1
|
Li Y, Chen Z, Peng J, Yuan C, Yan S, Yang N, Li P, Kong B. The splicing factor SNRPB promotes ovarian cancer progression through regulating aberrant exon skipping of POLA1 and BRCA2. Oncogene 2023:10.1038/s41388-023-02763-x. [PMID: 37391593 DOI: 10.1038/s41388-023-02763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Splicing factors play a crucial role in the initiation and development of various human cancers. SNRPB, a core spliceosome component, regulates pre-mRNA alternative splicing. However, its function and underlying mechanism in ovarian cancer remain unclear. This study identified SNRPB as a critical driver of ovarian cancer through TCGA and CPTAC database analysis. SNRPB was highly upregulated in fresh frozen ovarian cancer tissues compared with normal fallopian tubes. Immunohistochemistry revealed that SNRPB expression was increased in formalin-fixed, paraffin-embedded ovarian cancer sections and was positively correlated with a poor prognosis for ovarian cancer. Functionally, SNRPB knockdown suppressed ovarian cancer cell proliferation and invasion, and overexpression exerted opposite effects. SNRPB expression increased after cisplatin treatment, and silencing SNRPB sensitized ovarian cancer cells to cisplatin. KEGG pathway analysis revealed that the differentially expressed genes (DEGs) were mainly enriched in DNA replication and homologous recombination, and almost all DEGs related to DNA replication and homologous recombination were downregulated after SNRPB knockdown according to RNA-seq. Exon 3 skipping of the DEGs DNA polymerase alpha 1 (POLA1) and BRCA2 was induced by SNRPB silencing. Exon 3 skipping of POLA1 yielded premature termination codons and led to nonsense-mediated RNA decay (NMD); exon 3 skipping of BRCA2 led to loss of the PALB2 binding domain, which is necessary for homologous recombination, and increased ovarian cancer cell cisplatin sensitivity. POLA1 or BRCA2 knockdown partially impaired the increased malignancy of SNRPB-overexpressing ovarian cancer cells. Moreover, miR-654-5p was found to reduce SNRPB mRNA expression by directly binding to the SNRPB 3'-UTR. Overall, SNRPB was identified as an important oncogenic driver that promotes ovarian cancer progression by repressing exon 3 skipping of POLA1 and BRCA2. Thus, SNRPB is a potential treatment target and prognostic marker for ovarian cancer.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China.
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, Shandong Province, China.
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China.
| | - Zhongshao Chen
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Ning Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Peng Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Ji'nan 250012, Shandong Province, China.
- Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan 250012, Shandong Province, China.
| |
Collapse
|
2
|
Cheloshkina K, Poptsova M. Tissue-specific impact of stem-loops and quadruplexes on cancer breakpoints formation. BMC Cancer 2019; 19:434. [PMID: 31077166 PMCID: PMC6511154 DOI: 10.1186/s12885-019-5653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
Background Chromosomal rearrangements are the typical phenomena in cancer genomes causing gene disruptions and fusions, corruption of regulatory elements, damage to chromosome integrity. Among the factors contributing to genomic instability are non-B DNA structures with stem-loops and quadruplexes being the most prevalent. We aimed at investigating the impact of specifically these two classes of non-B DNA structures on cancer breakpoint hotspots using machine learning approach. Methods We developed procedure for machine learning model building and evaluation as the considered data are extremely imbalanced and it was required to get a reliable estimate of the prediction power. We built logistic regression models predicting cancer breakpoint hotspots based on the densities of stem-loops and quadruplexes, jointly and separately. We also tested Random Forest models varying different resampling schemes (leave-one-out cross validation, train-test split, 3-fold cross-validation) and class balancing techniques (oversampling, stratification, synthetic minority oversampling). Results We performed analysis of 487,425 breakpoints from 2234 samples covering 10 cancer types available from the International Cancer Genome Consortium. We showed that distribution of breakpoint hotspots in different types of cancer are not correlated, confirming the heterogeneous nature of cancer. It appeared that stem-loop-based model best explains the blood, brain, liver, and prostate cancer breakpoint hotspot profiles while quadruplex-based model has higher performance for the bone, breast, ovary, pancreatic, and skin cancer. For the overall cancer profile and uterus cancer the joint model shows the highest performance. For particular datasets the constructed models reach high predictive power using just one predictor, and in the majority of the cases, the model built on both predictors does not increase the model performance. Conclusion Despite the heterogeneity in breakpoint hotspots’ distribution across different cancer types, our results demonstrate an association between cancer breakpoint hotspots and stem-loops and quadruplexes. Approximately for half of the cancer types stem-loops are the most influential factors while for the others these are quadruplexes. This fact reflects the differences in regulatory potential of stem-loops and quadruplexes at the tissue-specific level, which yet to be discovered at the genome-wide scale. The performed analysis demonstrates that influence of stem-loops and quadruplexes on breakpoint hotspots formation is tissue-specific. Electronic supplementary material The online version of this article (10.1186/s12885-019-5653-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kseniia Cheloshkina
- Faculty of Computer Science, National Research University Higher School of Economics, 125319, Moscow, 3 Kochnovsky Proezd, Russia
| | - Maria Poptsova
- Faculty of Computer Science, National Research University Higher School of Economics, 125319, Moscow, 3 Kochnovsky Proezd, Russia.
