1
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00823-y. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Al-Eidan A, Wang Y, Skipp P, Ewing RM. The USP7 protein interaction network and its roles in tumorigenesis. Genes Dis 2022; 9:41-50. [PMID: 35005106 PMCID: PMC8720671 DOI: 10.1016/j.gendis.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-specific protease (USP7), also known as Herpesvirus-associated ubiquitin-specific protease (HAUSP), is a deubiquitinase. There has been significant recent attention on USP7 following the discovery that USP7 is a key regulator of the p53-MDM2 pathway. The USP7 protein is 130 kDa in size and has multiple domains which bind to a diverse set of proteins. These interactions mediate key developmental and homeostatic processes including the cell cycle, immune response, and modulation of transcription factor and epigenetic regulator activity and localization. USP7 also promotes carcinogenesis through aberrant activation of the Wnt signalling pathway and stabilization of HIF-1α. These findings have shown that USP7 may induce tumour progression and be a therapeutic target. Together with interest in developing USP7 as a target, several studies have defined new protein interactions and the regulatory networks within which USP7 functions. In this review, we focus on the protein interactions of USP7 that are most important for its cancer-associated roles.
Collapse
Affiliation(s)
- Ahood Al-Eidan
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Department of Biology, College of Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Yihua Wang
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M. Ewing
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
3
|
Ranes M, Zaleska M, Sakalas S, Knight R, Guettler S. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol Cell 2021; 81:3246-3261.e11. [PMID: 34352208 PMCID: PMC8403986 DOI: 10.1016/j.molcel.2021.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
The Wnt/β-catenin pathway is a highly conserved, frequently mutated developmental and cancer pathway. Its output is defined mainly by β-catenin's phosphorylation- and ubiquitylation-dependent proteasomal degradation, initiated by the multi-protein β-catenin destruction complex. The precise mechanisms underlying destruction complex function have remained unknown, largely because of the lack of suitable in vitro systems. Here we describe the in vitro reconstitution of an active human β-catenin destruction complex from purified components, recapitulating complex assembly, β-catenin modification, and degradation. We reveal that AXIN1 polymerization and APC promote β-catenin capture, phosphorylation, and ubiquitylation. APC facilitates β-catenin's flux through the complex by limiting ubiquitylation processivity and directly interacts with the SCFβ-TrCP E3 ligase complex in a β-TrCP-dependent manner. Oncogenic APC truncation variants, although part of the complex, are functionally impaired. Nonetheless, even the most severely truncated APC variant promotes β-catenin recruitment. These findings exemplify the power of biochemical reconstitution to interrogate the molecular mechanisms of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Michael Ranes
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Mariola Zaleska
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Saira Sakalas
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Ruth Knight
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK.
| |
Collapse
|
4
|
Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 2021; 21:5-21. [PMID: 33097916 DOI: 10.1038/s41568-020-00307-z] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Mutation-induced activation of WNT-β-catenin signalling is a frequent driver event in human cancer. Sustained WNT-β-catenin pathway activation endows cancer cells with sustained self-renewing growth properties and is associated with therapy resistance. In healthy adult stem cells, WNT pathway activity is carefully controlled by core pathway tumour suppressors as well as negative feedback regulators. Gene inactivation experiments in mouse models unequivocally demonstrated the relevance of WNT tumour suppressor loss-of-function mutations for cancer growth. However, in human cancer, a far more complex picture has emerged in which missense or truncating mutations mediate stable expression of mutant proteins, with distinct functional and phenotypic ramifications. Herein, we review recent advances and challenges in our understanding of how different mutational subsets of WNT tumour suppressor genes link to distinct cancer types, clinical outcomes and treatment strategies.
Collapse
Affiliation(s)
- Jeroen M Bugter
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
5
|
Li TM, Ren J, Husmann D, Coan JP, Gozani O, Chua KF. Multivalent tumor suppressor adenomatous polyposis coli promotes Axin biomolecular condensate formation and efficient β-catenin degradation. Sci Rep 2020; 10:17425. [PMID: 33060621 PMCID: PMC7562749 DOI: 10.1038/s41598-020-74080-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is frequently mutated in colorectal cancers. APC and Axin are core components of a destruction complex that scaffolds GSK3β and CK1 to earmark β-catenin for proteosomal degradation. Disruption of APC results in pathologic stabilization of β-catenin and oncogenesis. However, the molecular mechanism by which APC promotes β-catenin degradation is unclear. Here, we find that the intrinsically disordered region (IDR) of APC, which contains multiple β-catenin and Axin interacting sites, undergoes liquid–liquid phase separation (LLPS) in vitro. Expression of the APC IDR in colorectal cells promotes Axin puncta formation and β-catenin degradation. Our results support the model that multivalent interactions between APC and Axin drives the β-catenin destruction complex to form biomolecular condensates in cells, which concentrate key components to achieve high efficient degradation of β-catenin.
Collapse
Affiliation(s)
- Tie-Mei Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Biology, Stanford University, Stanford, CA, 94305, USA. .,Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Jing Ren
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Dylan Husmann
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - John P Coan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Katrin F Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Education, and Clinical Center, Geriatric Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
6
|
Li S, Ren Q. Effects of Arsenic on wnt/β-catenin Signaling Pathway: A Systematic Review and Meta-analysis. Chem Res Toxicol 2020; 33:1458-1467. [PMID: 32307979 DOI: 10.1021/acs.chemrestox.0c00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We aimed to systematically evaluate the regulatory effect of arsenic on wnt/β-catenin signaling pathway and to provide theoretical basis for revealing the mechanism of the relationship between arsenic and cell proliferation. The meta-analysis was carried out using Revman5.2 and Stata13.0 to describe the differences between groups with standard mean difference. We found in normal cells that the levels of wnt3a, β-catenin, glycogen synthase kinase-3β phosphorylated at serine 9 (p-GSK-3β(Ser9)), cyclinD1, proto-oncogene c-myc, and vascular endothelial growth factor (VEGF) in the arsenic intervention group were higher than those in the control group, and the level of glycogen synthase kinase-3β (GSK-3β) was lower than that in the control group (P < 0.05, respectively). Subgroup analysis showed that for a long time period (>24 h), the level of β-catenin in the arsenic intervention group was higher than that in the control group, and the level of GSK-3β of the same long-time period (>24 h) with low-dose (≤5 μM) intervention was lower than those in the control group (P < 0.05, respectively). In cancer cells, the levels of β-catenin, cyclinD1, c-myc, and VEGF in the arsenic intervention group were lower than those in the control group, while the level of GSK-3β in the arsenic intervention group was higher than that in the control group (P < 0.05, respectively). Subgroup analysis showed that the levels of β-catenin, cyclinD1, and c-myc in the high-dose (>5 μM) arsenic intervention group were lower than those in the control group, and the levels of β-catenin and cyclinD1 in the high-dose (>5 μM) arsenic intervention group were lower than those in the low-dose (≤5 μM) arsenic intervention group (P < 0.05, respectively). In addition, the regulation of arsenic on β-catenin was dose-dependent in the range of arsenic concentration from 0 to 7.5 μM. This study revealed that arsenic could upregulate wnt/β-catenin signaling pathway in normal cells and downregulate it in cancer cells, and its effect was affected by time and dose.
Collapse
Affiliation(s)
- Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang China
| |
Collapse
|
7
|
Han J, Jiang Q, Ma R, Zhang H, Tong D, Tang K, Wang X, Ni L, Miao J, Duan B, Yang Y, Chen Y, Wu F, Han J, Wang M, Hou N, Huang C. Norepinephrine-CREB1-miR-373 axis promotes progression of colon cancer. Mol Oncol 2020; 14:1059-1073. [PMID: 32118353 PMCID: PMC7191185 DOI: 10.1002/1878-0261.12657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
The adrenergic system contributes to the stress‐induced onset and progression of cancer. Adrenergic fibers are the primary source of norepinephrine (NE). The underlying mechanisms involved in NE‐induced colon cancer remain to be understood. In this study, we describe the function and regulatory network of NE in the progression of colon cancer. We demonstrate that NE‐induced phosphorylation of cAMP response element‐binding protein 1 (CREB1) promotes proliferation, migration, and invasion of human colon cancer cells. The downstream effector of NE, CREB1, bound to the promoter of miR‐373 and transcriptionally activated its expression. miR‐373 expression was shown to be necessary for NE‐induced cell proliferation, invasion, and tumor growth. We confirmed that proliferation and invasion of colon cancer cells are regulated in vitro and in vivo by miR‐373 through targeting of the tumor suppressors TIMP2 and APC. Our data suggest that NE promotes colon cancer cell proliferation and metastasis by activating the CREB1–miR‐373 axis. The study of this novel signaling axis may provide mechanistic insights into the neural regulation of colon cancer and help in the design of future clinical studies on stress biology in colorectal cancer.
