1
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
2
|
Pan Y, Lu J, Feng X, Lu S, Yang Y, Yang G, Tan S, Wang L, Li P, Luo S, Lu B. Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat Chem Biol 2023; 19:1372-1383. [PMID: 37592155 DOI: 10.1038/s41589-023-01384-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 08/19/2023]
Abstract
RNA molecules with the expanded CAG repeat (eCAGr) may undergo sol-gel phase transitions, but the functional impact of RNA gelation is completely unknown. Here, we demonstrate that the eCAGr RNA may form cytoplasmic gel-like foci that are rapidly degraded by lysosomes. These RNA foci may significantly reduce the global protein synthesis rate, possibly by sequestering the translation elongation factor eEF2. Disrupting the eCAGr RNA gelation restored the global protein synthesis rate, whereas enhanced gelation exacerbated this phenotype. eEF2 puncta were significantly enhanced in brain slices from a knock-in mouse model and from patients with Huntington's disease, which is a CAG expansion disorder expressing eCAGr RNA. Finally, neuronal expression of the eCAGr RNA by adeno-associated virus injection caused significant behavioral deficits in mice. Our study demonstrates the existence of RNA gelation inside the cells and reveals its functional impact, providing insights into repeat expansion diseases and functional impacts of RNA phase transition.
Collapse
Affiliation(s)
- Yuyin Pan
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Junmei Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinran Feng
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Shengyi Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Yang
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Guang Yang
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Shudan Tan
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Liang Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
The length of uninterrupted CAG repeats in stem regions of repeat disease associated hairpins determines the amount of short CAG oligonucleotides that are toxic to cells through RNA interference. Cell Death Dis 2022; 13:1078. [PMID: 36585400 PMCID: PMC9803637 DOI: 10.1038/s41419-022-05494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Extended CAG trinucleotide repeats (TNR) in the genes huntingtin (HTT) and androgen receptor (AR) are the cause of two progressive neurodegenerative disorders: Huntington's disease (HD) and Spinal and Bulbar Muscular Atrophy (SBMA), respectively. Anyone who inherits the mutant gene in the complete penetrance range (>39 repeats for HD and 44 for SBMA) will develop the disease. An inverse correlation exists between the length of the CAG repeat and the severity and age of onset of the diseases. Growing evidence suggests that it is the length of uninterrupted CAG repeats in the mRNA rather than the length of poly glutamine (polyQ) in mutant (m)HTT protein that determines disease progression. One variant of mHTT (loss of inhibition; LOI) causes a 25 year earlier onset of HD when compared to a reference sequence, despite both coding for a protein that contains an identical number of glutamines. Short 21-22 nt CAG repeat (sCAGs)-containing RNAs can cause disease through RNA interference (RNAi). RNA hairpins (HPs) forming at the CAG TNRs are stabilized by adjacent CCG (in HD) or CUG repeats (in SBMA) making them better substrates for Dicer, the enzyme that processes CAG HPs into sCAGs. We now show that cells deficient in Dicer or unable to mediate RNAi are resistant to the toxicity of the HTT and AR derived HPs. Expression of a small HP that mimics the HD LOI variant is more stable and more toxic than a reference HP. We report that the LOI HP is processed by Dicer, loaded into the RISC more efficiently, and gives rise to a higher quantity of RISC-bound 22 nt sCAGs. Our data support the notion that RNAi contributes to the cell death seen in HD and SBMA and provide an explanation for the dramatically reduced onset of disease in HD patients that carry the LOI variant.
Collapse
|
4
|
An Y, Chen ZS, Chan H, Ngo J. Molecular insights into the interaction of CAG trinucleotide RNA repeats with nucleolin and its implication in polyglutamine diseases. Nucleic Acids Res 2022; 50:7655-7668. [PMID: 35776134 PMCID: PMC9303306 DOI: 10.1093/nar/gkac532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polyglutamine (polyQ) diseases are a type of inherited neurodegenerative disorders caused by cytosine-adenine-guanine (CAG) trinucleotide expansion within the coding region of the disease-associated genes. We previously demonstrated that a pathogenic interaction between expanded CAG RNA and the nucleolin (NCL) protein triggers the nucleolar stress and neuronal cell death in polyQ diseases. However, mechanisms behind the molecular interaction remain unknown. Here, we report a 1.45 Å crystal structure of the r(CAG)5 oligo that comprises a full A'-form helical turn with widened grooves. Based on this structure, we simulated a model of r(CAG)5 RNA complexed with the RNA recognition motif 2 (RRM2) of NCL and identified NCL residues that are critical for its binding to CAG RNA. Combined with in vitro and in vivo site-directed mutagenesis studies, our model reveals that CAG RNA binds to NCL sites that are not important for other cellular functions like gene expression and rRNA synthesis regulation, indicating that toxic CAG RNA interferes with NCL functions by sequestering it. Accordingly, an NCL mutant that is aberrant in CAG RNA-binding could rescue RNA-induced cytotoxicity effectively. Taken together, our study provides new molecular insights into the pathogenic mechanism of polyQ diseases mediated by NCL-CAG RNA interaction.