| |
Collapse
|
3
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
4
|
Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J 2015; 282:2627-45. [PMID: 25913527 DOI: 10.1111/febs.13311] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 01/11/2023]
Abstract
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Chen L, Zhou W, Zhang C, Lupski JR, Jin L, Zhang F. CNV instability associated with DNA replication dynamics: evidence for replicative mechanisms in CNV mutagenesis. Hum Mol Genet 2014; 24:1574-83. [PMID: 25398944 DOI: 10.1093/hmg/ddu572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) in the human genome is of vital importance to human health and evolution of our species. However, much of the molecular basis of CNV mutagenesis remains to be elucidated. Considering the DNA replication model of 'fork stalling and template switching' for CNV formation, we hypothesized that replication fork progression could be important for CNV mutagenesis. However, molecular assays of replication fork progression at the genome level are technically challenging. Instead, we conducted an estimation of DNA replication dynamics, as the statistic R, using the readily available data of replication timing. Small R-values can reflect 'slowed' replication, which could result from less fork initiation, reduced fork speed or fork barriers. We generated genome-wide profiles of R in the genomes of human, mouse and Drosophila. Intriguingly, the CNV breakpoints in all three genomes showed significantly biased distributions toward the genomic regions with small R-values, suggesting potential replication stress-induced CNV instability. Notably, among the human CNVs with distinct breakpoint junction characteristics, the homology-mediated and VNTR-mediated CNVs contribute the most to the correlation between CNV instability and the statistic R, consistent with the recent findings in the C. elegans and yeast genomes of repeat-induced DNA replication error and consequent CNV formation. The statistic R may reflect both replication stress and the effect of local genome architecture on fork progression. Our concordant observations suggest an important role for DNA replicative mechanisms in CNV mutagenesis and genome instability.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and
| | - Weichen Zhou
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and
| | - Cheng Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and
| | - James R Lupski
- Department of Molecular and Human Genetics and Department of Pediatrics, Baylor College of Medicine, Houston TX 77030, USA Texas Children's Hospital, Houston, TX 77030, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,
| |
Collapse
|
6
|
Mishra D, Kato T, Inagaki H, Kosho T, Wakui K, Kido Y, Sakazume S, Taniguchi-Ikeda M, Morisada N, Iijima K, Fukushima Y, Emanuel BS, Kurahashi H. Breakpoint analysis of the recurrent constitutional t(8;22)(q24.13;q11.21) translocation. Mol Cytogenet 2014; 7:55. [PMID: 25478009 PMCID: PMC4255720 DOI: 10.1186/s13039-014-0055-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022] Open
Abstract
Backgrounds The t(8;22)(q24.13;q11.2) has been identified as one of several recurrent
constitutional translocations mediated by palindromic AT-rich repeats (PATRRs).
