1
|
Ito M, Ito H, Miyoshi K, Kanai-Azuma M. Chronic non-discriminatory social defeat stress during the perinatal period induces depressive-like outcomes in female mice. Brain Res 2024; 1825:148734. [PMID: 38110072 DOI: 10.1016/j.brainres.2023.148734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Depression is more prevalent in women than in men. Perinatal stress is one of the main risk factors for depression in women. However, there is no suitable female model for perinatal depression that uses the social defeat stress (SDS) paradigm. The standard chronic SDS protocol, which is the most useful method for developing a depression-like model, is effective only in male mice. Thus, this study aimed to characterize a novel SDS method for producing a perinatal depression-like model mouse. We induced chronic SDS in perinatal female mice, wherein chronic non-discriminatory SDS (ND-SDS) was used to induce substantial stress in female mice. The female mice were placed in aggressive ICR mouse cages with sentinel male mice under ND-SDS conditions. Stressed female mice subjected to ND-SDS during the perinatal period efficiently exhibited stress-susceptible phenotypes, such as a social avoidance phenotype and anhedonic behavior, whereas stressed female mice subjected to SDS did not show depressive-like behaviors. These results indicate that chronic ND-SDS in perinatal females could be used to develop a female perinatal depression-like model that can be used to study women's health.
Collapse
Affiliation(s)
- Masumi Ito
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793 Japan; Research Facility Center for Science and Technology, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793 Japan
| | - Hikaru Ito
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793 Japan; Research Facility Center for Science and Technology, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793 Japan; Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 Japan; Center for Experimental Animals, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 Japan.
| | - Kaori Miyoshi
- Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 Japan; Center for Experimental Animals, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 Japan; Center for Experimental Animals, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 Japan
| |
Collapse
|
2
|
Courraud J, Engel C, Quartier A, Drouot N, Houessou U, Plassard D, Sorlin A, Brischoux-Boucher E, Gouy E, Van Maldergem L, Rossi M, Lesca G, Edery P, Putoux A, Bilan F, Gilbert-Dussardier B, Atallah I, Kalscheuer VM, Mandel JL, Piton A. Molecular consequences of PQBP1 deficiency, involved in the X-linked Renpenning syndrome. Mol Psychiatry 2024; 29:287-296. [PMID: 38030819 DOI: 10.1038/s41380-023-02323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Mutations in the PQBP1 gene (polyglutamine-binding protein-1) are responsible for a syndromic X-linked form of neurodevelopmental disorder (XL-NDD) with intellectual disability (ID), named Renpenning syndrome. PQBP1 encodes a protein involved in transcriptional and post-transcriptional regulation of gene expression. To investigate the consequences of PQBP1 loss, we used RNA interference to knock-down (KD) PQBP1 in human neural stem cells (hNSC). We observed a decrease of cell proliferation, as well as the deregulation of the expression of 58 genes, comprising genes encoding proteins associated with neurodegenerative diseases, playing a role in mRNA regulation or involved in innate immunity. We also observed an enrichment of genes involved in other forms of NDD (CELF2, APC2, etc). In particular, we identified an increase of a non-canonical isoform of another XL-NDD gene, UPF3B, an actor of nonsense mRNA mediated decay (NMD). This isoform encodes a shorter protein (UPF3B_S) deprived from the domains binding NMD effectors, however no notable change in NMD was observed after PQBP1-KD in fibroblasts containing a premature termination codon. We showed that short non-canonical and long canonical UPF3B isoforms have different interactomes, suggesting they could play distinct roles. The link between PQBP1 loss and increase of UPF3B_S expression was confirmed in mRNA obtained from patients with pathogenic variants in PQBP1, particularly pronounced for truncating variants and missense variants located in the C-terminal domain. We therefore used it as a molecular marker of Renpenning syndrome, to test the pathogenicity of variants of uncertain clinical significance identified in PQPB1 in individuals with NDD, using patient blood mRNA and HeLa cells expressing wild-type or mutant PQBP1 cDNA. We showed that these different approaches were efficient to prove a functional effect of variants in the C-terminal domain of the protein. In conclusion, our study provided information on the pathological mechanisms involved in Renpenning syndrome, but also allowed the identification of a biomarker of PQBP1 deficiency useful to test variant effect.
