Jasmina Cehajic Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
16
|
Krall M, Htun S, Slavotinek A. Use of PTC124 for nonsense suppression therapy targeting BMP4 nonsense variants in vitro and the bmp4st72 allele in zebrafish. PLoS One 2019; 14:e0212121. [PMID: 31017898 PMCID: PMC6481805 DOI: 10.1371/journal.pone.0212121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/07/2019] [Indexed: 12/04/2022] Open
Abstract
Nonsense suppression therapy (NST) utilizes compounds such as PTC124 (Ataluren) to induce translational read-through of stop variants by promoting the insertion of near cognate, aminoacyl tRNAs that yield functional proteins. We used NST with PTC124 to determine if we could successfully rescue nonsense variants in human Bone Morphogenetic Protein 4 (BMP4) in vitro and in a zebrafish bmp4 allele with a stop variant in vivo. We transfected 293T/17 cells with wildtype or mutant human BMP4 cDNA containing p.Arg198* and p.Glu213* and exposed cells to 0–20 μM PTC124. Treatment with 20 μM PTC124 produced a small, non-significant increase in BMP4 when targeting the p.Arg198* allele, but not the p.Glu213* allele, as measured with an In-cell ELISA assay. We then examined the ability of PTC124 to rescue the ventral tail fin defects associated with homozygosity for the p.Glu209* allele of bmp4 (bmp4st72/st72) in Danio rerio. We in-crossed bmp4st72/+ heterozygous fish and found a statistically significant increase in homozygous larvae without tail fin and ventroposterior defects, consistent with phenotypic rescue, after treatment of dechorionated larvae with 0.5 μM PTC124. We conclude that treatment with PTC124 can rescue bmp4 nonsense variants, but that the degree of rescue may depend on sequence specific factors and the amount of RNA transcript available for rescue. Our work also confirms that zebrafish show promise as a useful animal model for assessing the efficacy of PTC124 treatment on nonsense variants.
Collapse
Affiliation(s)
- Max Krall
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Stephanie Htun
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Tutone M, Pibiri I, Lentini L, Pace A, Almerico AM. Deciphering the Nonsense Readthrough Mechanism of Action of Ataluren: An in Silico Compared Study. ACS Med Chem Lett 2019; 10:522-527. [PMID: 30996790 DOI: 10.1021/acsmedchemlett.8b00558] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/07/2019] [Indexed: 12/26/2022] Open
Abstract
Ataluren was reported to suppress nonsense mutations by promoting the readthrough of premature stop codons, although its mechanism of action (MOA) is still debated. The likely interaction of Ataluren with CFTR-mRNA has been previously studied by molecular dynamics. In this work we extended the modeling of Ataluren's MOA by complementary computational approaches such as induced fit docking (IFD), quantum polarized ligand docking (QPLD), MM-GBSA free-energy calculations, and computational mutagenesis. In addition to CFTR-mRNA, this study considered other model targets implicated in the translation process, such as eukaryotic rRNA 18S, prokaryotic rRNA 16S, and eukaryotic Release Factor 1 (eRF1), and we performed a comparison with a new promising Ataluren analogue (NV2445) and with a series of aminoglycosides, known to suppress the normal proofreading function of the ribosome. Results confirmed mRNA as the most likely candidate target for Ataluren and its analogue, and binding energies calculated after computational mutagenesis highlighted how Ataluren's interaction with the premature stop codon could be affected by ancillary nucleotides in the genetic context.