Although the breakage on 22q11 utilizes the same PATRR as that of the more
prevalent constitutional t(11;22)(q23;q11.2), the breakpoint region on 8q24 has
not been elucidated in detail since the analysis of palindromic sequence is
technically challenging. Results In this study, the entire 8q24 breakpoint region has been resolved by next
generation sequencing. Eight polymorphic alleles were identified and compared with
the junction sequences of previous and two recently identified t(8;22) cases . All
of the breakpoints were found to be within the PATRRs on chromosomes 8 and 22
(PATRR8 and PATRR22), but the locations were different among cases at the level of
nucleotide resolution. The translocations were always found to arise on symmetric
PATRR8 alleles with breakpoints at the center of symmetry. The translocation
junction is often accompanied by symmetric deletions at the center of both PATRRs.
Rejoining occurs with minimal homology between the translocation partners.
Remarkably, comparison of der (8) to der(22) sequences shows identical breakpoint
junctions between them, which likely represent products of two independent events
on the basis of a classical model. Conclusions Our data suggest the hypothesis that interactions between the two PATRRs prior to
the translocation event might trigger illegitimate recombination resulting in the
recurrent palindrome-mediated translocation.
Collapse
Affiliation(s)
- Divya Mishra
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Keiko Wakui
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Yasuhiro Kido
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Koshigaya 343-8555, Saitama, Japan
| | - Satoru Sakazume
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Koshigaya 343-8555, Saitama, Japan
| | - Mariko Taniguchi-Ikeda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | - Yoshimitsu Fukushima
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia 19104, PA, USA.,Department of Pediatrics, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
7
|
Hsiao MC, Piotrowski A, Alexander J, Callens T, Fu C, Mikhail FM, Claes KBM, Messiaen L. Palindrome-mediated and replication-dependent pathogenic structural rearrangements within the NF1 gene. Hum Mutat 2014; 35:891-8. [PMID: 24760680 DOI: 10.1002/humu.22569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/17/2014] [Indexed: 11/09/2022]
Abstract
Palindromic sequences can form hairpin structures or cruciform extrusions, which render them susceptible to genomic rearrangements. A 197-bp long palindromic AT-rich repeat (PATRR17) is located within intron 40 of the neurofibromatosis type 1 (NF1) gene (17q11.2). Through comprehensive NF1 analysis, we identified six unrelated patients with a rearrangement involving intron 40 (five deletions and one reciprocal translocation t(14;17)(q32;q11.2)). We hypothesized that PATRR17 may be involved in these rearrangements thereby causing NF1. Breakpoint cloning revealed that PATRR17 was indeed involved in all of the rearrangements. As microhomology was present at all breakpoint junctions of the deletions identified, and PATRR17 partner breakpoints were located within 7.1 kb upstream of PATRR17, fork stalling and template switching/microhomology-mediated break-induced replication was the most likely rearrangement mechanism. For the reciprocal translocation case, a 51 bp insertion at the translocation breakpoints mapped to a short sequence within PATRR17, proximal to the breakpoint, suggesting a multiple stalling and rereplication process, in contrast to previous studies indicating a purely replication-independent mechanism for PATRR-mediated translocations. In conclusion, we show evidence that PATRR17 is a hotspot for pathogenic intragenic deletions within the NF1 gene and suggest a novel replication-dependent mechanism for PATRR-mediated translocation.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kato T, Franconi CP, Sheridan MB, Hacker AM, Inagakai H, Glover TW, Arlt MF, Drabkin HA, Gemmill RM, Kurahashi H, Emanuel BS. Analysis of the t(3;8) of hereditary renal cell carcinoma: a palindrome-mediated translocation. Cancer Genet 2014; 207:133-40. [PMID: 24813807 DOI: 10.1016/j.cancergen.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/07/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
It has emerged that palindrome-mediated genomic instability generates DNA-based rearrangements. The presence of palindromic AT-rich repeats (PATRRs) at the translocation breakpoints suggested a palindrome-mediated mechanism in the generation of several recurrent constitutional rearrangements: the t(11;22), t(17;22), and t(8;22). To date, all reported PATRR-mediated translocations include the PATRR on chromosome 22 (PATRR22) as a translocation partner. Here, the constitutional rearrangement, t(3;8)(p14.2;q24.1), segregating with renal cell carcinoma in two families, is examined. The chromosome 8 breakpoint lies in PATRR8 in the first intron of the RNF139 (TRC8) gene, whereas the chromosome 3 breakpoint is located in an AT-rich palindromic sequence in intron 3 of the FHIT gene (PATRR3). Thus, the t(3;8) is the first PATRR-mediated, recurrent, constitutional translocation that does not involve PATRR22. Furthermore, we detect de novo translocations similar to the t(11;22) and t(8;22), involving PATRR3 in normal sperm. The breakpoint on chromosome 3 is in proximity to FRA3B, the most common fragile site in the human genome and a site of frequent deletions in tumor cells. However, the lack of involvement of PATRR3 sequence in numerous FRA3B-related deletions suggests that there are several different DNA sequence-based etiologies responsible for chromosome 3p14.2 genomic rearrangements.