Collapse
Affiliation(s)
- Jérémie Courraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Camille Engel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Angélique Quartier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Ursula Houessou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire national de santé, Dudelange, Luxembourg
| | - Elise Brischoux-Boucher
- Centre de Génétique Humaine, CHU Besançon, Université de Franche-Comté, 25056, Besançon, France
| | - Evan Gouy
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, CHU Besançon, Université de Franche-Comté, 25056, Besançon, France
| | - Massimiliano Rossi
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Gaetan Lesca
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Patrick Edery
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Audrey Putoux
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Frederic Bilan
- Service de génétique médicale, CHU de Poitiers, 86 000, Poitiers, France
| | | | - Isis Atallah
- Department of Medical Genetics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
- Université de Strasbourg, 67 400, Illkirch, France.
- Genetic diagnosis laboratory, Strasbourg University Hospital, 67 090, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
3
|
Liu W, Xie H, Liu X, Xu S, Cheng S, Wang Z, Xie T, Zhang ZC, Han J. PQBP1 regulates striatum development through balancing striatal progenitor proliferation and differentiation. Cell Rep 2023; 42:112277. [PMID: 36943865 DOI: 10.1016/j.celrep.2023.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
The balance between cell proliferation and differentiation is essential for maintaining the neural progenitor pool and brain development. Although the mechanisms underlying cell proliferation and differentiation at the transcriptional level have been studied intensively, post-transcriptional regulation of cell proliferation and differentiation remains largely unclear. Here, we show that deletion of the alternative splicing regulator PQBP1 in striatal progenitors results in defective striatal development due to impaired neurogenesis of spiny projection neurons (SPNs). Pqbp1-deficient striatal progenitors exhibit declined proliferation and increased differentiation, resulting in a reduced striatal progenitor pool. We further reveal that PQBP1 associates with components in splicing machinery. The alternative splicing profiles identify that PQBP1 promotes the exon 9 inclusion of Numb, a variant that mediates progenitor proliferation. These findings identify PQBP1 as a regulator in balancing striatal progenitor proliferation and differentiation and provide alternative insights into the pathogenic mechanisms underlying Renpenning syndrome.
Collapse
Affiliation(s)
- Wenhua Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Hao Xie
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Shoujing Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Shanshan Cheng
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
4
|
The role of PQBP1 in neural development and function. Biochem Soc Trans 2023; 51:363-372. [PMID: 36815699 DOI: 10.1042/bst20220920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 11/17/2022]
Abstract
Mutations in the polyglutamine tract-binding protein 1 (PQBP1) gene are associated with Renpenning syndrome, which is characterized by microcephaly, intellectual deficiency, short stature, small testes, and distinct facial dysmorphism. Studies using different models have revealed that PQBP1 plays essential roles in neural development and function. In this mini-review, we summarize recent findings relating to the roles of PQBP1 in these processes, including in the regulation of neural progenitor proliferation, neural projection, synaptic growth, neuronal survival, and cognitive function via mRNA transcription and splicing-dependent or -independent processes. The novel findings provide insights into the mechanisms underlying the pathogenesis of Renpenning syndrome and may advance drug discovery and treatment for this condition.
Collapse
|
5
|
PQBP1: The Key to Intellectual Disability, Neurodegenerative Diseases, and Innate Immunity. Int J Mol Sci 2022; 23:ijms23116227. [PMID: 35682906 PMCID: PMC9180999 DOI: 10.3390/ijms23116227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The idea that a common pathology underlies various neurodegenerative diseases and dementias has attracted considerable attention in the basic and medical sciences. Polyglutamine binding protein-1 (PQBP1) was identified in 1998 after a molecule was predicted to bind to polyglutamine tract amino acid sequences, which are associated with a family of neurodegenerative disorders called polyglutamine diseases. Hereditary gene mutations of PQBP1 cause intellectual disability, whereas acquired loss of function of PQBP1 contributes to dementia pathology. PQBP1 functions in innate immune cells as an intracellular receptor that recognizes pathogens and neurodegenerative proteins. It is an intrinsically disordered protein that generates intracellular foci, similar to other neurodegenerative disease proteins such as TDP43, FUS, and hnRNPs. The knowledge accumulated over more than 20 years has given rise to a new concept that shifts in the equilibrium between physiological and pathological processes have their basis in the dysregulation of common protein structure-linked molecular mechanisms.