Collapse
Affiliation(s)
- Jia Han
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Ruili Ma
- School of Basic Medical Science, Xi'an Medical University, China
| | | | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Kaijie Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Lei Ni
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jiyu Miao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Baojun Duan
- Department of Medical Oncology, The Third Affiliated Hospital to Xi'an Jiaotong University, China
| | - Yang Yang
- Department of Health Toxicology and Hygiene Inspection, School of Public Health, Xi'an Jiaotong University Health Science Center, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Fei Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jiming Han
- Medical College, Yan'an University, China
| | - Mengchang Wang
- Department of Hematology, The First Hospital Affiliated to Xi'an Jiaotong University, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China
| |
Collapse
|
8
|
Preisler L, Ben-Yosef D, Mayshar Y. Adenomatous Polyposis Coli as a Major Regulator of Human Embryonic Stem Cells Self-Renewal. Stem Cells 2019; 37:1505-1515. [PMID: 31461190 DOI: 10.1002/stem.3084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
Human embryonic stem cells (hESCs) provide an essential tool to investigate early human development, study disease pathogenesis, and examine therapeutic interventions. Adenomatous polyposis coli (APC) is a negative regulator of Wnt/β-catenin signaling, implicated in the majority of sporadic colorectal cancers and in the autosomal dominant inherited syndrome familial adenomatous polyposis (FAP). Studies into the role of Wnt/β-catenin signaling in hESCs arrived at conflicting results, due at least in part to variations in culture conditions and the use of external inhibitors and agonists. Here, we directly targeted APC in hESCs carrying a germline APC mutation, derived from affected blastocysts following preimplantation genetic diagnosis (PGD) for FAP, in order to answer open questions regarding the role of APC in regulating pluripotency and differentiation potential of hESCs. Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9), we generated second hit APC mutations in FAP-hESCs. Despite high CRISPR/Cas9 targeting efficiency and the successful isolation of many clones, none of the isolated clones carried a loss of function mutation in the wild-type (WT) APC allele. Using a fluorescent β-catenin reporter and analysis of mutated-allele frequencies in the APC locus, we show that APC double mutant hESCs robustly activate Wnt/β-catenin signaling that results in rapid differentiation to endodermal and mesodermal lineages. Here, we provide direct evidence for a strict requirement for constant β-catenin degradation through the APC destruction complex in order to maintain pluripotency, highlighting a fundamental role for APC in self-renewal of hESCs. Stem Cells 2019;37:1505-1515.
Collapse
Affiliation(s)
- Livia Preisler
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Mayshar
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| |
Collapse
|
9
|
Dzobo K, Thomford NE, Senthebane DA. Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:517-538. [PMID: 31613700 DOI: 10.1089/omi.2019.0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This expert review offers a critical synthesis of the latest insights and approaches at targeting the Wnt/β-catenin pathway in various cancers such as colorectal cancer, melanoma, leukemia, and breast and lung cancers. Notably, from organogenesis to cancer, the Wnt/β-catenin signaling displays varied and highly versatile biological functions in animals, with virtually all tissues requiring the Wnt/β-catenin signaling in one way or the other. Aberrant expression of the members of the Wnt/β-catenin has been implicated in many pathological conditions, particularly in human cancers. Mutations in the Wnt/β-catenin pathway genes have been noted in diverse cancers. Biochemical and genetic data support the idea that inhibition of Wnt/β-catenin signaling is beneficial in cancer therapeutics. The interaction of this important pathway with other signaling systems is also noteworthy, but remains as an area for further research and discovery. In addition, formation of different complexes by components of the Wnt/β-catenin pathway and the precise roles of these complexes in the cytoplasmic milieu are yet to be fully elucidated. This article highlights the latest medical technologies in imaging, single-cell omics, use of artificial intelligence (e.g., machine learning techniques), genome sequencing, quantum computing, molecular docking, and computational softwares in modeling interactions between molecules and predicting protein-protein and compound-protein interactions pertinent to the biology and therapeutic value of the Wnt/β-catenin signaling pathway. We discuss these emerging technologies in relationship to what is currently needed to move from concept to actionable strategies in translating the Wnt/β-catenin laboratory discoveries to Wnt-targeted cancer therapies and diagnostics in the clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dimakatso A Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Schatoff EM, Goswami S, Zafra MP, Foronda M, Shusterman M, Leach BI, Katti A, Diaz BJ, Dow LE. Distinct Colorectal Cancer-Associated APC Mutations Dictate Response to Tankyrase Inhibition. Cancer Discov 2019; 9:1358-1371. [PMID: 31337618 DOI: 10.1158/2159-8290.cd-19-0289] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The majority of colorectal cancers show hyperactivated WNT signaling due to inactivating mutations in the adenomatous polyposis coli (APC) tumor suppressor. Genetically restoring APC suppresses WNT and induces rapid and sustained tumor regression, implying that reengaging this endogenous tumor-suppressive mechanism may be an effective therapeutic strategy. Here, using new animal models, human cell lines, and ex vivo organoid cultures, we show that tankyrase (TNKS) inhibition can control WNT hyperactivation and provide long-term tumor control in vivo, but that effective responses are critically dependent on how APC is disrupted. Mutant APC proteins truncated within the mutation cluster region physically engage the destruction complex and suppress the WNT transcriptional program, while APC variants with early truncations (e.g., Apc Min) show limited interaction with AXIN1 and β-catenin, and do not respond to TNKS blockade. Together, this work shows that TNKS inhibition, like APC restoration, can reestablish endogenous control of WNT/β-catenin signaling, but that APC genotype is a crucial determinant of this response. SIGNIFICANCE: This study reveals how subtle changes to the mutations in a critical colorectal tumor suppressor, APC, influence the cellular response to a targeted therapy. It underscores how investigating the specific genetic alterations that occur in human cancer can identify important biological mechanisms of drug response and resistance.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
Affiliation(s)
- Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York.,Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Sukanya Goswami
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Maria Paz Zafra
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Miguel Foronda
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Michael Shusterman
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Benjamin I Leach
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Alyna Katti
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Bianca J Diaz
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York. .,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York.,Department of Biochemistry, Weill Cornell Medicine, New York, New York
| |
Collapse
|
11
|
Bonjoch L, Mur P, Arnau-Collell C, Vargas-Parra G, Shamloo B, Franch-Expósito S, Pineda M, Capellà G, Erman B, Castellví-Bel S. Approaches to functionally validate candidate genetic variants involved in colorectal cancer predisposition. Mol Aspects Med 2019; 69:27-40. [PMID: 30935834 DOI: 10.1016/j.mam.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Most next generation sequencing (NGS) studies identified candidate genetic variants predisposing to colorectal cancer (CRC) but do not tackle its functional interpretation to unequivocally recognize a new hereditary CRC gene. Besides, germline variants in already established hereditary CRC-predisposing genes or somatic variants share the same need when trying to categorize those with relevant significance. Functional genomics approaches have an important role in identifying the causal links between genetic architecture and phenotypes, in order to decipher cellular function in health and disease. Therefore, functional interpretation of identified genetic variants by NGS platforms is now essential. Available approaches nowadays include bioinformatics, cell and molecular biology and animal models. Recent advances, such as the CRISPR-Cas9, ZFN and TALEN systems, have been already used as a powerful tool with this objective. However, the use of cell lines is of limited value due to the CRC heterogeneity and its close interaction with microenvironment. Access to tridimensional cultures or organoids and xenograft models that mimic the in vivo tissue architecture could revolutionize functional analysis. This review will focus on the application of state-of-the-art functional studies to better tackle new genes involved in germline predisposition to this neoplasm.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Gardenia Vargas-Parra
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Bahar Shamloo
- Molecular Biology, Genetics, and Bioengineering Department, Legacy Research Institute, Portland, OR, USA
| | - Sebastià Franch-Expósito
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellà
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Wang Q, Feng F, Wang J, Ren M, Shi Z, Mao X, Zhang H, Ju X. Liver X receptor activation reduces gastric cancer cell proliferation by suppressing Wnt signalling via LXRβ relocalization. J Cell Mol Med 2018; 23:789-797. [PMID: 30338932 PMCID: PMC6349166 DOI: 10.1111/jcmm.13974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Liver X receptors (LXRs) are involved in various diseases associated with lipid disorders, and in regulating cancer cell proliferation. However, the underlying molecular mechanisms, especially those in gastric cancer (GC) remain to be clarified. In this study, immunohistochemistry analysis revealed that LXRβ was mainly expressed in GC tissue, with less expression in adjacent normal tissues. The LXRβ agonist T0901317 efficiently suppressed the proliferation and colony formation of various GC cell lines. We further showed that LXRβ translocated from the cytoplasm to the nucleus when activated by T0901317. LXRβ nuclear localization suppressed the activation of Wnt signalling and decreased the expression of target genes such as MYC, BMP4, and MMP7 through binding to their promoters. Moreover, we demonstrated that the LXR agonist efficiently suppressed GC tumour growth in a nude mouse xenograft model. Taken together, these results revealed that LXRβ agonist inhibited GC cells proliferation by suppressing Wnt signalling via LXRβ relocalization. The results strongly suggest that LXRβ could be a promising target in GC therapy.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fan Feng
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiayou Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Meijia Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhonggang Shi
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiang Mao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Ji L, Lu B, Wang Z, Yang Z, Reece-Hoyes J, Russ C, Xu W, Cong F. Identification of ICAT as an APC Inhibitor, Revealing Wnt-Dependent Inhibition of APC-Axin Interaction. Mol Cell 2018; 72:37-47.e4. [DOI: 10.1016/j.molcel.2018.07.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/18/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
|
15
|
Novellasdemunt L, Foglizzo V, Cuadrado L, Antas P, Kucharska A, Encheva V, Snijders AP, Li VSW. USP7 Is a Tumor-Specific WNT Activator for APC-Mutated Colorectal Cancer by Mediating β-Catenin Deubiquitination. Cell Rep 2018; 21:612-627. [PMID: 29045831 PMCID: PMC5656747 DOI: 10.1016/j.celrep.2017.09.072] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
The tumor suppressor gene adenomatous polyposis coli (APC) is mutated in most colorectal cancers (CRCs), resulting in constitutive Wnt activation. To understand the Wnt-activating mechanism of the APC mutation, we applied CRISPR/Cas9 technology to engineer various APC-truncated isogenic lines. We find that the β-catenin inhibitory domain (CID) in APC represents the threshold for pathological levels of Wnt activation and tumor transformation. Mechanistically, CID-deleted APC truncation promotes β-catenin deubiquitination through reverse binding of β-TrCP and USP7 to the destruction complex. USP7 depletion in APC-mutated CRC inhibits Wnt activation by restoring β-catenin ubiquitination, drives differentiation, and suppresses xenograft tumor growth. Finally, the Wnt-activating role of USP7 is specific to APC mutations; thus, it can be used as a tumor-specific therapeutic target for most CRCs. APC CID protects β-catenin from USP7-mediated deubiquitination APC lacking CID exposes β-catenin to USP7 for deubiquitination USP7 depletion inhibits Wnt in APC mutant CRC by restoring β-catenin ubiquitination USP7 inactivation suppresses xenograft tumor growth and is tumor specific
Collapse
Affiliation(s)
| | | | - Laura Cuadrado
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pedro Antas
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Kucharska
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vesela Encheva
- The Francis Crick Institute, Mass Spectrometry Science Technology Platform, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- The Francis Crick Institute, Mass Spectrometry Science Technology Platform, 1 Midland Road, London NW1 1AT, UK
| | - Vivian S W Li
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
16
|
Schaefer KN, Bonello TT, Zhang S, Williams CE, Roberts DM, McKay DJ, Peifer M. Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 2018; 14:e1007339. [PMID: 29641560 PMCID: PMC5912785 DOI: 10.1371/journal.pgen.1007339] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/23/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.
Collapse
Affiliation(s)
- Kristina N. Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Teresa T. Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shiping Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Clara E. Williams
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - David M. Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA, United States of America
| | - Daniel J. McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
17
|
Chou YT, Jiang JK, Yang MH, Lu JW, Lin HK, Wang HD, Yuh CH. Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain. PLoS Biol 2018; 16:e2003714. [PMID: 29337987 PMCID: PMC5786329 DOI: 10.1371/journal.pbio.2003714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/26/2018] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Altered metabolism is one of the hallmarks of cancers. Deregulation of ribose-5-phosphate isomerase A (RPIA) in the pentose phosphate pathway (PPP) is known to promote tumorigenesis in liver, lung, and breast tissues. Yet, the molecular mechanism of RPIA-mediated colorectal cancer (CRC) is unknown. Our study demonstrates a noncanonical function of RPIA in CRC. Data from the mRNAs of 80 patients’ CRC tissues and paired nontumor tissues and protein levels, as well as a CRC tissue array, indicate RPIA is significantly elevated in CRC. RPIA modulates cell proliferation and oncogenicity via activation of β-catenin in colon cancer cell lines. Unlike its role in PPP in which RPIA functions within the cytosol, RPIA enters the nucleus to form a complex with the adenomatous polyposis coli (APC) and β-catenin. This association protects β-catenin by preventing its phosphorylation, ubiquitination, and subsequent degradation. The C-terminus of RPIA (amino acids 290 to 311), a region distinct from its enzymatic domain, is necessary for RPIA-mediated tumorigenesis. Consistent with results in vitro, RPIA increases the expression of β-catenin and its target genes, and induces tumorigenesis in gut-specific promotor-carrying RPIA transgenic zebrafish. Together, we demonstrate a novel function of RPIA in CRC formation in which RPIA enters the nucleus and stabilizes β-catenin activity and suggests that RPIA might be a biomarker for targeted therapy and prognosis. The pentose phosphate pathway generates NADPH, pentose, and ribose-5-phosphate by RPIA for nucleotide synthesis. Deregulation of RPIA is known to promote tumorigenesis in liver, lung, and breast tissues; however, the molecular mechanism of RPIA-mediated CRC is unknown. Here, we demonstrate a role of RPIA in CRC formation distinct from its role in these other tissues. We showed that RPIA is significantly elevated in CRC. RPIA increased cell proliferation and oncogenicity via activation of β-catenin, with RPIA entering the nucleus to form a complex with APC and β-catenin. Further investigation suggested that RPIA protects β-catenin by preventing its phosphorylation, ubiquitination, and subsequent degradation. In addition, the C-terminus of RPIA (amino acids 290 to 311), a portion of the protein not previously characterized, is necessary for RPIA-mediated tumorigenesis. Finally, we observed that transgenic expression of RPIA increases the expression of β-catenin and its target genes and induces tumorigenesis. Our findings suggest that RPIA can enter the nucleus and associate with APC/β-catenin, and suggest precise treatment of human CRC by targeting its nonenzymatic domain.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Wei Lu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan, Taiwan
| | - Hua-Kuo Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
- * E-mail: (CHY); (HDW)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail: (CHY); (HDW)
| |
Collapse
|
18
|
Roberts KJ, Schrem H, Hodson J, Angelico R, Dasari BVM, Coldham CA, Marudanayagam R, Sutcliffe RP, Muiesan P, Isaac J, Mirza DF. Pancreas exocrine replacement therapy is associated with increased survival following pancreatoduodenectomy for periampullary malignancy. HPB (Oxford) 2017; 19:859-867. [PMID: 28711377 DOI: 10.1016/j.hpb.2017.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 05/10/2017] [Accepted: 05/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although many patients undergoing pancreatoduodenectomy (PD) for cancer have pancreatic exocrine insufficiency, pancreatic enzyme replacement therapy (PERT) is not routinely used, and effects upon post-operative survival are unclear. METHODS This review of patients undergoing PD for periampullary malignancy sought to test for an association between PERT and overall survival, with post-hoc subgroup analysis performed after stratifying patients by the year of surgery, pancreatic duct width and tumour type. RESULTS Some 202/469 (43.1%) patients received PERT. After accounting for pathological variables and chemotherapy, PERT use was found to be independently associated with improved survival on multivariable analysis [HR 0.72 (95% CI: 0.52-0.99), p = 0.044] and on propensity matched analysis (p = 0.009). The effect of PERT upon improved survival was predominantly observed amongst patients with a dilated pancreatic duct (≥3 mm). DISCUSSION PERT use was independently associated with improved survival following PD for cancer. The validity of this observation is supported by an effect largely confined to those patients with a dilated pancreatic duct. The nutritional status of patients undergoing PD for cancer needs further investigation and the effects of PERT require verification in further clinical studies.