Collapse
Affiliation(s)
- Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| |
Collapse
|
18
|
Prospects and modalities for the treatment of genetic ocular anomalies. Hum Genet 2019; 138:1019-1026. [DOI: 10.1007/s00439-018-01968-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022]
|
19
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Patrício MI, Barnard AR, Xue K, MacLaren RE. Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opin Biol Ther 2018; 18:807-820. [DOI: 10.1080/14712598.2018.1484448] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
21
|
Boswell M, Boswell W, Lu Y, Savage M, Mazurek Z, Chang J, Muster J, Walter R. The transcriptional response of skin to fluorescent light exposure in viviparous (Xiphophorus) and oviparous (Danio, Oryzias) fishes. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:77-86. [PMID: 29017858 PMCID: PMC5889750 DOI: 10.1016/j.cbpc.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 01/14/2023]
Abstract
Differences in light sources are common in animal facilities and potentially can impact experimental results. Here, the potential impact of lighting differences on skin transcriptomes has been tested in three aquatic animal models commonly utilized in biomedical research, (Xiphophorus maculatus (platyfish), Oryzias latipes (medaka) and Danio rerio (zebrafish). Analysis of replicate comparative RNA-Seq data showed the transcriptional response to commonly utilized 4100K or "cool white" fluorescent light (FL) is much greater in platyfish and medaka than in zebrafish. FL induces genes associated with inflammatory and immune responses in both medaka and zebrafish; however, the platyfish exhibit suppression of genes involved with immune/inflammation, as well as genes associated with cell cycle progression. Furthermore, comparative analyses of gene expression data from platyfish UVB exposures, with medaka and zebrafish after exposure to 4100K FL, show comparable effects on the same stress pathways. We suggest the response to light is conserved, but that long-term adaptation to species specific environmental niches has resulted in a shifting of the wavelengths required to incite similar "genetic" responses in skin. We forward the hypothesis that the "genetic perception" of light may have evolved differently than ocular perception and suggest that light type (i.e., wavelengths emitted) is an important parameter to consider in experimental design.
Collapse
Affiliation(s)
- Mikki Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Zachary Mazurek
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Jordan Chang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Jeanot Muster
- Howard Hughes Medical Institute, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| | - Ronald Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
22
|
The effect of PTC124 on choroideremia fibroblasts and iPSC-derived RPE raises considerations for therapy. Sci Rep 2018; 8:8234. [PMID: 29844446 PMCID: PMC5974348 DOI: 10.1038/s41598-018-26481-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/04/2018] [Indexed: 11/24/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are caused by mutations in over 200 genes, resulting in a range of therapeutic options. Translational read-through inducing drugs (TRIDs) offer the possibility of treating multiple IRDs regardless of the causative gene. TRIDs promote ribosomal misreading of premature stop codons, which results in the incorporation of a near-cognate amino acid to produce a full-length protein. The IRD choroideremia (CHM) is a pertinent candidate for TRID therapy, as nonsense variants cause 30% of cases. Recently, treatment of the UAA nonsense-carrying CHM zebrafish model with the TRID PTC124 corrected the underlying biochemical defect and improved retinal phenotype. To be clinically relevant, we studied PTC124 efficiency in UAA nonsense-carrying human fibroblasts and induced pluripotent stem cell-derived retinal pigment epithelium, as well as in a UAA-mutated CHM overexpression system. We showed that PTC124 treatment induces a non-significant trend for functional rescue, which could not be improved by nonsense-mediated decay inhibition. Furthermore, it does not produce a detectable CHM-encoded protein even when coupled with a proteasome inhibitor. We suggest that drug efficiency may depend upon on the target amino acid and its evolutionary conservation, and argue that patient cells should be screened in vitro prior to inclusion in a clinical trial.
Collapse
|
23
|
Scanga HL, Nischal KK. Overarching Concepts and Mechanisms Affecting Phenotypes of Ocular Genetic Conditions. CURRENT GENETIC MEDICINE REPORTS 2017. [DOI: 10.1007/s40142-017-0128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Wiechers L, Samanta A, Nagel-Wolfrum K. Das Überlesen von Nonsense-Mutationen. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zusammenfassung
Nonsense-Mutationen weisen eine Inzidenz von etwa 12 % bezogen auf alle krankheitsverursachenden Mutationen auf. Eine ähnliche Rate gilt für Netzhauterkrankungen. Ein speziell auf diesen Mutationstyp ausgerichteter Therapieansatz könnte somit praktikabel und ökonomisch im Sinne einer Therapie „eine für viele“ sein. Nonsense-Mutationen führen zu vorzeitigen Terminationscodons (PTCs), wodurch die Degradation der mRNA über den „nonsense-mediated decay“ (NMD) induziert werden kann oder die Translation am PTC endet und ein verkürztes, zumeist nicht mehr funktionelles Protein synthetisiert wird. Ein pharmakogenetischer Ansatz induziert das Überlesen („read-through“) von PTCs und erlaubt somit die Synthese von vollständigen Proteinen. Die hierbei eingesetzten Wirkstoffe werden als TRIDs („translational read-through inducing drugs“) bezeichnet. Die ersten identifizierten TRIDs gehören zur Klasse der Aminoglykosidantibiotika. Modernere TRIDs sind Amlexanox, Ataluren und Derivate von Aminoglykosidantibiotika. Während Aminoglykoside eine hohe Oto‑, Nephro- und Retinotoxizität aufweisen, zeichnen sich die modernen TRIDs durch eine verbesserte Verträglichkeit aus. Eine Vielzahl von präklinischen Studien belegt die Überlese-Effizienz von TRIDs bei Nonsense-Mutationen und zeigt die Funktionalität der wiederhergestellten Proteine in Zellkultur, Tiermodellen und patientenspezifischen Zellen. Für die Therapie von Netzhauterkrankungen werden systemische und lokale Applikationen evaluiert. Patientenspezifische Zellen stellen ein personalisiertes Screeningmodell für die Identifizierung eines wirksamen TRID dar. Der pharmakogenetische Überlese-Ansatz könnte in Zukunft für jeden Patienten, dessen Netzhauterkrankung durch eine Nonsense-Mutation verursacht wird, eine personalisierte Therapie erlauben.