Collapse
|
6
|
Su LD, Wang N, Han J, Shen Y. Group 1 Metabotropic Glutamate Receptors in Neurological and Psychiatric Diseases: Mechanisms and Prospective. Neuroscientist 2021; 28:453-468. [PMID: 34088252 PMCID: PMC9449437 DOI: 10.1177/10738584211021018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors
that are activated by glutamate in the central nervous system (CNS).
Basically, mGluRs contribute to fine-tuning of synaptic efficacy and
control the accuracy and sharpness of neurotransmission. Among eight
subtypes, mGluR1 and mGluR5 belong to group 1 (Gp1) family, and are
implicated in multiple CNS disorders, such as Alzheimer’s disease,
autism, Parkinson’s disease, and so on. In the present review, we
systematically discussed underlying mechanisms and prospective of Gp1
mGluRs in a group of neurological and psychiatric diseases, including
Alzheimer’s disease, Parkinson’s disease, autism spectrum disorder,
epilepsy, Huntington’s disease, intellectual disability, Down’s
syndrome, Rett syndrome, attention-deficit hyperactivity disorder,
addiction, anxiety, nociception, schizophrenia, and depression, in
order to provide more insights into the therapeutic potential of Gp1
mGluRs.
Collapse
Affiliation(s)
- Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Shen Y, Zhang ZC, Cheng S, Liu A, Zuo J, Xia S, Liu X, Liu W, Jia Z, Xie W, Han J. PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD by suppressing eEF2 phosphorylation. Mol Cell 2021; 81:1425-1438.e10. [PMID: 33662272 DOI: 10.1016/j.molcel.2021.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/07/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.
Collapse
Affiliation(s)
- Yuqian Shen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Shanshan Cheng
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - An Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Jian Zuo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Shuting Xia
- Institute of Neuroscience, Soochow University, Suzhou 215000, China
| | - Xian Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenhua Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Wei Xie
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
8
|
Okazawa H. PQBP1, an intrinsically disordered/denatured protein at the crossroad of intellectual disability and neurodegenerative diseases. Neurochem Int 2018. [DOI: 10.1016/j.neuint.2017.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Kawahori K, Hashimoto K, Yuan X, Tsujimoto K, Hanzawa N, Hamaguchi M, Kase S, Fujita K, Tagawa K, Okazawa H, Nakajima Y, Shibusawa N, Yamada M, Ogawa Y. Mild Maternal Hypothyroxinemia During Pregnancy Induces Persistent DNA Hypermethylation in the Hippocampal Brain-Derived Neurotrophic Factor Gene in Mouse Offspring. Thyroid 2018; 28:395-406. [PMID: 29415629 DOI: 10.1089/thy.2017.0331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Thyroid hormones are essential for normal development of the central nervous system (CNS). Experimental rodents have shown that even a subtle thyroid hormone insufficiency in circulating maternal thyroid hormones during pregnancy may adversely affect neurodevelopment in offspring, resulting in irreversible cognitive deficits. This may be due to the persistent reduced expression of the hippocampal brain-derived neurotrophic factor gene Bdnf, which plays a crucial role in CNS development. However, the underlying molecular mechanisms remain unclear. METHODS Thiamazole (MMI; 0.025% [w/v]) was administered to dams from two weeks prior to conception until delivery, which succeeded in inducing mild maternal hypothyroxinemia during pregnancy. Serum thyroid hormone and thyrotropin levels of the offspring derived from dams with mild maternal hypothyroxinemia (M offspring) and the control offspring (C offspring) were measured. At 70 days after birth, several behavior tests were performed on the offspring. Gene expression and DNA methylation status were also evaluated in the promoter region of Bdnf exon IV, which is largely responsible for neural activity-dependent Bdnf gene expression, in the hippocampus of the offspring at day 28 and day 70. RESULTS No significant differences in serum thyroid hormone or thyrotropin