Collapse
Affiliation(s)
- Takema Kato
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colleen P Franconi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly B Sheridan
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - April M Hacker
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hidehito Inagakai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Inagaki H, Ohye T, Kogo H, Tsutsumi M, Kato T, Tong M, Emanuel BS, Kurahashi H. Two sequential cleavage reactions on cruciform DNA structures cause palindrome-mediated chromosomal translocations. Nat Commun 2013; 4:1592. [PMID: 23481400 DOI: 10.1038/ncomms2595] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/11/2013] [Indexed: 11/09/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs), such as translocations, deletions or inversions, are often generated by illegitimate repair between two DNA breakages at regions with nucleotide sequences that might potentially adopt a non-B DNA conformation. We previously established a plasmid-based model system that recapitulates palindrome-mediated recurrent chromosomal translocations in humans, and demonstrated that cruciform DNA conformation is required for the translocation-like rearrangements. Here we show that two sequential reactions that cleave the cruciform structures give rise to the translocation: GEN1-mediated resolution that cleaves diagonally at the four-way junction of the cruciform and Artemis-mediated opening of the subsequently formed hairpin ends. Indeed, translocation products in human sperm reveal the remnants of this two-step mechanism. These two intrinsic pathways that normally fulfil vital functions independently, Holliday-junction resolution in homologous recombination and coding joint formation in rearrangement of antigen-receptor genes, act upon the unusual DNA conformation in concert and lead to a subset of recurrent GCRs in humans.
Collapse
Affiliation(s)
- Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
George CM, Alani E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit Rev Biochem Mol Biol 2012; 47:297-313. [PMID: 22494239 PMCID: PMC3337352 DOI: 10.3109/10409238.2012.675644] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.
Collapse
Affiliation(s)
- Carolyn M George
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | |
Collapse
|
11
|
Kato T, Kurahashi H, Emanuel BS. Chromosomal translocations and palindromic AT-rich repeats. Curr Opin Genet Dev 2012; 22:221-8. [PMID: 22402448 DOI: 10.1016/j.gde.2012.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Repetitive DNA sequences constitute 30% of the human genome, and are often sites of genomic rearrangement. Recently, it has been found that several constitutional translocations, especially those that involve chromosome 22, take place utilizing palindromic sequences on 22q11 and on the partner chromosome. Analysis of translocation junction fragments shows that the breakpoints of such palindrome-mediated translocations are localized at the center of palindromic AT-rich repeats (PATRRs). The presence of PATRRs at the breakpoints indicates a palindrome-mediated mechanism involved in the generation of these constitutional translocations. Identification of these PATRR-mediated translocations suggests a universal pathway for gross chromosomal rearrangement in the human genome. De novo occurrences of PATRR-mediated translocations can be detected by PCR in normal sperm samples but not somatic cells. Polymorphisms of various PATRRs influence their propensity for adopting a secondary structure, which in turn affects de novo translocation frequency. We propose that the PATRRs form an unstable secondary structure, which leads to double-strand breaks at the center of the PATRR. The double-strand breaks appear to be followed by a non-homologous end-joining repair pathway, ultimately leading to the translocations. This review considers recent findings concerning the mechanism of meiosis-specific, PATRR-mediated translocations.