Collapse
Affiliation(s)
- Lisa Wiechers
- Aff1 0000 0001 1941 7111 grid.5802.f Molekulare Zellbiologie (Therapie-Team), Institut für Molekulare Physiologie Johannes Gutenberg-Universität Mainz J.-J.-Becher-Weg 7 55099 Mainz Deutschland
| | - Ananya Samanta
- Aff1 0000 0001 1941 7111 grid.5802.f Molekulare Zellbiologie (Therapie-Team), Institut für Molekulare Physiologie Johannes Gutenberg-Universität Mainz J.-J.-Becher-Weg 7 55099 Mainz Deutschland
| | - Kerstin Nagel-Wolfrum
- Aff1 0000 0001 1941 7111 grid.5802.f Molekulare Zellbiologie (Therapie-Team), Institut für Molekulare Physiologie Johannes Gutenberg-Universität Mainz J.-J.-Becher-Weg 7 55099 Mainz Deutschland
| |
Collapse
|
25
|
Wang X, Gregory-Evans K, Wasan KM, Sivak O, Shan X, Gregory-Evans CY. Efficacy of Postnatal In Vivo Nonsense Suppression Therapy in a Pax6 Mouse Model of Aniridia. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624217 PMCID: PMC5440746 DOI: 10.1016/j.omtn.2017.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nonsense mutations leading to premature stop codons are common occurring in approximately 12% of all human genetic diseases. Thus, pharmacological nonsense mutation suppression strategies would be beneficial to a large number of patients if the drugs could be targeted to the affected tissues at the appropriate time. Here, we used nonsense suppression to manipulate Pax6 dosage at different developmental times in the eye of the small eye (Pax6Sey/+; G194X) mouse model of aniridia. Efficacy was assessed by functional assays for visual capacity, including electroretinography and optokinetic tracking (OKT), in addition to histological and biochemical studies. Malformation defects in the Pax6Sey/+ postnatal eye responded to topically delivered nonsense suppression in a dose- and time-dependent manner. Elevated levels of Mmp9, a direct downstream target of Pax6 in the cornea, were observed with the different treatment regimens. The lens capsule was particularly sensitive to Pax6 dosage, revealing a potential new role for Pax6 in lens capsule maintenance and development. The remarkable capacity of malformed ocular tissue to respond postnatally to Pax6 dosage in vivo demonstrates that the use of nonsense suppression could be a valuable therapeutic approach for blinding diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Xia Wang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Olena Sivak
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Xianghong Shan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| |
Collapse
|
26
|
Richardson R, Smart M, Tracey-White D, Webster AR, Moosajee M. Mechanism and evidence of nonsense suppression therapy for genetic eye disorders. Exp Eye Res 2017; 155:24-37. [PMID: 28065590 DOI: 10.1016/j.exer.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/24/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
Between 5 and 70% of genetic disease is caused by in-frame nonsense mutations, which introduce a premature termination codon (PTC) within the disease-causing gene. Consequently, during translation, non-functional or gain-of-function truncated proteins of pathological significance, are formed. Approximately 50% of all inherited retinal disorders have been associated with PTCs, highlighting the importance of novel pharmacological or gene correction therapies in ocular disease. Pharmacological nonsense suppression of PTCs could delineate a therapeutic strategy that treats the mutation in a gene- and disease-independent manner. This approach aims to suppress the fidelity of the ribosome during protein synthesis so that a near-cognate aminoacyl-tRNA, which shares two of the three nucleotides of the PTC, can be inserted into the peptide chain, allowing translation to continue, and a full-length functional protein to be produced. Here we discuss the mechanisms and evidence of nonsense suppression agents, including the small molecule drug ataluren (or PTC124) and next generation 'designer' aminoglycosides, for the treatment of genetic eye disease.