levels were found between M and C offspring at day 28 and day 70. M offspring showed an impaired learning capacity in the behavior tests. Hippocampal steady-state Bdnf exon IV expression was significantly weaker in M offspring than it was in C offspring at day 28. At day 70, hippocampal Bdnf exon IV expression at the basal level was comparable between M and C offspring. However, it was significantly weaker in M offspring than in C offspring after the behavior tests. Persistent DNA hypermethylation was also found in the promoter region of Bdnf exon IV in the hippocampus of M offspring compared to that of C offspring, which may cause the attenuation of Bdnf exon IV expression in M offspring. CONCLUSIONS Mild maternal hypothyroxinemia induces persistent DNA hypermethylation in Bdnf exon IV in offspring as epigenetic memory, which may result in long-term cognitive disorders.
Collapse
Affiliation(s)
- Kenichi Kawahori
- 1 Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Koshi Hashimoto
- 2 Department of Preemptive Medicine and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Xunmei Yuan
- 3 Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Kazutaka Tsujimoto
- 1 Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Nozomi Hanzawa
- 1 Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Miho Hamaguchi
- 3 Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Saori Kase
- 1 Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Kyota Fujita
- 4 Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University , Tokyo, Japan
| | - Kazuhiko Tagawa
- 4 Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University , Tokyo, Japan
| | - Hitoshi Okazawa
- 4 Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University , Tokyo, Japan
| | - Yasuyo Nakajima
- 5 Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine , Gunma, Japan
| | - Nobuyuki Shibusawa
- 5 Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine , Gunma, Japan
| | - Masanobu Yamada
- 5 Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine , Gunma, Japan
| | - Yoshihiro Ogawa
- 3 Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
- 6 Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
- 7 Japan Agency for Medical Research and Development , CREST, Tokyo, Japan
| |
Collapse
|
10
|
Wan D, Zhang ZC, Zhang X, Li Q, Han J. X chromosome-linked intellectual disability protein PQBP1 associates with and regulates the translation of specific mRNAs. Hum Mol Genet 2015; 24:4599-614. [DOI: 10.1093/hmg/ddv191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 01/08/2023] Open
|
11
|
Iwasaki Y, Thomsen GH. The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. Development 2014; 141:3740-51. [PMID: 25209246 DOI: 10.1242/dev.106658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alternative splicing of pre-mRNAs is an important means of regulating developmental processes, yet the molecular mechanisms governing alternative splicing in embryonic contexts are just beginning to emerge. Polyglutamine-binding protein 1 (PQBP1) is an RNA-splicing factor that, when mutated, in humans causes Renpenning syndrome, an X-linked intellectual disability disease characterized by severe cognitive impairment, but also by physical defects that suggest PQBP1 has broader functions in embryonic development. Here, we reveal essential roles for PQBP1 and a binding partner, WBP11, in early development of Xenopus embryos. Both genes are expressed in the nascent mesoderm and neurectoderm, and morpholino knockdown of either causes defects in differentiation and morphogenesis of the mesoderm and neural plate. At the molecular level, knockdown of PQBP1 in Xenopus animal cap explants inhibits target gene induction by FGF but not by BMP, Nodal or Wnt ligands, and knockdown of either PQBP1 or WBP11 in embryos inhibits expression of fgf4 and FGF4-responsive cdx4 genes. Furthermore, PQBP1 knockdown changes the alternative splicing of FGF receptor-2 (FGFR2) transcripts, altering the incorporation of cassette exons that generate receptor variants (FGFR2 IIIb or IIIc) with different ligand specificities. Our findings may inform studies into the mechanisms underlying Renpenning syndrome.