Collapse
Affiliation(s)
- Keith J Roberts
- Dept. of HPB Surgery, University Hospitals Birmingham, United Kingdom.
| | - Harald Schrem
- Dept. of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - James Hodson
- Medical Statistician, Institute of Translational Medicine, University Hospitals Birmingham, United Kingdom
| | - Roberta Angelico
- Dept. of HPB Surgery, University Hospitals Birmingham, United Kingdom
| | - Bobby V M Dasari
- Dept. of HPB Surgery, University Hospitals Birmingham, United Kingdom
| | - Chris A Coldham
- Dept. of HPB Surgery, University Hospitals Birmingham, United Kingdom
| | | | | | - Paolo Muiesan
- Dept. of HPB Surgery, University Hospitals Birmingham, United Kingdom
| | - John Isaac
- Dept. of HPB Surgery, University Hospitals Birmingham, United Kingdom
| | - Darius F Mirza
- Dept. of HPB Surgery, University Hospitals Birmingham, United Kingdom
| |
Collapse
|
19
|
van Kappel EC, Maurice MM. Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol 2017. [PMID: 28634996 PMCID: PMC5727331 DOI: 10.1111/bph.13922] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The β‐catenin destruction complex is a dynamic cytosolic multiprotein assembly that provides a key node in Wnt signalling regulation. The core components of the destruction complex comprise the scaffold proteins axin and adenomatous polyposis coli and the Ser/Thr kinases casein kinase 1 and glycogen synthase kinase 3. In unstimulated cells, the destruction complex efficiently drives degradation of the transcriptional coactivator β‐catenin, thereby preventing the activation of the Wnt/β‐catenin pathway. Mutational inactivation of the destruction complex is a major pathway in the pathogenesis of cancer. Here, we review recent insights in the regulation of the β‐catenin destruction complex, including newly identified interaction interfaces, regulatory elements and post‐translationally controlled mechanisms. In addition, we discuss how mutations in core destruction complex components deregulate Wnt signalling via distinct mechanisms and how these findings open up potential therapeutic approaches to restore destruction complex activity in cancer cells. Linked Articles This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc
Collapse
Affiliation(s)
- Eline C van Kappel
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017; 169:985-999. [PMID: 28575679 DOI: 10.1016/j.cell.2017.05.016] [Citation(s) in RCA: 2900] [Impact Index Per Article: 362.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022]
Abstract
The WNT signal transduction cascade is a main regulator of development throughout the animal kingdom. Wnts are also key drivers of most types of tissue stem cells in adult mammals. Unsurprisingly, mutated Wnt pathway components are causative to multiple growth-related pathologies and to cancer. Here, we describe the core Wnt/β-catenin signaling pathway, how it controls stem cells, and contributes to disease. Finally, we discuss strategies for Wnt-based therapies.
Collapse
|
21
|
Thorvaldsen TE. Targeting Tankyrase to Fight WNT-dependent Tumours. Basic Clin Pharmacol Toxicol 2017; 121:81-88. [PMID: 28371398 DOI: 10.1111/bcpt.12786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Aberrant WNT signalling activity is linked to various diseases due to the WNT dependency of fundamental processes during development and in adult tissue homeostasis. Mutations in components of the multi-protein β-catenin destruction complex promote excessive amounts of the main transcriptional activator β-catenin and are particularly common in colorectal cancer (CRC). The tankyrase enzymes were recently implicated as negative regulators of destruction complex activity by mediating degradation of the scaffolding protein AXIN. Indeed, tankyrase inhibitors (TNKSi) have emerged as promising therapeutics by restoring functional signal-limiting destruction complexes in CRCs. Furthermore, as TNKSi-induced destruction complexes (so-called degradasomes) can be visualized by microscopy, they have served as a valuable experimental model system to address unresolved aspects regarding the structure, function and composition of the β-catenin destruction complex. This MiniReview provides an overview of the current knowledge on the regulatory mechanisms and interactions that govern the β-catenin destruction complex activity. It further highlights the potential of TNKSi as anticancer drugs and as a novel research tool to dissect the WNT signalling pathway.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
22
|
Pronobis MI, Deuitch N, Posham V, Mimori-Kiyosue Y, Peifer M. Reconstituting regulation of the canonical Wnt pathway by engineering a minimal β-catenin destruction machine. Mol Biol Cell 2016; 28:41-53. [PMID: 27852897 PMCID: PMC5221518 DOI: 10.1091/mbc.e16-07-0557] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023] Open
Abstract
APC and Axin are key negative regulators of Wnt signaling in development and oncogenesis. They form a multiprotein complex targeting the key Wnt effector β-catenin for destruction. Essential components of APC and Axin required for their cooperative function are identified, and the data are used to design a minimal β-catenin–destruction machine. Negatively regulating key signaling pathways is critical to development and altered in cancer. Wnt signaling is kept off by the destruction complex, which is assembled around the tumor suppressors APC and Axin and targets β-catenin for destruction. Axin and APC are large proteins with many domains and motifs that bind other partners. We hypothesized that if we identified the essential regions required for APC:Axin cooperative function and used these data to design a minimal β-catenin-destruction machine, we would gain new insights into the core mechanisms of destruction complex function. We identified five key domains/motifs in APC or Axin that are essential for their function in reconstituting Wnt regulation. Strikingly, however, certain APC and Axin mutants that are nonfunctional on their own can complement one another in reducing β-catenin, revealing that the APC:Axin complex is a highly robust machine. We used these insights to design a minimal β-catenin-destruction machine, revealing that a minimized chimeric protein covalently linking the five essential regions of APC and Axin reconstitutes destruction complex internal structure, size, and dynamics, restoring efficient β-catenin destruction in colorectal tumor cells. On the basis of our data, we propose a new model of the mechanistic function of the destruction complex as an integrated machine.