Collapse
Affiliation(s)
- Ying An
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan S Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Novel Biomaterials, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
5
|
Baud A, Derbis M, Tutak K, Sobczak K. Partners in crime: Proteins implicated in
RNA
repeat expansion diseases. WIRES RNA 2022; 13:e1709. [PMID: 35229468 PMCID: PMC9539487 DOI: 10.1002/wrna.1709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Baud
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Magdalena Derbis
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Katarzyna Tutak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Krzysztof Sobczak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| |
Collapse
|
6
|
Castelli LM, Benson BC, Huang WP, Lin YH, Hautbergue GM. RNA Helicases in Microsatellite Repeat Expansion Disorders and Neurodegeneration. Front Genet 2022; 13:886563. [PMID: 35646086 PMCID: PMC9133428 DOI: 10.3389/fgene.2022.886563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Short repeated sequences of 3-6 nucleotides are causing a growing number of over 50 microsatellite expansion disorders, which mainly present with neurodegenerative features. Although considered rare diseases in relation to the relatively low number of cases, these primarily adult-onset conditions, often debilitating and fatal in absence of a cure, collectively pose a large burden on healthcare systems in an ageing world population. The pathological mechanisms driving disease onset are complex implicating several non-exclusive mechanisms of neuronal injury linked to RNA and protein toxic gain- and loss- of functions. Adding to the complexity of pathogenesis, microsatellite repeat expansions are polymorphic and found in coding as well as in non-coding regions of genes. They form secondary and tertiary structures involving G-quadruplexes and atypical helices in repeated GC-rich sequences. Unwinding of these structures by RNA helicases plays multiple roles in the expression of genes including repeat-associated non-AUG (RAN) translation of polymeric-repeat proteins with aggregating and cytotoxic properties. Here, we will briefly review the pathogenic mechanisms mediated by microsatellite repeat expansions prior to focus on the RNA helicases eIF4A, DDX3X and DHX36 which act as modifiers of RAN translation in C9ORF72-linked amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72-ALS/FTD) and Fragile X-associated tremor/ataxia syndrome (FXTAS). We will further review the RNA helicases DDX5/17, DHX9, Dicer and UPF1 which play additional roles in the dysregulation of RNA metabolism in repeat expansion disorders. In addition, we will contrast these with the roles of other RNA helicases such as DDX19/20, senataxin and others which have been associated with neurodegeneration independently of microsatellite repeat expansions. Finally, we will discuss the challenges and potential opportunities that are associated with the targeting of RNA helicases for the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bridget C Benson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Lu S, Gao C, Wang Y, He Y, Du J, Chen M, Zhao H, Fang H, Wang B, Cao Y. Phylogenetic Analysis of the Plant U2 snRNP Auxiliary Factor Large Subunit A Gene Family in Response to Developmental Cues and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2021; 12:739671. [PMID: 34868124 PMCID: PMC8635922 DOI: 10.3389/fpls.2021.739671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
In all organisms, splicing occurs through the formation of spliceosome complexes, and splicing auxiliary factors are essential during splicing. U2AF65 is a crucial splicing cofactor, and the two typical RNA-recognition motifs at its center recognize and bind the polypyrimidine sequence located between the intron branch site and the 3'-splice site. U2AF65A is a member of the U2AF65 gene family, with pivotal roles in diseases in mammals, specifically humans; however, few studies have investigated plant U2AF65A, and its specific functions are poorly understood. Therefore, in the present study, we systematically identified U2AF65A in plant species from algae to angiosperms. Based on 113 putative U2AF65A sequences from 33 plant species, phylogenetic analyses were performed, followed by basic bioinformatics, including the comparisons of gene structure, protein domains, promoter motifs, and gene expression levels. In addition, using rice as the model crop, we demonstrated that the OsU2AF65A protein is localized to the nucleus and cytoplasm, and it is involved in responses to various stresses, such as drought, high salinity, low temperature, and heavy metal exposure (e.g., cadmium). Using Arabidopsis thaliana and rice mutants, we demonstrated that U2AF65A is involved in the accumulation of plant biomass, growth of hypocotyl upon thermal stimulation, and reduction of tolerance of high temperature stress. These findings offer an overview of the U2AF65 gene family and its stress response functions, serving as the reference for further comprehensive functional studies of the essential specific splicing cofactor U2AF65A in the plant kingdom.