Collapse
Affiliation(s)
- Rose Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Matthew Smart
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Dhani Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Andrew R Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
27
|
Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs 2016; 30:49-74. [PMID: 26886021 DOI: 10.1007/s40259-016-0157-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.
Collapse
|
28
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
29
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Moosajee M, Tracey-White D, Smart M, Weetall M, Torriano S, Kalatzis V, da Cruz L, Coffey P, Webster AR, Welch E. Functional rescue of REP1 following treatment with PTC124 and novel derivative PTC-414 in human choroideremia fibroblasts and the nonsense-mediated zebrafish model. Hum Mol Genet 2016; 25:3416-3431. [DOI: 10.1093/hmg/ddw184] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/15/2023] Open
|
31
|
Chan SC, Bubela T, Dimopoulos IS, Freund PR, Varkouhi AK, MacDonald IM. Choroideremia research: Report and perspectives on the second international scientific symposium for choroideremia. Ophthalmic Genet 2016; 37:267-75. [PMID: 26855058 DOI: 10.3109/13816810.2015.1088958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To discuss progress in research on choroideremia (CHM) and related retinopathies with special emphasis on gene therapy approaches. METHODS Biomedical and clinical researchers from across the world as well as representatives of the social science research community were convened to the 2nd International Scientific Symposium for Choroideremia in Denver, Colorado in June 2014 to enhance our understanding of CHM and accelerate the translation of research to clinical application for the benefit of those affected by CHM. RESULTS Pre-clinical research using cell and animal models continues to further our understanding in the pathogenesis of CHM as well as to demonstrate proof-of-concept for gene transfer strategies. With the advent of modern imaging technology, better outcome measures are being defined for upcoming clinical trials. Results from the first gene therapy trial in CHM show promise, with sustained visual improvement over 6 months post-treatment. Current and next-generation gene transfer approaches may make targeted vector delivery possible in the future for CHM and other inherited retinal diseases. CONCLUSIONS While no accepted therapies exist for CHM, promising approaches using viral-vectored gene therapy and cell therapies are entering clinical trials for eye diseases, with gene therapy trials underway for CHM.
Collapse
Affiliation(s)
- Stephanie C Chan
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Tania Bubela
- b School of Public Health , University of Alberta , Edmonton , Alberta , Canada
| | - Ioannis S Dimopoulos
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Paul R Freund
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Amir K Varkouhi
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Ian M MacDonald
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
32
|
Bykhovskaya Y, Gromova A, Makarenkova HP, Rabinowitz YS. Abnormal regulation of extracellular matrix and adhesion molecules in corneas of patients with keratoconus. ACTA ACUST UNITED AC 2016; 5:63-70. [PMID: 28989906 DOI: 10.5005/jp-journals-10025-1123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM To identify changes in the expression of genes coding for extracellular matrix (ECM) proteins in patients with non-inflammatory corneal disorder keratoconus (KC), patients with corneal scarring, and normal controls. MATERIALS AND METHODS Total RNA extracted from corneal tissue of 13 KC patients, 2 patients with corneal scaring and 4 normal controls was analyzed using Human Extracellular Matrix & Adhesion Molecules Profiler PCR Array. Statistically significant changes in gene expression were identified using the Data Analysis software. RESULTS Comparison of KC and control corneas with thresholds of 1.5 or greater fold change and a p-value of 0.05 or lower, revealed 21 differentially expressed genes, 16 genes were downregulated and 5 were upregulated. Among transcripts downregulated in KC patients we identified THBS1, ADAMTS1, SPP1, several collagens and integrins. We found TGFBI (BIGH3) gene was the most significantly upregulated transcript. CONCLUSION Development of keratoconus results in deregulation of gene expression of extracellular matrix and adhesion molecules. CLINICAL SIGNIFICANCE Downregulation of collagens and upregulation of TGFBI repeatedly identified in KC patients may be used as clinical markers of the disease.