Collapse
Affiliation(s)
- Mira I Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie Deuitch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Vinya Posham
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yuko Mimori-Kiyosue
- Cellular Dynamics Analysis Unit, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 .,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
23
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
24
|
Wnt/β Catenin-Mediated Signaling Commonly Altered in Colorectal Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:49-68. [DOI: 10.1016/bs.pmbts.2016.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Pronobis MI, Rusan NM, Peifer M. A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient βcatenin destruction. eLife 2015; 4:e08022. [PMID: 26393419 PMCID: PMC4568445 DOI: 10.7554/elife.08022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 01/11/2023] Open
Abstract
APC, a key negative regulator of Wnt signaling in development and oncogenesis, acts in the destruction complex with the scaffold Axin and the kinases GSK3 and CK1 to target βcatenin for destruction. Despite 20 years of research, APC's mechanistic function remains mysterious. We used FRAP, super-resolution microscopy, functional tests in mammalian cells and flies, and other approaches to define APC's mechanistic role in the active destruction complex when Wnt signaling is off. Our data suggest APC plays two roles: (1) APC promotes efficient Axin multimerization through one known and one novel APC:Axin interaction site, and (2) GSK3 acts through APC motifs R2 and B to regulate APC:Axin interactions, promoting high-throughput of βcatenin to destruction. We propose a new dynamic model of how the destruction complex regulates Wnt signaling and how this goes wrong in cancer, providing insights into how this multiprotein signaling complex is assembled and functions via multivalent interactions. DOI:http://dx.doi.org/10.7554/eLife.08022.001 An embryo starts off as a small ball of stem cells, each of which has the potential to become any type of cell in the body. Adult organs and tissues also contain small numbers of stem cells that can replace old or damaged cells. In both of these processes, stem cells need to ‘decide’ when they should start to change into a more specialized cell type, and which cell fate to choose (e.g., liver cell vs kidney cell). A signaling pathway involving Wnt proteins helps to direct many of these decisions. But if the ‘Wnt signaling pathway’ becomes activated at the wrong time, it can lead to cancer. For example, the first step in development of colon cancer is the inappropriate activation of Wnt signaling, and is most often caused by mutations in the gene that encodes a protein called APC. The APC protein is a tumor suppressor and normally inhibits Wnt signaling. However, even after over 20 years of effort, it remains largely mysterious how APC does this. APC is known to work with another protein called Axin as part of a large protein machine. This protein complex performs one of the first steps in a process that ultimately marks a key component of the Wnt signaling pathway for destruction. Pronobis et al. have now used a range of techniques to define APC's role in this so-called ‘destruction complex’. This analysis revealed the internal structure of a complex made from APC and Axin, and showed that cable- and sheet-like assemblies of Axin were intertwined with APC cables. Further experiments then revealed how APC and Axin proteins are added into or leave these complexes, and showed that this is critical for this protein machine to work. Pronobis et al.'s data also suggest that APC plays two roles, which make the destruction complex more efficient. Firstly, it can interact with Axin via two separate interaction sites that help to assemble the destruction complex. Secondly, specific features in APC allow it to interact with a third protein (called GSK3), which can then regulate how APC interacts with Axin. One of the next challenges will be to uncover how APC helps to transfer the components of Wnt signaling to the next step of their destruction, and to clear up the role played by GSK3. DOI:http://dx.doi.org/10.7554/eLife.08022.002
Collapse
Affiliation(s)
- Mira I Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
26
|
Yoo BH, Masson O, Li Y, Khan IA, Gowda PS, Rosen KV. Anoikis of colon carcinoma cells triggered by β-catenin loss can be enhanced by tumor necrosis factor receptor 1 antagonists. Oncogene 2014; 34:4939-51. [PMID: 25531320 DOI: 10.1038/onc.2014.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022]
Abstract
Detachment of non-malignant epithelial cells from the extracellular matrix causes their apoptosis, a phenomenon called anoikis. By contrast, carcinoma cells are anoikis-resistant, and this resistance is thought to be critical for tumor progression. Many oncogenes trigger not only anti- but also pr-apoptotic signals. The proapoptotic events represent an aspect of a phenomenon called oncogenic stress, which acts as a safeguard mechanism blocking tumor initiation. In cells that become malignant, oncogene-induced antiapoptotic signals outbalance the proapoptotic ones. It is now thought that treatments blocking the antiapoptotic events but preserving the proapoptotic signals can be particularly effective in killing tumor cells. Whether or not oncogenes induce any proanoikis signals that can be used for enhancing the efficiency of approaches aimed at triggering anoikis of cancer cells has never been explored. β-Catenin is a major oncoprotein that is often activated in colorectal cancer and promotes tumor progression via mechanisms that are understood only in part. We found here that β-catenin triggers both anti- and proanoikis signals in colon cancer cells. We observed that the antianoikis signals prevail and the cells become anoikis-resistant. We further established that one proanoikis signal in these cells is triggered by β-catenin-induced downregulation of an apoptosis inhibitor tumor necrosis factor receptor 1 (TNFR1) and subsequent reduction of the activity of a transcription factor NF-κB (nuclear factor-κB), a mediator of TNFR1 signaling. We also found that the effect of β-catenin on TNFR1 requires the presence of transcription factor TCF1, a β-catenin effector. We demonstrated that ablation of β-catenin in colon cancer cells triggers their anoikis and that this anoikis is enhanced even further if low TNFR1 or NF-κB activity is artificially preserved in the β-catenin-deprived cells. Thus, inhibition of TNFR1 or NF-κB activity can be expected to enhance the efficiency of approaches aimed at blocking β-catenin-driven anoikis resistance of colon carcinoma cells.
Collapse
Affiliation(s)
- B H Yoo
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - O Masson
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - Y Li
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - I A Khan
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - P S Gowda
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| | - K V Rosen
- Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Haifax, NS, Canada
| |
Collapse
|
27
|
different Roles for the axin interactions with the SAMP versus the second twenty amino acid repeat of adenomatous polyposis coli. PLoS One 2014; 9:e94413. [PMID: 24722208 PMCID: PMC3983206 DOI: 10.1371/journal.pone.0094413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 03/16/2014] [Indexed: 11/19/2022] Open
Abstract
Wnt signalling is prevented by the proteosomal degradation of β-catenin, which occurs in a destruction complex containing adenomatous polyposis coli (APC), APC-like (APCL), Axin and Axin2. Truncating mutations of the APC gene result in the constitutive stabilisation of β-catenin and the initiation of colon cancer, although tumour cells tolerate the expression of wild-type APCL. Using the colocalisation of overexpressed Axin, APC and APCL constructs as a readout of interaction, we found that Axin interacted with the second twenty amino acid repeat (20R2) of APC and APCL. This interaction involved a domain adjacent to the C-terminal DIX domain of Axin. We identified serine residues within the 20R2 of APCL that were involved in Axin colocalisation, the phosphorylation of truncated APCL and the down-regulation of β-catenin. Our results indicated that Axin, but not Axin2, displaced APC, but not APCL, from the cytoskeleton and stimulated its incorporation into bright cytoplasmic dots that others have recognised as β-catenin destruction complexes. The SAMP repeats in APC interact with the N-terminal RGS domain of Axin. Our data showed that a short domain containing the first SAMP repeat in truncated APC was required to stimulate Axin oligomerisation. This was independent of Axin colocalisation with 20R2. Our data also suggested that the RGS domain exerted an internal inhibitory constraint on Axin oligomerisation. Considering our data and those from others, we discuss a working model whereby β-catenin phosphorylation involves Axin and the 20R2 of APC or APCL and further processing of phospho-β-catenin occurs upon the oligomerisation of Axin that is induced by binding the SAMP repeats in APC.
Collapse
|
28
|
Zauber P, Bishop T, Taylor C, Sabbath-Solitare M, Marotta S, Tomlinson I. Colorectal tumors from APC*I1307K carriers principally harbor somatic APC mutations outside the A8 tract. PLoS One 2014; 9:e84498. [PMID: 24416237 PMCID: PMC3886998 DOI: 10.1371/journal.pone.0084498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/15/2013] [Indexed: 01/13/2023] Open
Abstract
Purpose APC*I1307K (c.3920T>A) is an inherited variant associated with colorectal tumour risk found almost exclusively in those of Ashkenazi Jewish ancestry. A single nucleotide substitution creates an oligo-adenine tract (A8) that appears to be inherently prone to further mis-pairing and slippage. The reported multiple tumor phenotype of carriers is not easily reconciled with molecular and population genetics data. We postulated that some c.3920T>A carriers with multiple adenomas have other unidentified APC germ line or somatic mutations. Methods DNA from 82 colonic tumours and accompanying normal tissue collected from 29 carriers with multiple colorectal tumors was directly sequenced between codons 716 and 1604. We also assessed APC gene loss of heterozygosity. Results One patient (3.4%) was found to have an additional APC germ line mutation. Twenty-five of the tumours showed no significant somatic molecular change, 36 showed one change, 20 showed two, and one tumour showed more than 2 changes. Our data suggest a correlation between advancing histology and fewer beta-catenin binding sites remaining in the mutant proteins. Conclusions There were no other common germ line variants identified within the region of the APC gene examined, suggesting that any effect from this region on tumour production is attributable to the c.3920T>A allele. Our findings further suggest the only somatic genetic change clearly attributable to the c.3920T>A mutation is the c.3924_3925insA.