Collapse
Affiliation(s)
- Shuai Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Cong Gao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yongzhou Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yingying He
- School of Life Sciences, Nantong University, Nantong, China
| | - Junrong Du
- School of Life Sciences, Nantong University, Nantong, China
| | - Moxian Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hua Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
8
|
Li PP, Moulick R, Feng H, Sun X, Arbez N, Jin J, Marque LO, Hedglen E, Chan HE, Ross CA, Pulst SM, Margolis RL, Woodson S, Rudnicki DD. RNA Toxicity and Perturbation of rRNA Processing in Spinocerebellar Ataxia Type 2. Mov Disord 2021; 36:2519-2529. [PMID: 34390268 PMCID: PMC8884117 DOI: 10.1002/mds.28729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin β-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pan P. Li
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Roumita Moulick
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hongxuan Feng
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Xin Sun
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicolas Arbez
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jing Jin
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Leonard O. Marque
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Erin Hedglen
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - H.Y. Edwin Chan
- Biochemistry Program, School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Christopher A. Ross
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Stefan M. Pulst
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Russell L. Margolis
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sarah Woodson
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dobrila D. Rudnicki
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
9
|
Peng S, Guo P, Lin X, An Y, Sze KH, Lau MHY, Chen ZS, Wang Q, Li W, Sun JKL, Ma SY, Chan TF, Lau KF, Ngo JCK, Kwan KM, Wong CH, Lam SL, Zimmerman SC, Tuccinardi T, Zuo Z, Au-Yeung HY, Chow HM, Chan HYE. CAG RNAs induce DNA damage and apoptosis by silencing NUDT16 expression in polyglutamine degeneration. Proc Natl Acad Sci U S A 2021; 118:e2022940118. [PMID: 33947817 PMCID: PMC8126783 DOI: 10.1073/pnas.2022940118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.
Collapse
Affiliation(s)
- Shaohong Peng
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Matthew Ho Yan Lau
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Sum Yi Ma
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China;
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Elorza A, Márquez Y, Cabrera JR, Sánchez-Trincado JL, Santos-Galindo M, Hernández IH, Picó S, Díaz-Hernández JI, García-Escudero R, Irimia M, Lucas JJ. Huntington's disease-specific mis-splicing unveils key effector genes and altered splicing factors. Brain 2021; 144:2009-2023. [PMID: 33725094 PMCID: PMC8370404 DOI: 10.1093/brain/awab087] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Correction of mis-splicing events is a growing therapeutic approach for neurological diseases such as spinal muscular atrophy or neuronal ceroid lipofuscinosis 7, which are caused by splicing-affecting mutations. Mis-spliced effector genes that do not harbour mutations are also good candidate therapeutic targets in diseases with more complex aetiologies such as cancer, autism, muscular dystrophies or neurodegenerative diseases. Next-generation RNA sequencing (RNA-seq) has boosted investigation of global mis-splicing in diseased tissue to identify such key pathogenic mis-spliced genes. Nevertheless, while analysis of tumour or dystrophic muscle biopsies can be informative on early stage pathogenic mis-splicing, for neurodegenerative diseases, these analyses are intrinsically hampered by neuronal loss and neuroinflammation in post-mortem brains. To infer splicing alterations relevant to Huntington’s disease pathogenesis, here we performed intersect-RNA-seq analyses of human post-mortem striatal tissue and of an early symptomatic mouse model in which neuronal loss and gliosis are not yet present. Together with a human/mouse parallel motif scan analysis, this approach allowed us to identify the shared mis-splicing signature triggered by the Huntington’s disease-causing mutation in both species and to infer upstream deregulated splicing factors. Moreover, we identified a plethora of downstream neurodegeneration-linked mis-spliced effector genes that—together with the deregulated splicing factors—become new possible therapeutic targets. In summary, here we report pathogenic global mis-splicing in Huntington’s disease striatum captured by our new intersect-RNA-seq approach that can be readily applied to other neurodegenerative diseases for which bona fide animal models are available.