Collapse
Affiliation(s)
- Yelena Bykhovskaya
- Regenerative Medicine Institute and Department of Surgery, Cedars-Sinai, USA.,Cornea Genetic Eye Institute, USA
| | - Anastasia Gromova
- Department of Cell and Molecular Biology, The Scripps Research Institute, USA
| | - Helen P Makarenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute, USA
| | - Yaron S Rabinowitz
- Regenerative Medicine Institute and Department of Surgery, Cedars-Sinai, USA.,Cornea Genetic Eye Institute, USA.,The Jules Stein Eye Institute, University of California Los Angeles, USA
| |
Collapse
|
33
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
34
|
The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res 2015; 48:137-59. [DOI: 10.1016/j.preteyeres.2015.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/12/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
|
35
|
Dimopoulos IS, Chan S, MacLaren RE, MacDonald IM. Pathogenic mechanisms and the prospect of gene therapy for choroideremia. Expert Opin Orphan Drugs 2015; 3:787-798. [PMID: 26251765 PMCID: PMC4522943 DOI: 10.1517/21678707.2015.1046434] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Choroideremia is a rare, X-linked disorder recognized by its specific ocular phenotype as a progressive degenerative retinopathy resulting in blindness. New therapeutic approaches, primarily based on genetic mechanisms, have emerged that aim to prevent the progressive vision loss. AREAS COVERED This article will review the research that has progressed incrementally over the past two decades from mapping to gene discovery, uncovering the presumed mechanisms triggering the retinopathy to preclinical testing of potential therapies. EXPERT OPINION While still in an evaluative phase, the introduction of gene replacement as a potential therapy has been greeted with great enthusiasm by patients, advocacy groups and the medical community.
Collapse
Affiliation(s)
- Ioannis S Dimopoulos
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| | - Stephanie Chan
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| | - Robert E MacLaren
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, UK
- Moorfields Eye Hospital Foundation Trust, NIHR Ophthalmology Biomedical Research Centre, London, UK
| | - Ian M MacDonald
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Wang X, Gregory-Evans CY. Nonsense suppression therapies in ocular genetic diseases. Cell Mol Life Sci 2015; 72:1931-8. [PMID: 25651836 PMCID: PMC11113309 DOI: 10.1007/s00018-015-1843-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/23/2014] [Accepted: 01/23/2015] [Indexed: 12/24/2022]
Abstract
Premature termination codons (PTCs) are caused by nonsense mutations and this leads to either degradation of the mutant mRNA template by nonsense-mediated decay (NMD) or the production of a non-functional, truncated polypeptide. PTCs contribute significantly to inherited human diseases including ocular disorders. Nonsense suppression therapy allows readthrough of PTCs, thereby rescuing the production of a full-length functional protein. In this review, we highlight the mechanisms that are involved in discriminating normal translation termination from premature termination codons; the current understanding of nonsense-mediated mRNA decay models (NMD); the association and crosstalk between PTC and the underlying dynamic NMD process; and the suppression therapies that have been employed in nonsense-medicated ocular disease models. Defining the mechanistic complexity of PTC and NMD will be important to improve treatments of the numerous genetic disorders caused by PTC mutations.
Collapse
Affiliation(s)
- Xia Wang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, V5Z 3N9, Canada,
| | | |
Collapse
|
37
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
38
|
Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Vis Neurosci 2014; 31:309-16. [DOI: 10.1017/s0952523814000194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe eye has become an excellent target for gene therapy, and gene augmentation therapy of inherited retinal disorders has made major progress in recent years. Nevertheless, a recent study indicated that gene augmentation intervention might not stop the progression of retinal degeneration in patients. In addition, for many genes, viral-mediated gene augmentation is currently not feasible due to gene size and limited packaging capacity of viral vectors as well as expression of various heterogeneous isoforms of the target gene. Thus, alternative gene-based strategies to stop or delay the retinal degeneration are necessary. This review focuses on an alternative pharmacologic treatment strategy based on the usage of translational read-through inducing drugs (TRIDs) such as PTC124, aminoglycoside antibiotics, and designer aminoglycosides for overreading in-frame nonsense mutations. This strategy has emerged as an option for up to 30–50% of all cases of recessive hereditary retinal dystrophies. In-frame nonsense mutations are single-nucleotide alterations within the gene coding sequence resulting in a premature stop codon. Consequently, translation of such mutated genes leads to the synthesis of truncated proteins, which are unable to fulfill their physiologic functions. In this context, application of TRIDs facilitates the recoding of the premature termination codon into a sense codon, thus restoring syntheses of full-length proteins. So far, clinical trials for non-ocular diseases have been initiated for diverse TRIDs. Although the clinical outcome is not analyzed in detail, an excellent safety profile, namely for PTC124, was clearly demonstrated. Moreover, recent data demonstrated sustained read-through efficacies of nonsense mutations causing retinal degeneration, as manifested in the human Usher syndrome. In addition, a strong retinal biocompatibility for PTC124 and designer aminoglycosides has been demonstrated. In conclusion, recent progress emphasizes the potential of TRIDs as an alternative pharmacologic treatment strategy for treating nonsense mutation-based retinal disorders.