Collapse
Affiliation(s)
- Peter Zauber
- Department of Medicine, Saint Barnabas Medical Center, Livingston, New Jersey, United States of America
- * E-mail:
| | - Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Claire Taylor
- Cancer Research UK Genomics Facility, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Marlene Sabbath-Solitare
- Department of Pathology, Saint Barnabas Medical Center, Livingston, New Jersey, United States of America
| | - Stephen Marotta
- Department of Pathology, Saint Barnabas Medical Center, Livingston, New Jersey, United States of America
| | - Ian Tomlinson
- Molecular and Population Genetics, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| |
Collapse
|
29
|
Choi SH, Estarás C, Moresco JJ, Yates JR, Jones KA. α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 2014; 27:2473-88. [PMID: 24240237 PMCID: PMC3841736 DOI: 10.1101/gad.229062.113] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutation of the adenomatous polyposis coli (APC) tumor suppressor stabilizes β-catenin and aberrantly reactivates Wnt/β-catenin target genes in colon cancer. APC mutants in cancer frequently lack the conserved catenin inhibitory domain (CID), which is essential for β-catenin proteolysis. Here we show that the APC CID interacts with α-catenin, a Hippo signaling regulator and heterodimeric partner of β-catenin at cell:cell adherens junctions. Importantly, α-catenin promotes β-catenin ubiquitylation and proteolysis by stabilizing its association with APC and protecting the phosphodegron. Moreover, β-catenin ubiquitylation requires binding to α-catenin. Multidimensional protein identification technology (MudPIT) proteomics of multiple Wnt regulatory complexes reveals that α-catenin binds with β-catenin to LEF-1/TCF DNA-binding proteins in Wnt3a signaling cells and recruits APC in a complex with the CtBP:CoREST:LSD1 histone H3K4 demethylase to regulate transcription and β-catenin occupancy at Wnt target genes. Interestingly, tyrosine phosphorylation of α-catenin at Y177 disrupts binding to APC but not β-catenin and prevents repression of Wnt target genes in transformed cells. Chromatin immunoprecipitation studies further show that α-catenin and APC are recruited with β-catenin to Wnt response elements in human embryonic stem cells (hESCs). Knockdown of α-catenin in hESCs prevents the switch-off of Wnt/β-catenin transcription and promotes endodermal differentiation. Our findings indicate a role for α-catenin in the APC destruction complex and at Wnt target genes.
Collapse
Affiliation(s)
- Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 USA
| | | | | | | | | |
Collapse
|
30
|
Brauburger K, Akyildiz S, Ruppert JG, Graeb M, Bernkopf DB, Hadjihannas MV, Behrens J. Adenomatous polyposis coli (APC) membrane recruitment 3, a member of the APC membrane recruitment family of APC-binding proteins, is a positive regulator of Wnt-β-catenin signalling. FEBS J 2013; 281:787-801. [PMID: 24251807 DOI: 10.1111/febs.12624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
The adenomatous polyposis coli (APC) membrane recruitment (Amer) family proteins Amer1/Wilms tumour gene on the X chromosome and Amer2 are binding partners of the APC tumour suppressor protein, and act as negative regulators in the Wnt signalling cascade. So far, nothing has been known about the third member of the family, Amer3. Here we show that Amer3 binds to the armadillo repeat domain of APC, similarly to Amer1 and Amer2. Amer3 also binds to the Wnt pathway regulator conductin/axin2. Furthermore, we identified Amer1 as binding partner of Amer3. Whereas Amer1 and Amer2 are linked to the plasma membrane by an N-terminal membrane localization domain, Amer3 lacks this domain. Amer3 localizes to the cytoplasm and nucleus of epithelial cells, and this is dependent on specific nuclear import and export sequences. Functionally, exogenous Amer3 enhances the expression of a β-catenin/T-cell factor-dependent reporter gene, and knockdown of endogenous Amer3 reduces Wnt target gene expression in colorectal cancer cells. Thus, Amer3 acts as an activator of Wnt signalling, in contrast to Amer1 and Amer2, which are inhibitors, suggesting a nonredundant role of Amer proteins in the regulation of this pathway. Our data, together with those of previous studies, provide a comprehensive picture of similarities and differences within the Amer protein family.
Collapse
Affiliation(s)
- Katharina Brauburger
- Nikolaus Fiebiger Centre for Molecular Medicine, University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 2013; 26:570-9. [PMID: 24308963 DOI: 10.1016/j.cellsig.2013.11.032] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer. The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum.
Collapse
|
32
|
Minde DP, Radli M, Forneris F, Maurice MM, Rüdiger SGD. Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations. PLoS One 2013; 8:e77257. [PMID: 24130866 PMCID: PMC3793970 DOI: 10.1371/journal.pone.0077257] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/02/2013] [Indexed: 12/31/2022] Open
Abstract
Mutations in the central region of the signalling hub Adenomatous Polyposis Coli (APC) cause colorectal tumourigenesis. The structure of this region remained unknown. Here, we characterise the Mutation Cluster Region in APC (APC-MCR) as intrinsically disordered and propose a model how this structural feature may contribute to regulation of Wnt signalling by phosphorylation. APC-MCR was susceptible to proteolysis, lacked α-helical secondary structure and did not display thermal unfolding transition. It displayed an extended conformation in size exclusion chromatography and was accessible for phosphorylation by CK1ε in vitro. The length of disordered regions in APC increases with species complexity, from C. elegans to H. sapiens. We speculate that the large disordered region harbouring phosphorylation sites could be a successful strategy to stabilise tight regulation of Wnt signalling against single missense mutations.
Collapse
Affiliation(s)
- David P. Minde
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martina Radli
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Madelon M. Maurice
- Department of Cell Biology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- * E-mail: (SR); (MMM)
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- * E-mail: (SR); (MMM)
| |
Collapse
|
33
|
Schneikert J, Vijaya Chandra SH, Ruppert JG, Ray S, Wenzel EM, Behrens J. Functional comparison of human adenomatous polyposis coli (APC) and APC-like in targeting beta-catenin for degradation. PLoS One 2013; 8:e68072. [PMID: 23840886 PMCID: PMC3698177 DOI: 10.1371/journal.pone.0068072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/25/2013] [Indexed: 01/17/2023] Open
Abstract
Truncating mutations affect the adenomatous polyposis coli (APC) gene in most cases of colon cancer, resulting in the stabilization of β-catenin and uncontrolled cell proliferation. We show here that colon cancer cell lines express also the paralog APC-like (APCL or APC2). RNA interference revealed that it controls the level and/or the activity of β-catenin, but it is less efficient and binds less well to β-catenin than APC, thereby providing one explanation as to why the gene is not mutated in colon cancer. A further comparison indicates that APCL down-regulates the β-catenin level despite the lack of the 15R region known to be important in APC. To understand this discrepancy, we performed immunoprecipitation experiments that revealed that phosphorylated β-catenin displays a preference for binding to the 15 amino acid repeats (15R) rather than the first 20 amino acid repeat of APC. This suggests that the 15R region constitutes a gate connecting the steps of β-catenin phosphorylation and subsequent ubiquitination/degradation. Using RNA interference and domain swapping experiments, we show that APCL benefits from the 15R of truncated APC to target β-catenin for degradation, in a process likely involving heterodimerization of the two partners. Our data suggest that the functional complementation of APCL by APC constitutes a substantial facet of tumour development, because the truncating mutations of APC in colorectal tumours from familial adenomatous polyposis (FAP) patients are almost always selected for the retention of at least one 15R.
Collapse
Affiliation(s)
- Jean Schneikert
- Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Hernández-Maqueda JG, Luna-Ulloa LB, Santoyo-Ramos P, Castañeda-Patlán MC, Robles-Flores M. Protein kinase C delta negatively modulates canonical Wnt pathway and cell proliferation in colon tumor cell lines. PLoS One 2013; 8:e58540. [PMID: 23520519 PMCID: PMC3592802 DOI: 10.1371/journal.pone.0058540] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/07/2013] [Indexed: 01/17/2023] Open
Abstract
The tumor suppressor Adenomatous Polyposis coli (APC) gene is mutated or lost in most colon cancers. Alterations in Protein kinase C (PKC) isozyme expression and aberrant regulation also comprise early events in intestinal carcinomas. Here we show that PKCδ expression levels are decreased in colon tumor cell lines with respect to non-malignant cells. Reciprocal co-immunoprecipitation and immunofluorescence studies revealed that PKCδ interacts specifically with both full-length (from non-malignant cells) and truncated APC protein (from cancerous cells) at the cytoplasm and at the cell nucleus. Selective inhibition of PKCδ in cancer SW480 cells, which do not possess a functional β-catenin destruction complex, did not affect β-catenin-mediated transcriptional activity. However, in human colon carcinoma RKO cells, which have a normal β-catenin destruction complex, negatively affected β-catenin-mediated transcriptional activity, cell proliferation, and the expression of Wnt target genes C-MYC and CYCLIN D1. These negative effects were confirmed by siRNA-mediated knockdown of PKCδ and by the expression of a dominant negative form of PKCδ in RKO cells. Remarkably, the PKCδ stably depleted cells exhibited augmented tumorigenic activity in grafted mice. We show that PKCδ functions in a mechanism that involves regulation of β-catenin degradation, because PKCδ inhibition induces β-catenin stabilization at the cytoplasm and its nuclear presence at the C-MYC enhancer even without Wnt3a stimulation. In addition, expression of a dominant form of PKCδ diminished APC phosphorylation in intact cells, suggesting that PKCδ may modulate canonical Wnt activation negatively through APC phosphorylation.