Collapse
Affiliation(s)
- Ainara Elorza
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Yamile Márquez
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Jorge R Cabrera
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - José Luis Sánchez-Trincado
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - María Santos-Galindo
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Ivó H Hernández
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.,Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sara Picó
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Juan I Díaz-Hernández
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT, Madrid 28040, Spain.,Biomedical Research Institute i+12, Hospital 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - José J Lucas
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| |
Collapse
|
11
|
Kim MR, Feng T, Zhang Q, Chan HYE, Chau Y. Co-Encapsulation and Co-Delivery of Peptide Drugs via Polymeric Nanoparticles. Polymers (Basel) 2019; 11:E288. [PMID: 30960272 PMCID: PMC6419018 DOI: 10.3390/polym11020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
Abstract
Combination therapy is a promising form of treatment. In particular, co-treatment of P3 and QBP1 has been shown to enhance therapeutic effect in vivo in treating polyglutamine diseases. These peptide drugs, however, face challenges in clinical administration due to poor stability, inability to reach intracellular targets, and lack of method to co-deliver both drugs. Here we demonstrate two methods of co-encapsulating the peptide drugs via polymer poly(ethylene glycol)-block-polycaprolactone (PEG-b-PCL) based nanoparticles. Nanoparticles made by double emulsion were 100⁻200 nm in diameter, with drug encapsulation efficiency of around 30%. Nanoparticles made by nanoprecipitation with lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) were around 250⁻300 nm in diameter, with encapsulation efficiency of 85⁻100%. Particles made with both formulations showed cellular uptake when decorated with a mixture of peptide ligands that facilitate endocytosis. In vitro assay showed that nanoparticles could deliver bioactive peptides and encapsulation by double emulsion were found to be more effective in rescuing cells from polyglutamine-induced toxicity.
Collapse
Affiliation(s)
- Ma Rie Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Teng Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Qian Zhang
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
12
|
Hong H, Koon AC, Chen ZS, Wei Y, An Y, Li W, Lau MHY, Lau KF, Ngo JCK, Wong CH, Au-Yeung HY, Zimmerman SC, Chan HYE. AQAMAN, a bisamidine-based inhibitor of toxic protein inclusions in neurons, ameliorates cytotoxicity in polyglutamine disease models. J Biol Chem 2018; 294:2757-2770. [PMID: 30593503 DOI: 10.1074/jbc.ra118.006307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2018] [Indexed: 01/30/2023] Open
Abstract
Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.
Collapse
Affiliation(s)
- Huiling Hong
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Alex Chun Koon
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Zhefan Stephen Chen
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Yuming Wei
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Ying An
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Wen Li
- School of Life Sciences, Faculty of Science
| | - Matthew Ho Yan Lau
- the Department of Chemistry, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, and
| | | | | | | | - Ho Yu Au-Yeung
- the Department of Chemistry, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, and
| | - Steven C Zimmerman
- the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ho Yin Edwin Chan
- From the Laboratory of Drosophila Research, .,School of Life Sciences, Faculty of Science.,Gerald Choa Neuroscience Centre, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
13
|
Maeder CI, Kim JI, Liang X, Kaganovsky K, Shen A, Li Q, Li Z, Wang S, Xu XZS, Li JB, Xiang YK, Ding JB, Shen K. The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival. Cell 2018; 174:1436-1449.e20. [PMID: 30146163 DOI: 10.1016/j.cell.2018.07.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023]
Abstract
Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C. elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.