Collapse
Affiliation(s)
- Yasuno Iwasaki
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
12
|
Mizuguchi M, Obita T, Serita T, Kojima R, Nabeshima Y, Okazawa H. Mutations in the PQBP1 gene prevent its interaction with the spliceosomal protein U5-15 kD. Nat Commun 2014; 5:3822. [PMID: 24781215 DOI: 10.1038/ncomms4822] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/07/2014] [Indexed: 11/09/2022] Open
Abstract
A loss-of-function of polyglutamine tract-binding protein 1 (PQBP1) induced by frameshift mutations is believed to cause X-linked mental retardation. However, the mechanism by which structural changes in PQBP1 lead to mental retardation is unknown. Here we present the crystal structure of a C-terminal fragment of PQBP1 in complex with the spliceosomal protein U5-15 kD. The U5-15 kD hydrophobic groove recognizes a YxxPxxVL motif in PQBP1, and mutations within this motif cause a loss-of-function phenotype of PQBP1 in vitro. The YxxPxxVL motif is absent in all PQBP1 frameshift mutants seen in cases of mental retardation. These results suggest a mechanism by which the loss of the YxxPxxVL motif could lead to the functional defects seen in this type of mental retardation.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- 1] Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [2] Graduate School of Innovative Life Science, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [3]
| | - Takayuki Obita
- 1] Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [2]
| | - Tomohito Serita
- Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan
| | - Rieko Kojima
- 1] Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [2]
| | - Yuko Nabeshima
- 1] Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [2] Graduate School of Innovative Life Science, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan
| | - Hitoshi Okazawa
- 1] Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University; 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan [2] Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
13
|
Multiple renal cyst development but not situs abnormalities in transgenic RNAi mice against Inv::GFP rescue gene. PLoS One 2014; 9:e89652. [PMID: 24586938 PMCID: PMC3933642 DOI: 10.1371/journal.pone.0089652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/27/2014] [Indexed: 12/05/2022] Open
Abstract
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments.
Collapse
|
14
|
Li C, Ito H, Fujita K, Shiwaku H, Qi Y, Tagawa K, Tamura T, Okazawa H. Sox2 transcriptionally regulates PQBP1, an intellectual disability-microcephaly causative gene, in neural stem progenitor cells. PLoS One 2013; 8:e68627. [PMID: 23874697 PMCID: PMC3713010 DOI: 10.1371/journal.pone.0068627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022] Open
Abstract
PQBP1 is a nuclear-cytoplasmic shuttling protein that is engaged in RNA metabolism and transcription. In mouse embryonic brain, our previous in situ hybridization study revealed that PQBP1 mRNA was dominantly expressed in the periventricular zone region where neural stem progenitor cells (NSPCs) are located. Because the expression patterns in NSPCs are related to the symptoms of intellectual disability and microcephaly in PQBP1 gene-mutated patients, we investigated the transcriptional regulation of PQBP1 by NSPC-specific transcription factors. We selected 132 genome sequences that matched the consensus sequence for the binding of Sox2 and POU transcription factors upstream and downstream of the mouse PQBP1 gene. We then screened the binding affinity of these sequences to Sox2-Pax6 or Sox2-Brn2 with gel mobility shift assays and found 18 genome sequences that interacted with the NSPC-specific transcription factors. Some of these sequences had cis-regulatory activities in Luciferase assays and in utero electroporation into NSPCs. Furthermore we found decreased levels of expression of PQBP1 protein in NSPCs of heterozygous Sox2-knockout mice in vivo by immunohistochemistry and western blot analysis. Collectively, these results indicated that Sox2 regulated the transcription of PQBP1 in NSPCs.