Collapse
Affiliation(s)
- José G. Hernández-Maqueda
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Bernardo Luna-Ulloa
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Paula Santoyo-Ramos
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - M. Cristina Castañeda-Patlán
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Robles-Flores
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- * E-mail:
| |
Collapse
|
35
|
Abstract
The Wnt/β-catenin pathway is highly regulated to insure the correct temporal and spatial activation of its target genes. In the absence of a Wnt stimulus, the transcriptional coactivator β-catenin is degraded by a multiprotein "destruction complex" that includes the tumor suppressors Axin and adenomatous polyposis coli (APC), the Ser/Thr kinases GSK-3 and CK1, protein phosphatase 2A (PP2A), and the E3-ubiquitin ligase β-TrCP. The complex generates a β-TrCP recognition site by phosphorylation of a conserved Ser/Thr-rich sequence near the β-catenin amino terminus, a process that requires scaffolding of the kinases and β-catenin by Axin. Ubiquitinated β-catenin is degraded by the proteasome. The molecular mechanisms that underlie several aspects of destruction complex function are poorly understood, particularly the role of APC. Here we review the molecular mechanisms of destruction complex function and discuss several potential roles of APC in β-catenin destruction.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
36
|
Mologni L, Brussolo S, Ceccon M, Gambacorti-Passerini C. Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. PLoS One 2012; 7:e51449. [PMID: 23227266 PMCID: PMC3515485 DOI: 10.1371/journal.pone.0051449] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/31/2012] [Indexed: 11/24/2022] Open
Abstract
Activation of Wnt signalling due to inability to degrade β-catenin is found in >85% of colorectal cancers. Approximately half of colon cancers express a constitutively active KRAS protein. A significant fraction of patients show both abnormalities. We previously reported that simultaneous down-regulation of both β-catenin and KRAS was necessary to induce significant cell death and tumor growth inhibition of colorectal cancer cells. Although attractive, an RNAi-based therapeutic approach is still far from being employed in the clinical setting. Therefore, we sought to recapitulate our previous findings by the use of small-molecule inhibitors of β-catenin and KRAS. We show here that the β-catenin inhibitors PKF115-584 and pyrvinium pamoate block β-catenin-dependent transcriptional activity and synergize with the KRAS inhibitor S-trans, trans-farnesylthiosalicylic acid (FTS, salirasib) in colon cancer cells driven by Wnt and KRAS oncogenic signals, but not in cells carrying BRAF mutations. The combined use of these compounds was superior to the use of any drug alone in inducing cell growth arrest, cell death, MYC and survivin down-modulation, and inhibition of anchorage-independent growth. Expression analysis of selected cancer-relevant genes revealed down-regulation of CD44 as a common response to the combined treatments. These data provide a proof of principle for a combination therapeutic strategy in colorectal cancer.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy.
| | | | | | | |
Collapse
|
37
|
Vijaya Chandra SH, Wacker I, Appelt UK, Behrens J, Schneikert J. A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation. PLoS One 2012; 7:e34479. [PMID: 22509309 PMCID: PMC3317983 DOI: 10.1371/journal.pone.0034479] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/05/2012] [Indexed: 01/27/2023] Open
Abstract
The tumour suppressor gene adenomatous polyposis coli (APC) is mutated in most colorectal cancer cases, leading to the synthesis of truncated APC products and the stabilization of β-catenin. Truncated APC is almost always retained in tumour cells, suggesting that it serves an essential function. Here, RNA interference has been used to down-regulate truncated APC in several colorectal cancer cell lines expressing truncated APCs of different lengths, thereby performing an analysis covering most of the mutation cluster region (MCR). The consequences on proliferation in vitro, tumour formation in vivo and the level and transcriptional activity of β-catenin have been investigated. Down-regulation of truncated APC results in an inhibition of tumour cell population expansion in vitro in 6 cell lines out of 6 and inhibition of tumour outgrowth in vivo as analysed in one of these cell lines, HT29. This provides a general rule explaining the retention of truncated APC in colorectal tumours and defines it as a suitable target for therapeutic intervention. Actually, we also show that it is possible to design a shRNA that targets a specific truncated isoform of APC without altering the expression of wild-type APC. Down-regulation of truncated APC is accompanied by an up-regulation of the transcriptional activity of β-catenin in 5 out of 6 cell lines. Surprisingly, the increased signalling is associated in most cases (4 out of 5) with an up-regulation of β-catenin levels, indicating that truncated APC can still modulate wnt signalling through controlling the level of β-catenin. This control can happen even when truncated APC lacks the β-catenin inhibiting domain (CiD) involved in targeting β-catenin for proteasomal degradation. Thus, truncated APC is an essential component of colorectal cancer cells, required for cell proliferation, possibly by adjusting β-catenin signalling to the “just right” level.
Collapse
Affiliation(s)
- Shree Harsha Vijaya Chandra
- Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstrasse, Erlangen, Germany
| | - Ingrid Wacker
- Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstrasse, Erlangen, Germany
| | - Uwe Kurt Appelt
- Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstrasse, Erlangen, Germany
| | - Jürgen Behrens
- Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstrasse, Erlangen, Germany
| | - Jean Schneikert
- Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstrasse, Erlangen, Germany
- * E-mail:
| |
Collapse
|
38
|
Kunttas-Tatli E, Zhou MN, Zimmerman S, Molinar O, Zhouzheng F, Carter K, Kapur M, Cheatle A, Decal R, McCartney BM. Destruction complex function in the Wnt signaling pathway of Drosophila requires multiple interactions between Adenomatous polyposis coli 2 and Armadillo. Genetics 2012; 190:1059-75. [PMID: 22174073 PMCID: PMC3296242 DOI: 10.1534/genetics.111.133280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/07/2011] [Indexed: 02/04/2023] Open
Abstract
The tumor suppressor Adenomatous polyposis coli (APC) negatively regulates Wnt signaling through its activity in the destruction complex. APC binds directly to the main effector of the pathway, β-catenin (βcat, Drosophila Armadillo), and helps to target it for degradation. In vitro studies demonstrated that a nonphosphorylated 20-amino-acid repeat (20R) of APC binds to βcat through the N-terminal extended region of a 20R. When phosphorylated, the phospho-region of an APC 20R also binds βcat and the affinity is significantly increased. These distinct APC-βcat interactions suggest different models for the sequential steps of destruction complex activity. However, the in vivo role of 20R phosphorylation and extended region interactions has not been rigorously tested. Here we investigated the functional role of these molecular interactions by making targeted mutations in Drosophila melanogaster APC2 that disrupt phosphorylation and extended region interactions and deletion mutants missing the Armadillo binding repeats. We tested the ability of these mutants to regulate Wnt signaling in APC2 null and in APC2 APC1 double-null embryos. Overall, our in vivo data support the role of phosphorylation and extended region interactions in APC2's destruction complex function, but suggest that the extended region plays a more significant functional role. Furthermore, we show that the Drosophila 20Rs with homology to the vertebrate APC repeats that have the highest affinity for βcat are functionally dispensable, contrary to biochemical predictions. Finally, for some mutants, destruction complex function was dependent on APC1, suggesting that APC2 and APC1 may act cooperatively in the destruction complex.