Collapse
Affiliation(s)
- Celine I Maeder
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jae-Ick Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xing Liang
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ao Shen
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Zhaoyu Li
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sui Wang
- Department of Opthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yang Kevin Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Chen ZS, Li L, Peng S, Chen FM, Zhang Q, An Y, Lin X, Li W, Koon AC, Chan TF, Lau KF, Ngo JCK, Wong WT, Kwan KM, Chan HYE. Planar cell polarity gene Fuz triggers apoptosis in neurodegenerative disease models. EMBO Rep 2018; 19:embr.201745409. [PMID: 30026307 DOI: 10.15252/embr.201745409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023] Open
Abstract
Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Li Li
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shaohong Peng
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Francis M Chen
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qian Zhang
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xiao Lin
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wen Li
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ting-Fung Chan
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wing Tak Wong
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kin Ming Kwan
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Partner State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China .,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
15
|
Hautbergue GM. RNA Nuclear Export: From Neurological Disorders to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1007:89-109. [PMID: 28840554 DOI: 10.1007/978-3-319-60733-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- RNA Biology Laboratory, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
16
|
Zhang Q, Chen ZS, An Y, Liu H, Hou Y, Li W, Lau KF, Koon AC, Ngo JCK, Chan HYE. A peptidylic inhibitor for neutralizing expanded CAG RNA-induced nucleolar stress in polyglutamine diseases. RNA (NEW YORK, N.Y.) 2018; 24:486-498. [PMID: 29295891 PMCID: PMC5855950 DOI: 10.1261/rna.062703.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Yonghui Hou
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Wen Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
17
|
Martí E. RNA toxicity induced by expanded CAG repeats in Huntington's disease. Brain Pathol 2018; 26:779-786. [PMID: 27529325 DOI: 10.1111/bpa.12427] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) belongs to the group of inherited polyglutamine (PolyQ) diseases caused by an expanded CAG repeat in the coding region of the Huntingtin (HTT) gene that results in an elongated polyQ stretch. Abnormal function and aggregation of the mutant protein has been typically delineated as the main molecular cause underlying disease development. However, the most recent advances have revealed novel pathogenic pathways directly dependent on an RNA toxic gain-of-function. Expanded CAG repeats within exon 1 of the HTT mRNA induce toxicity through mechanisms involving, at least in part, gene expression perturbations. This has important implications not only for basic and translational research in HD, but also for other types of diseases carrying the expanded CAG in other genes, which likely share pathogenic aspects. Here I will review the evidence and mechanisms underlying RNA toxicity in CAG repeat expansions, with particular focus on HD. These comprise abnormal subcellular localization of the transcripts containing the expanded CAG repeats; sequestration of several types of proteins by the expanded CAG repeat which results in defects of alternative splicing events and gene expression; and aberrant biogenesis and detrimental activity of small CAG repeated RNAs (sCAG) that produce altered gene silencing. Although these altered pathways have been detected in HD models, their contribution to disease development and progress requires further study.
Collapse
Affiliation(s)
- Eulàlia Martí
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, 08003, Spain.,Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| |
Collapse
|
18
|
A brain-targeting lipidated peptide for neutralizing RNA-mediated toxicity in Polyglutamine Diseases. Sci Rep 2017; 7:12077. [PMID: 28935901 PMCID: PMC5608758 DOI: 10.1038/s41598-017-11695-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023] Open
Abstract
Polyglutamine (PolyQ) diseases are progressive neurodegenerative disorders caused by both protein- and RNA-mediated toxicities. We previously showed that a peptidyl inhibitor, P3, which binds directly to expanded CAG RNA can inhibit RNA-induced nucleolar stress and suppress RNA-induced neurotoxicity. Here we report a N-acetylated and C-amidated derivative of P3, P3V8, that showed a more than 20-fold increase in its affinity for expanded CAG RNA. The P3V8 peptide also more potently alleviated expanded RNA-induced cytotoxicity in vitro, and suppressed polyQ neurodegeneration in Drosophila with no observed toxic effects. Further N-palmitoylation of P3V8 (L1P3V8) not only significantly improved its cellular uptake and stability, but also facilitated its systemic exposure and brain uptake in rats via intranasal administration. Our findings demonstrate that concomitant N-acetylation, C-amidation and palmitoylation of P3 significantly improve both its bioactivity and pharmacological profile. L1P3V8 possesses drug/lead-like properties that can be further developed into a lead inhibitor for the treatment of polyQ diseases.