Collapse
Affiliation(s)
- Chan Li
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hikaru Ito
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Shiwaku
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yunlong Qi
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Mizuguchi M, Okazawa H. [Structural study of polyglutamine tract-binding protein 1]. YAKUGAKU ZASSHI 2013; 133:519-26. [PMID: 23649393 DOI: 10.1248/yakushi.13-00001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyglutamine tract-binding protein 1 (PQBP1) is a nuclear protein that regulates transcription and pre-mRNA splicing. In addition, the mutations in the PQBP1 gene are known to cause hereditary mental retardation. This review summarizes current knowledge about the solution structure of PQBP1. PQBP1 is an intrinsically disordered protein: its polar-rich domain and C-terminal domain are disordered under physiological conditions. PQBP1 binds to its target molecule U5-15kD via a continuous 23-residue segment of the C-terminal domain. The function of PQBP1 in the pre-mRNA splicing is also discussed.
Collapse
|
16
|
Tamura T, Sone M, Nakamura Y, Shimamura T, Imoto S, Miyano S, Okazawa H. A restricted level of PQBP1 is needed for the best longevity of Drosophila. Neurobiol Aging 2012; 34:356.e11-20. [PMID: 22901698 DOI: 10.1016/j.neurobiolaging.2012.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/21/2012] [Indexed: 12/13/2022]
Abstract
A number of neurological diseases are caused by mutations of RNA metabolism-related genes. A complicating issue is that whether under- or overfunction of such genes is responsible for the phenotype. Polyglutamine tract binding protein-1, a causative gene for X-linked mental retardation, is also involved in RNA metabolism, and both mutation and duplication of the gene were reported in human patients. In this study, we first report a novel phenotype of dPQBP1 (drosophila homolog of Polyglutamine tract binding protein-1)-mutant flies, lifespan shortening. We next address the gene dose-phenotype relationship in lifespan shortening and in learning disability, a previously described phenotype. The 2 phenotypes are rescued by dPQBP1 but in different dose-phenotype relationships. Either insufficient or excessive expression of dPQBP1 does not recover lifespan, while excessive expression recovers learning ability. We finally address the mechanism of lifespan shortening. Tissue-specific expression of dPQBP1-RNA interference construct reveals both neural and nonneural dPQBP1 contribute to the lifespan, while the latter has a dominant effect. Gene expression profiling suggested retinophilin/MORN repeat containing 4, a gene promoting axonal degeneration, to contribute to lifespan shortening by neural dPQBP1. Systems biology analysis of the gene expression profiles revealed indirect influence of dPQBP1 on insulin-like growth factor 1, insulin receptor, and peroxisome proliferator-activated receptorα/γ signaling pathways in nonneural tissues. Collectively, given that dPQBP1 affects multiple pathways in different dose-dependent and tissue-specific manners, dPQBP1 at a restricted expression level is needed for the best longevity.
Collapse
Affiliation(s)
- Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Okazawa H. [Elucidation of molecular pathomechanisms of Huntington's disease]. Rinsho Shinkeigaku 2012; 52:63-72. [PMID: 22354228 DOI: 10.5692/clinicalneurol.52.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In Huntington's disease, CAG repeat expansion of the Huntingtin gene produces mutant RNA and mutant protein containing elongated polyglutamine tract, which causes dysfunction and cell death of neurons. From our reseach of Huntington's disease and other polyglutamine diseases for nearly 20 years, we identified new disease-related genes including PQBP1, Ku70, HMGB, Maxer, and Omi. Through the analysis of these molecules, we unraveled new pathomechanisms deeply linked to nuclear functions such as transcription, splicing, DNA damage repair. These findings will become the basis to develop new molecule targeted therapeutics.
Collapse
Affiliation(s)
- Hitoshi Okazawa
- Department of Neuropathology, Tokyo Medical and Dental University
| |
Collapse
|
18
|
Bardoni B, Abekhoukh S, Zongaro S, Melko M. Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins: three actors for a complex scenario. PROGRESS IN BRAIN RESEARCH 2012; 197:29-51. [PMID: 22541287 DOI: 10.1016/b978-0-444-54299-1.00003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization.