Collapse
Affiliation(s)
- Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Meng-Ning Zhou
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Sandra Zimmerman
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065
| | - Olivia Molinar
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Fangyuan Zhouzheng
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Krista Carter
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Megha Kapur
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Alys Cheatle
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Richard Decal
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Brooke M. McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
39
|
Minde DP, Anvarian Z, Rüdiger SG, Maurice MM. Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer? Mol Cancer 2011; 10:101. [PMID: 21859464 PMCID: PMC3170638 DOI: 10.1186/1476-4598-10-101] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/22/2011] [Indexed: 02/07/2023] Open
Affiliation(s)
- David P Minde
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
40
|
Albuquerque C, Bakker ERM, van Veelen W, Smits R. Colorectal cancers choosing sides. Biochim Biophys Acta Rev Cancer 2011; 1816:219-31. [PMID: 21855610 DOI: 10.1016/j.bbcan.2011.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 12/15/2022]
Abstract
In contrast to the majority of sporadic colorectal cancer which predominantly occur in the distal colon, most mismatch repair deficient tumours arise at the proximal side. At present, these regional preferences have not been explained properly. Recently, we have screened colorectal tumours for mutations in Wnt-related genes focusing specifically on colorectal location. Combining this analysis with published data, we propose a mechanism underlying the side-related preferences of colorectal cancers, based on the specific acquired genetic defects in β-catenin signalling.
Collapse
Affiliation(s)
- Cristina Albuquerque
- Centro de Investigação de Patobiologia Molecular CIPM, Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Prof. Lima Basto 1099-023 Lisboa, Portugal
| | | | | | | |
Collapse
|
41
|
Schneikert J, Brauburger K, Behrens J. APC mutations in colorectal tumours from FAP patients are selected for CtBP-mediated oligomerization of truncated APC. Hum Mol Genet 2011; 20:3554-64. [PMID: 21665989 DOI: 10.1093/hmg/ddr273] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The germline transmission of a mutation in the adenomatous polyposis coli (APC) gene leads to cancer of the gastro-intestinal tract upon somatic inactivation of the remaining allele in familial adenomatous polyposis (FAP) patients. APC mutations result in truncated products that have primarily lost the ability to properly regulate the level of the transcription factor β-catenin. However, colorectal cancer cells from FAP patients always retain a truncated APC product and the reasons for this strong selective pressure are not understood. We describe here the surprising property for the transcriptional repressor C-terminal binding protein (CtBP) to promote the oligomerization of truncated APC through binding to the 15 amino acid repeats of truncated APC. CtBP can bind to either first, third or fourth 15 amino acid repeats, but not to the second. CtBP-mediated oligomerization requires both dimerization domains of truncated APC as well as CtBP dimerization. The analysis of the position of the mutations along the APC sequence in adenomas from FAP patients reveals that the presence of the first 15 amino acid repeat is almost always selected in the resulting truncated APC product. This suggests that the sensitivity of truncated APC to oligomerization by CtBP constitutes an essential facet of tumour development.
Collapse
Affiliation(s)
- Jean Schneikert
- Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nu¨rnberg, Glu¨ckstrasse 6, 91054 Erlangen,Germany.
| | | | | |
Collapse
|
42
|
Roberts DM, Pronobis MI, Poulton JS, Waldmann JD, Stephenson EM, Hanna S, Peifer M. Deconstructing the ßcatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Mol Biol Cell 2011; 22:1845-63. [PMID: 21471006 PMCID: PMC3103401 DOI: 10.1091/mbc.e10-11-0871] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
APC is a key tumor suppressor and Wnt signaling regulator, but its mechanism of action remains mysterious. We combined parallel assays in Drosophila and cultured human colon cancer cell lines to test hypotheses regarding APC function and to develop novel hypotheses, using mutants altering its structure in specific ways. Negatively regulating signaling by targeting key effectors for ubiquitination/destruction is essential for development and oncogenesis. The tumor suppressor adenomatous polyposis coli (APC), an essential negative regulator of Wnt signaling, provides a paradigm. APC mutations occur in most colon cancers. Acting in the “destruction complex” with Axin, glycogen synthase kinase 3, and casein kinase, APC targets ßcatenin (ßcat) for phosphorylation and recognition by an E3 ubiquitin-ligase. Despite 20 years of work, the internal workings of the destruction complex and APC's role remain largely mysterious. We use both Drosophila and colon cancer cells to test hypotheses for APC's mechanism of action. Our data are inconsistent with current models suggesting that high-affinity ßcat-binding sites on APC play key roles. Instead, they suggest that multiple ßcat-binding sites act additively to fine-tune signaling via cytoplasmic retention. We identify essential roles for two putative binding sites for new partners—20-amino-acid repeat 2 and conserved sequence B—in destruction complex action. Finally, we demonstrate that APC interacts with Axin by two different modes and provide evidence that conserved sequence B helps ensure release of APC from Axin, with disassembly critical in regulating ßcat levels. Using these data, we suggest a new model for destruction complex action in development, which also provides new insights into functions of truncated APC proteins in cancer.
Collapse
Affiliation(s)
- David M Roberts
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2010; 1:a002881. [PMID: 20066091 DOI: 10.1101/cshperspect.a002881] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
44
|
Haussler MR, Haussler CA, Whitfield GK, Hsieh JC, Thompson PD, Barthel TK, Bartik L, Egan JB, Wu Y, Kubicek JL, Lowmiller CL, Moffet EW, Forster RE, Jurutka PW. The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the "Fountain of Youth" to mediate healthful aging. J Steroid Biochem Mol Biol 2010; 121:88-97. [PMID: 20227497 PMCID: PMC2906618 DOI: 10.1016/j.jsbmb.2010.03.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/08/2010] [Indexed: 12/13/2022]
Abstract
The nuclear vitamin D receptor (VDR) binds 1,25-dihydroxyvitamin D3 (1,25D), its high affinity renal endocrine ligand, to signal intestinal calcium and phosphate absorption plus bone remodeling, generating a mineralized skeleton free of rickets/osteomalacia with a reduced risk of osteoporotic fractures. 1,25D/VDR signaling regulates the expression of TRPV6, BGP, SPP1, LRP5, RANKL and OPG, while achieving feedback control of mineral ions to prevent age-related ectopic calcification by governing CYP24A1, PTH, FGF23, PHEX, and klotho transcription. Vitamin D also elicits numerous intracrine actions when circulating 25-hydroxyvitamin D3, the metabolite reflecting vitamin D status, is converted to 1,25D locally by extrarenal CYP27B1, and binds VDR to promote immunoregulation, antimicrobial defense, xenobiotic detoxification, anti-inflammatory/anticancer actions and cardiovascular benefits. VDR also affects Wnt signaling through direct interaction with beta-catenin, ligand-dependently blunting beta-catenin mediated transcription in colon cancer cells to attenuate growth, while potentiating beta-catenin signaling via VDR ligand-independent mechanisms in osteoblasts and keratinocytes to function osteogenically and as a pro-hair cycling receptor, respectively. Finally, VDR also drives the mammalian hair cycle in conjunction with the hairless corepressor by repressing SOSTDC1, S100A8/S100A9, and PTHrP. Hair provides a shield against UV-induced skin damage and cancer in terrestrial mammals, illuminating another function of VDR that facilitates healthful aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine-Phoenix in partnership with Arizona State University, Phoenix, AZ 85004-2157, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Contribution of the 15 amino acid repeats of truncated APC to beta-catenin degradation and selection of APC mutations in colorectal tumours from FAP patients. Oncogene 2009; 29:1663-71. [PMID: 19966865 DOI: 10.1038/onc.2009.447] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adenomatous polyposis coli (APC) protein is a negative regulator of the mitogenic transcription factor beta-catenin by stimulating its proteasomal degradation. This involves several APC domains, including the binding sites for axin/conductin, the recently described beta-Catenin Inhibitory Domain (CID) and the third 20 amino acid repeat (20R3) that is a beta-catenin-binding site. The four 15 amino acid repeats (15R) and the 20R1 are also beta-catenin-binding sites, but their role in beta-catenin degradation has remained unclear. We show here that binding of beta-catenin to the 15R of APC is necessary and sufficient to target beta-catenin for degradation whereas binding to the 20R1 is neither necessary nor sufficient. The first 15R displays the highest affinity for beta-catenin in the 15R-20R1 module. Biallelic mutations of the APC gene lead tocolon cancer in familial adenomatous polyposis coli (FAP) and result in the synthesis of truncated products lacking domains involved in beta-catenin degradation but still having a minimal length. The analysis of the distribution of truncating mutations along the APC sequence in colorectal tumours from FAP patients revealed that the first 15R is one target of the positive selection of mutations that lead to tumour development.
Collapse
|