Collapse
|
19
|
GULP1/CED-6 ameliorates amyloid-β toxicity in a Drosophila model of Alzheimer's disease. Oncotarget 2017; 8:99274-99283. [PMID: 29245900 PMCID: PMC5725091 DOI: 10.18632/oncotarget.20062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/30/2017] [Indexed: 01/24/2023] Open
Abstract
Amyloidogenic processing of APP by β- and γ-secretases leads to the generation of amyloid-β peptide (Aβ), and the accumulation of Aβ in senile plaques is a hallmark of Alzheimer’s disease (AD). Understanding the mechanisms of APP processing is therefore paramount. Increasing evidence suggests that APP intracellular domain (AICD) interacting proteins influence APP processing. In this study, we characterized the overexpression of AICD interactor GULP1 in a Drosophila AD model expressing human BACE and APP695. Transgenic GULP1 significantly lowered the levels of both Aβ1-40 and Aβ1-42 without decreasing the BACE and APP695 levels. Overexpression of GULP1 also reduced APP/BACE-mediated retinal degeneration, rescued motor dysfunction and extended longevity of the flies. Our results indicate that GULP1 regulate APP processing and reduce neurotoxicity in a Drosophila AD model.
Collapse
|
20
|
Ciesiolka A, Jazurek M, Drazkowska K, Krzyzosiak WJ. Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions. Front Cell Neurosci 2017; 11:97. [PMID: 28442996 PMCID: PMC5387085 DOI: 10.3389/fncel.2017.00097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Short Tandem Repeats (STRs) are frequent entities in many transcripts, however, in some cases, pathological events occur when a critical repeat length is reached. This phenomenon is observed in various neurological disorders, such as myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome, C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), and polyglutamine diseases, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA). The pathological effects of these repeats are triggered by mutant RNA transcripts and/or encoded mutant proteins, which depend on the localization of the expanded repeats in non-coding or coding regions. A growing body of recent evidence revealed that the RNA structures formed by these mutant RNA repeat tracts exhibit toxic effects on cells. Therefore, in this review article, we present existing knowledge on the structural aspects of different RNA repeat tracts as revealed mainly using well-established biochemical and biophysical methods. Furthermore, in several cases, it was shown that these expanded RNA structures are potent traps for a variety of RNA-binding proteins and that the sequestration of these proteins from their normal intracellular environment causes alternative splicing aberration, inhibition of nuclear transport and export, or alteration of a microRNA biogenesis pathway. Therefore, in this review article, we also present the most studied examples of abnormal interactions that occur between mutant RNAs and their associated proteins.
Collapse
Affiliation(s)
- Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Karolina Drazkowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
21
|
Koon AC, Chan HYE. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci 2017; 11:70. [PMID: 28377694 PMCID: PMC5359753 DOI: 10.3389/fncel.2017.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development.
Collapse
Affiliation(s)
- Alex C Koon
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong; Cell and Molecular Biology ProgramHong Kong, Hong Kong; Molecular Biotechnology Program, Faculty of Science, School of Life SciencesHong Kong, Hong Kong; School of Life Sciences, Gerald Choa Neuroscience Centre, The Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
22
|
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res 2016; 44:9050-9070. [PMID: 27625393 PMCID: PMC5100574 DOI: 10.1093/nar/gkw803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases.
Collapse
Affiliation(s)
- Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julia Starega-Roslan
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Bilinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
23
|
Urbanek MO, Jazurek M, Switonski PM, Figura G, Krzyzosiak WJ. Nuclear speckles are detention centers for transcripts containing expanded CAG repeats. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1513-20. [PMID: 27239700 DOI: 10.1016/j.bbadis.2016.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
The human genetic disorders caused by CAG repeat expansions in the translated sequences of various genes are called polyglutamine (polyQ) diseases because of the cellular "toxicity" of the mutant proteins. The contribution of mutant transcripts to the pathogenesis of these diseases is supported by several observations obtained from cellular models of these disorders. Here, we show that the common feature of cell lines modeling polyQ diseases is the formation of nuclear CAG RNA foci. We performed qualitative and quantitative analyses of these foci in numerous cellular models endogenously and exogenously expressing mutant transcripts by fluorescence in situ hybridization (FISH). We compared the CAG RNA foci of polyQ diseases with the CUG foci of myotonic dystrophy type 1 and found substantial differences in their number and morphology. Smaller differences within the polyQ disease group were also revealed and included a positive correlation between the foci number and the CAG repeat length. We show that expanded CAA repeats, also encoding glutamine, did not trigger RNA foci formation and foci formation is independent of the presence of mutant polyglutamine protein. Using FISH combined with immunofluorescence, we demonstrated partial co-localization of CAG repeat foci with MBNL1 alternative splicing factor, which explains the mild deregulation of MBNL1-dependent genes. We also showed that foci reside within nuclear speckles in diverse cell types: fibroblasts, lymphoblasts, iPS cells and neuronal progenitors and remain dependent on integrity of these nuclear structures.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Pawel M Switonski