Collapse
Affiliation(s)
- Takema Kato
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
12
|
DNA secondary structure is influenced by genetic variation and alters susceptibility to de novo translocation. Mol Cytogenet 2011; 4:18. [PMID: 21899780 PMCID: PMC3197554 DOI: 10.1186/1755-8166-4-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/08/2011] [Indexed: 12/15/2022] Open
Abstract
Background Cumulative evidence suggests that DNA secondary structures impact DNA replication, transcription and genomic rearrangements. One of the best studied examples is the recurrent constitutional t(11;22) in humans that is mediated by potentially cruciform-forming sequences at the breakpoints, palindromic AT-rich repeats (PATRRs). We previously demonstrated that polymorphisms of PATRR sequences affect the frequency of de novo t(11;22)s in sperm samples from normal healthy males. These studies were designed to determine whether PATRR polymorphisms affect DNA secondary structure, thus leading to variation in translocation frequency. Methods We studied the potential for DNA cruciform formation for several PATRR11 polymorphic alleles using mobility shift analysis in gel electrophoresis as well as by direct visualization of the DNA by atomic force microscopy. The structural data for various alleles were compared with the frequency of de novo t(11;22)s the allele produced. Results The data indicate that the propensity for DNA cruciform structure of each polymorphic allele correlates with the frequency of de novo t(11;22)s produced (r = 0.77, P = 0.01). Conclusions Although indirect, our results strongly suggest that the PATRR adopts unstable cruciform structures during spermatogenesis that act as translocation hotspots in humans.
Collapse
|
13
|
Failure of Origin Activation in Response to Fork Stalling Leads to Chromosomal Instability at Fragile Sites. Mol Cell 2011; 43:122-31. [DOI: 10.1016/j.molcel.2011.05.019] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 03/07/2011] [Accepted: 05/20/2011] [Indexed: 12/27/2022]
|
14
|
Kurahashi H, Inagaki H, Ohye T, Kogo H, Tsutsumi M, Kato T, Tong M, Emanuel BS. The constitutional t(11;22): implications for a novel mechanism responsible for gross chromosomal rearrangements. Clin Genet 2011; 78:299-309. [PMID: 20507342 DOI: 10.1111/j.1399-0004.2010.01445.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The constitutional t(11;22)(q23;q11) is the most common recurrent non-Robertsonian translocation in humans. The breakpoint sequences of both chromosomes are characterized by several hundred base pairs of palindromic AT-rich repeats (PATRRs). Similar PATRRs have also been identified at the breakpoints of other nonrecurrent translocations, suggesting that PATRR-mediated chromosomal translocation represents one of the universal pathways for gross chromosomal rearrangement in the human genome. We propose that PATRRs have the potential to form cruciform structures through intrastrand-base pairing in single-stranded DNA, creating a source of genomic instability and leading to translocations. Indeed, de novo examples of the t(11;22) are detected at a high frequency in sperm from normal healthy males. This review synthesizes recent data illustrating a novel paradigm for an apparent spermatogenesis-specific translocation mechanism. This observation has important implications pertaining to the predominantly paternal origin of de novo gross chromosomal rearrangements in humans.
Collapse
Affiliation(s)
- H Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 2010; 67:43-62. [PMID: 19727556 PMCID: PMC3017512 DOI: 10.1007/s00018-009-0131-2] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/22/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
Abstract
Repetitive DNA motifs are abundant in the genomes of various species and have the capacity to adopt non-canonical (i.e., non-B) DNA structures. Several non-B DNA structures, including cruciforms, slipped structures, triplexes, G-quadruplexes, and Z-DNA, have been shown to cause mutations, such as deletions, expansions, and translocations in both prokaryotes and eukaryotes. Their distributions in genomes are not random and often co-localize with sites of chromosomal breakage associated with genetic diseases. Current genome-wide sequence analyses suggest that the genomic instabilities induced by non-B DNA structure-forming sequences not only result in predisposition to disease, but also contribute to rapid evolutionary changes, particularly in genes associated with development and regulatory functions. In this review, we describe the occurrence of non-B DNA-forming sequences in various species, the classes of genes enriched in non-B DNA-forming sequences, and recent mechanistic studies on DNA structure-induced genomic instability to highlight their importance in genomes.
Collapse
Affiliation(s)
- Junhua Zhao
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Albino Bacolla
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Guliang Wang
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| |
Collapse
|