Collapse
|
39
|
Lentini L, Melfi R, Di Leonardo A, Spinello A, Barone G, Pace A, Palumbo Piccionello A, Pibiri I. Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay. Mol Pharm 2014; 11:653-64. [PMID: 24483936 PMCID: PMC4167060 DOI: 10.1021/mp400230s] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 12/17/2013] [Accepted: 01/31/2014] [Indexed: 01/28/2023]
Abstract
The presence in the mRNA of premature stop codons (PTCs) results in protein truncation responsible for several inherited (genetic) diseases. A well-known example of these diseases is cystic fibrosis (CF), where approximately 10% (worldwide) of patients have nonsense mutations in the CF transmembrane regulator (CFTR) gene. PTC124 (3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)-benzoic acid), also known as Ataluren, is a small molecule that has been suggested to allow PTC readthrough even though its target has yet to be identified. In the lack of a general consensus about its mechanism of action, we experimentally tested the ability of PTC124 to promote the readthrough of premature termination codons by using a new reporter. The reporter vector was based on a plasmid harboring the H2B histone coding sequence fused in frame with the green fluorescent protein (GFP) cDNA, and a TGA stop codon was introduced in the H2B-GFP gene by site-directed mutagenesis. Additionally, an unprecedented computational study on the putative supramolecular interaction between PTC124 and an 11-codon (33-nucleotides) sequence corresponding to a CFTR mRNA fragment containing a central UGA nonsense mutation showed a specific interaction between PTC124 and the UGA codon. Altogether, the H2B-GFP-opal based assay and the molecular dynamics (MD) simulation support the hypothesis that PTC124 is able to promote the specific readthrough of internal TGA premature stop codons.
Collapse
Affiliation(s)
- Laura Lentini
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Raffaella Melfi
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Centro di OncoBiologia
Sperimentale (COBS), via San Lorenzo
Colli, 90145 Palermo, Italy
| | - Angelo Spinello
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Giampaolo Barone
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Istituto EuroMediterraneo
di Scienza e Tecnologia (IEMEST), Via
Emerico Amari 123, 90139 Palermo, Italy
| | - Andrea Pace
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Istituto EuroMediterraneo
di Scienza e Tecnologia (IEMEST), Via
Emerico Amari 123, 90139 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Ivana Pibiri
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
40
|
Schimmenti LA. Genetic and developmental basis of renal coloboma (papillorenal) syndrome. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Gregory-Evans CY, Wang X, Wasan KM, Zhao J, Metcalfe AL, Gregory-Evans K. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J Clin Invest 2013; 124:111-6. [PMID: 24355924 DOI: 10.1172/jci70462] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/27/2013] [Indexed: 11/17/2022] Open
Abstract
Aniridia is a congenital and progressive panocular condition with poor visual prognosis that is associated with brain, olfactory, and pancreatic abnormalities. Development of aniridia is linked with nonsense mutations that result in paired box 6 (PAX6) haploinsufficiency. Here, we used a mouse model of aniridia to test the hypothesis that manipulation of Pax6 dosage through a mutation-independent nonsense mutation suppression strategy would limit progressive, postnatal damage in the eye. We focused on the nonsense suppression drugs 3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid (ataluren) and gentamicin. Remarkably, we demonstrated that nonsense suppression not only inhibited disease progression but also stably reversed corneal, lens, and retinal malformation defects and restored electrical and behavioral responses of the retina. The most successful results were achieved through topical application of the drug formulation START (0.9% sodium chloride, 1% Tween 80, 1% powdered ataluren, 1% carboxymethylcellulose), which was designed to enhance particle dispersion and to increase suspension viscosity. These observations suggest that the eye retains marked developmental plasticity into the postnatal period and remains sensitive to molecular remodeling. Furthermore, these data indicate that other neurological developmental anomalies associated with dosage-sensitive genetic mutations may be reversible through nonsense suppression therapeutics.