Collapse
Affiliation(s)
- Barbara Bardoni
- Institute of Molecular and Cellular Pharmacology, CNRS-UMR6097, Université de Nice Sophia-Antipolis,Valbonne, France.
| | | | | | | |
Collapse
|
19
|
Giralt A, Puigdellívol M, Carretón O, Paoletti P, Valero J, Parra-Damas A, Saura CA, Alberch J, Ginés S. Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity. Hum Mol Genet 2011; 21:1203-16. [PMID: 22116937 DOI: 10.1093/hmg/ddr552] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by an expanded CAG/polyglutamine repeat in the coding region of the huntingtin (htt) gene. Although HD is classically considered a motor disorder, there is now considerable evidence that early cognitive deficits appear in patients before the onset of motor disturbances. Here we demonstrate early impairment of long-term spatial and recognition memory in heterozygous HD knock-in mutant mice (Hdh(Q7/Q111)), a genetically accurate HD mouse model. Cognitive deficits are associated with reduced hippocampal expression of CREB-binding protein (CBP) and diminished levels of histone H3 acetylation. In agreement with reduced CBP, the expression of CREB/CBP target genes related to memory, such c-fos, Arc and Nr4a2, was significantly reduced in the hippocampus of Hdh(Q7/Q111) mice compared with wild-type mice. Finally, and consistent with a role of CBP in cognitive impairment in Hdh(Q7/Q111) mice, administration of the histone deacetylase inhibitor trichostatin A rescues recognition memory deficits and transcription of selective CREB/CBP target genes in Hdh(Q7/Q111) mice. These findings demonstrate an important role for CBP in cognitive dysfunction in HD and suggest the use of histone deacetylase inhibitors as a novel therapeutic strategy for the treatment of memory deficits in this disease.
Collapse
Affiliation(s)
- A Giralt
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Haggarty SJ, Tsai LH. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiol Learn Mem 2011; 96:41-52. [PMID: 21545841 DOI: 10.1016/j.nlm.2011.04.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Advancing our understanding of neuroplasticity and the development of novel therapeutics based upon this knowledge is critical in order to improve the treatment and prevention of a myriad of nervous system disorders. Epigenetic mechanisms of neuroplasticity involve the post-translational modification of chromatin and the recruitment or loss of macromolecular complexes that control neuronal activity-dependent gene expression. While over a century after Ramón y Cajal first described nuclear subcompartments and foci that we now know correspond to sites of active transcription with acetylated histones that are under epigenetic control, the rate and extent to which epigenetic processes act in a dynamic and combinatorial fashion to shape experience-dependent phenotypic and behavioral plasticity in response to various types of neuronal stimuli over a range of time scales is only now coming into focus. With growing recognition that a subset of human diseases involving cognitive dysfunction can be classified as 'chromatinopathies', in which aberrant chromatin-mediated neuroplasticity plays a causal role in the underlying disease pathophysiology, understanding the molecular nature of epigenetic mechanisms in the nervous system may provide important new avenues for the development of novel therapeutics. In this review, we discuss the chemistry and neurobiology of the histone deacetylase (HDAC) family of chromatin-modifying enzymes, outline the role of HDACs in the epigenetic control of neuronal function, and discuss the potential relevance of these epigenetic mechanisms to the development of therapeutics aiming to enhance memory and neuroplasticity. Finally, open questions, challenges, and critical needs for the field of 'neuroepigenetics' in the years to come will be summarized.