Collapse
|
42
|
|
43
|
Cho HY, Lee BH, Cheong HI. Translational read-through of a nonsense mutation causing Bartter syndrome. J Korean Med Sci 2013; 28:821-6. [PMID: 23772144 PMCID: PMC3677996 DOI: 10.3346/jkms.2013.28.6.821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/11/2013] [Indexed: 11/20/2022] Open
Abstract
Bartter syndrome (BS) is classified into 5 genotypes according to underlying mutant genes and BS III is caused by loss-of-function mutations in the CLCNKB gene encoding for basolateral ClC-Kb. BS III is the most common genotype in Korean patients with BS and W610X is the most common CLCNKB mutation in Korean BS III. In this study, we tested the hypothesis that the CLCNKB W610X mutation can be rescued in vitro using aminoglycoside antibiotics, which are known to induce translational read-through of a nonsense mutation. The CLCNKB cDNA was cloned into a eukaryotic expression vector and the W610X nonsense mutation was generated by site-directed mutagenesis. Cultured polarized MDCK cells were transfected with the vectors, and the read-through was induced using an aminoglycoside derivative, G418. Cellular expression of the target protein was monitored via immunohistochemistry. While cells transfected with the mutant CLCNKB failed to express ClC-Kb, G418 treatment of the cells induced the full-length protein expression, which was localized to the basolateral plasma membranes. It is demonstrated that the W610X mutation in CLCNKB can be a good candidate for trial of translational read-through induction as a therapeutic modality.
Collapse
Affiliation(s)
- Hee Yeon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Shih CP, Chen HC, Chen HK, Chiang MC, Sytwu HK, Lin YC, Li SL, Shih YF, Liao AH, Wang CH. Ultrasound-aided microbubbles facilitate the delivery of drugs to the inner ear via the round window membrane. J Control Release 2013; 167:167-74. [PMID: 23391441 DOI: 10.1016/j.jconrel.2013.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/23/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
The round window membrane (RWM) acts as a barrier between the middle ear and cochlea and can serve as a crucial route for therapeutic medications entering the inner ear via middle ear applications. In this study, we targeted the practical application of microbubbles (MBs) ultrasound on increasing the RWM permeability for facilitating drug or medication delivery to the inner ear. Using biotin-fluorescein isothiocyanate conjugates (biotin-FITC) as delivery agents and guinea pig animal models, we showed that MB ultrasound exposure can improve the inner ear system use of biotin-FITC delivery via the RWM by approximately 3.5 to 38 times that of solely soaking biotin-FITC around the RWM for spontaneous diffusion. We also showed that there was significant enhancement of hair cell uptake of gentamicin in animals whose tympanic bullas were soaked with MB-mixed gentamicin-Texas Red or gentamicin and exposed to ultrasound. Furthermore, increased permeability of the RWM from acoustic cavitation of MBs could also be visualized immediately following ultrasound exposure by using Alexa Fluor 488-conjugated phalloidin as a tracer. Most importantly, such applications had no resulting damage to the integrity of the RWM or deterioration of the hearing thresholds assessed by auditory brainstem responses. We herein provide a basis for MB ultrasound-mediated techniques with therapeutic medication delivery to the inner ear for future application in humans.
Collapse
Affiliation(s)
- Cheng-Ping Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
46
|
Gestri G, Link BA, Neuhauss SCF. The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 2012; 72:302-27. [PMID: 21595048 DOI: 10.1002/dneu.20919] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.
Collapse
Affiliation(s)
- Gaia Gestri
- Department of Cell and Developmental Biology, University College, London,UK.
| | | | | |
Collapse
|
47
|
Goldmann T, Overlack N, Möller F, Belakhov V, van Wyk M, Baasov T, Wolfrum U, Nagel-Wolfrum K. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO Mol Med 2012; 4:1186-99. [PMID: 23027640 PMCID: PMC3494875 DOI: 10.1002/emmm.201201438] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound PTC124 on retinal toxicity and read-through efficacy of a nonsense mutation in the USH1C gene, which encodes the scaffold protein harmonin. This mutation causes the human Usher syndrome, the most common form of inherited deaf-blindness. We quantify read-through efficacy of the TRIDs in cell culture and show the restoration of harmonin function. We do not observe significant differences in the read-through efficacy of the TRIDs in retinal cultures; however, we show an excellent biocompatibility in retinal cultures with read-through versus toxicity evidently superior for NB54 and PTC124. In addition, in vivo administration of NB54 and PTC124 induced recovery of the full-length harmonin a1 with the same efficacy. The high biocompatibilities combined with the sustained read-through efficacies of these drugs emphasize the potential of NB54 and PTC124 in treating nonsense mutation-based retinal disorders.
Collapse
Affiliation(s)
- Tobias Goldmann
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Zebrafish have been widely used as a model system for studying developmental processes, but in the last decade, they have also emerged as a valuable system for modeling human disease. The development and function of zebrafish organs are strikingly similar to those of humans, and the ease of creating mutant or transgenic fish has facilitated the generation of disease models. Here, we highlight the use of zebrafish for defining disease pathways and for discovering new therapies.
Collapse
Affiliation(s)
- Cristina Santoriello
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
49
|
Morris AC. The genetics of ocular disorders: insights from the zebrafish. ACTA ACUST UNITED AC 2012; 93:215-28. [PMID: 21932431 DOI: 10.1002/bdrc.20211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proper formation of the vertebrate eye requires a precisely coordinated sequence of morphogenetic events that integrate the developmental contributions of the skin ectoderm, neuroectoderm, and head mesenchyme. Disruptions in this process result in ocular malformations or retinal degeneration and can cause significant visual impairment. The zebrafish is an excellent vertebrate model for the study of eye development and disease due to the transparency of the embryo, its ex utero development, and its amenability to forward genetic screens. This review will present an overview of the genetic methodologies utilized in the zebrafish, a description of several zebrafish models of congenital ocular diseases, and a discussion of the utility of the zebrafish for assessing the pathogenicity of candidate disease alleles.
Collapse
Affiliation(s)
- Ann C Morris
- Department of Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
50
|
Viringipurampeer IA, Ferreira T, DeMaria S, Yoon JJ, Shan X, Moosajee M, Gregory-Evans K, Ngai J, Gregory-Evans CY. Pax2 regulates a fadd-dependent molecular switch that drives tissue fusion during eye development. Hum Mol Genet 2012; 21:2357-69. [PMID: 22357656 DOI: 10.1093/hmg/dds056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue fusion is an essential morphogenetic mechanism in development, playing a fundamental role in developing neural tube, palate and the optic fissure. Disruption of genes associated with the tissue fusion can lead to congenital malformations, such as spina bifida, cleft lip/palate and ocular coloboma. For instance, the Pax2 transcription factor is required for optic fissure closure, although the mechanism of Pax2 action leading to tissue fusion remains elusive. This lack of information defining how transcription factors drive tissue morphogenesis at the cellular level is hampering new treatments options. Through loss- and gain-of-function analysis, we now establish that pax2 in combination with vax2 directly regulate the fas-associated death domain (fadd) gene. In the presence of fadd, cell proliferation is restricted in the developing eye through a caspase-dependent pathway. However, the loss of fadd results in a proliferation defect and concomitant activation of the necroptosis pathway through RIP1/RIP3 activity, leading to an abnormal open fissure. Inhibition of RIP1 with the small molecule drug necrostatin-1 rescues the pax2 eye fusion defect, thereby overcoming the underlying genetic defect. Thus, fadd has an essential physiological function in protecting the developing optic fissure neuroepithelium from RIP3-dependent necroptosis. This study demonstrates the molecular hierarchies that regulate a cellular switch between proliferation and the apoptotic and necroptotic cell death pathways, which in combination drive tissue morphogenesis. Furthermore, our data suggest that future therapeutic strategies may be based on small molecule drugs that can bypass the gene defects causing common congenital tissue fusion defects.
Collapse
Affiliation(s)
- Ishaq A Viringipurampeer
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|