Collapse
Affiliation(s)
- Stephen J Haggarty
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
21
|
Germanaud D, Rossi M, Bussy G, Gérard D, Hertz-Pannier L, Blanchet P, Dollfus H, Giuliano F, Bennouna-Greene V, Sarda P, Sigaudy S, Curie A, Vincent MC, Touraine R, des Portes V. The Renpenning syndrome spectrum: new clinical insights supported by 13 new PQBP1-mutated males. Clin Genet 2010; 79:225-35. [PMID: 20950397 DOI: 10.1111/j.1399-0004.2010.01551.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since the first reports of polyglutamine-binding protein 1 (PQBP1) mutations in Renpenning syndrome and related disorders, the spectrum of PQBP1-linked clinical manifestations has been outlined from rare published case reports. The phenotypic description is often obtained from medical archives, and therefore, heterogeneous. Moreover, some aspects such as brain imaging or cognitive and behavioral functioning are rarely described. In this study, 13 PQBP1-mutated French patients were subjected to a standardized clinical, cognitive and behavioral assessment. Physical measurements of their relatives were also collected. We report on a recognizable clinical and radiological phenotype. All patients presented with microcephaly, leanness and mild short stature, relative to familial measurements. Three new clinical features are described: upper back progressive muscular atrophy, metacarpophalangeal ankylosis of the thumb and velar dysfunction. The specific facial dysmorphic features included at least four of the following signs: long triangular face, large ridged nose, half-depilated eyebrows, dysplastic or protruding ears and rough slightly sparse hair. An over-aged appearance was noticed in elderly patients. Cortical gyrification was normal based on available magnetic brain imaging of six patients. PQBP1-linked microcephaly (or Renpenning syndrome) is an X-linked mental retardation syndrome, which has clinically recognizable features.
Collapse
Affiliation(s)
- D Germanaud
- Centre de Référence Déficiences Intellectuelles de Causes Rares Centre de Référence anomalies du développement embryonnaire, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Boulevard Pinel, Bron Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tapia VE, Nicolaescu E, McDonald CB, Musi V, Oka T, Inayoshi Y, Satteson AC, Mazack V, Humbert J, Gaffney CJ, Beullens M, Schwartz CE, Landgraf C, Volkmer R, Pastore A, Farooq A, Bollen M, Sudol M. Y65C missense mutation in the WW domain of the Golabi-Ito-Hall syndrome protein PQBP1 affects its binding activity and deregulates pre-mRNA splicing. J Biol Chem 2010; 285:19391-401. [PMID: 20410308 DOI: 10.1074/jbc.m109.084525] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PQBP1 (polyglutamine tract-binding protein 1) gene encodes a nuclear protein that regulates pre-mRNA splicing and transcription. Mutations in the PQBP1 gene were reported in several X chromosome-linked mental retardation disorders including Golabi-Ito-Hall syndrome. The missense mutation that causes this syndrome is unique among other PQBP1 mutations reported to date because it maps within a functional domain of PQBP1, known as the WW domain. The mutation substitutes tyrosine 65 with cysteine and is located within the conserved core of aromatic amino acids of the domain. We show here that the binding property of the Y65C-mutated WW domain and the full-length mutant protein toward its cognate proline-rich ligands was diminished. Furthermore, in Golabi-Ito-Hall-derived lymphoblasts we showed that the complex between PQBP1-Y65C and WBP11 (WW domain-binding protein 11) splicing factor was compromised. In these cells a substantial decrease in pre-mRNA splicing efficiency was detected. Our study points to the critical role of the WW domain in the function of the PQBP1 protein and provides an insight into the molecular mechanism that underlies the X chromosome-linked mental retardation entities classified globally as Renpenning syndrome.
Collapse
Affiliation(s)
- Victor E Tapia
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin 10115, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Takahashi M, Mizuguchi M, Shinoda H, Aizawa T, Demura M, Okazawa H, Kawano K. Polyglutamine tract-binding protein-1 binds to U5-15kD via a continuous 23-residue segment of the C-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1500-7. [PMID: 20307692 DOI: 10.1016/j.bbapap.2010.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 01/10/2023]
Abstract
Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear protein that interacts with various proteins, including RNA polymerase II and the spliceosomal protein U5-15kD. PQBP-1 is known to be associated with X-linked mental retardation in which a frameshift mutation in the PQBP-1 gene occurs. In the present study, we demonstrate that PQBP-1 binds to U5-15kD via a continuous 23-residue segment within its C-terminal domain. Intriguingly, this segment is lost in the frameshift mutants of PQBP-1 associated with X-linked mental retardation. These findings suggest that the frameshift mutations in the PQBP-1 gene lead to expression of mutants lacking the ability to interact with U5-15kD.
Collapse
Affiliation(s)
- Masaki Takahashi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|