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Grzegorz Figura
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
24
|
Zhang Q, Tsoi H, Peng S, Li PP, Lau KF, Rudnicki DD, Ngo JCK, Chan HYE. Assessing a peptidylic inhibitor-based therapeutic approach that simultaneously suppresses polyglutamine RNA- and protein-mediated toxicities in patient cells and Drosophila. Dis Model Mech 2016; 9:321-34. [PMID: 26839389 PMCID: PMC4833327 DOI: 10.1242/dmm.022350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/27/2016] [Indexed: 02/03/2023] Open
Abstract
Polyglutamine (polyQ) diseases represent a group of progressive neurodegenerative disorders that are caused by abnormal expansion of CAG triplet nucleotides in disease genes. Recent evidence indicates that not only mutant polyQ proteins, but also their corresponding mutant RNAs, contribute to the pathogenesis of polyQ diseases. Here, we describe the identification of a 13-amino-acid peptide, P3, which binds directly and preferentially to long-CAG RNA within the pathogenic range. When administered to cell and Drosophila disease models, as well as to patient-derived fibroblasts, P3 inhibited expanded-CAG-RNA-induced nucleolar stress and suppressed neurotoxicity. We further examined the combined therapeutic effect of P3 and polyQ-binding peptide 1 (QBP1), a well-characterized polyQ protein toxicity inhibitor, on neurodegeneration. When P3 and QBP1 were co-administered to disease models, both RNA and protein toxicities were effectively mitigated, resulting in a notable improvement of neurotoxicity suppression compared with the P3 and QBP1 single-treatment controls. Our findings indicate that targeting toxic RNAs and/or simultaneous targeting of toxic RNAs and their corresponding proteins could open up a new therapeutic strategy for treating polyQ degeneration.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ho Tsoi
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shaohong Peng
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Pan P Li
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kwok-Fai Lau
- Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Dobrila D Rudnicki
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacky Chi-Ki Ngo
- Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
25
|
Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, Tirode F, Constantinou A, Piperno-Neumann S, Roman-Roman S, Dutertre M, Stern MH. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun 2016; 7:10615. [PMID: 26842708 DOI: 10.1038/ncomms10615] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3'-splice site (3'ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1(R625/K666) mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3'ss. Modelling the differential junctions in SF3B1(WT) and SF3B1(R625/K666) cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3'ss-sequence context. SF3B1(WT) knockdown or overexpression do not reproduce the SF3B1(R625/K666) splice pattern, qualifying SF3B1(R625/K666) as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1(R625/K666)-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease.
Collapse
Affiliation(s)
- Samar Alsafadi
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Alexandre Houy
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Aude Battistella
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Tatiana Popova
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Michel Wassef
- Depatment of Developmental Biology and Genetics, CNRS UMR 3215/INSERM U934, Institut Curie, PSL Research University, Paris 75248, France
| | - Emilie Henry
- Translational Research Department, Institut Curie, PSL Research University, Paris 75248, France
| | - Franck Tirode
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Angelos Constantinou
- Department of Molecular Bases of Human Diseases, CNRS UPR 1142, IGH-Institute of Human Genetics, Montpellier 34090, France
| | | | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, PSL Research University, Paris 75248, France
| | - Martin Dutertre
- Department of Genotoxic stress and Cancer, CNRS UMR 3348, Institut Curie, PSL Research University, Orsay 91400, France
| | - Marc-Henri Stern
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| |
Collapse
|
26
|
Kiliszek A, Banaszak K, Dauter Z, Rypniewski W. The first crystal structures of RNA-PNA duplexes and a PNA-PNA duplex containing mismatches--toward anti-sense therapy against TREDs. Nucleic Acids Res 2015; 44:1937-43. [PMID: 26717983 PMCID: PMC4770230 DOI: 10.1093/nar/gkv1513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023] Open
Abstract
PNA is a promising molecule for antisense therapy of trinucleotide repeat disorders. We present the first crystal structures of RNA–PNA duplexes. They contain CUG repeats, relevant to myotonic dystrophy type I, and CAG repeats associated with poly-glutamine diseases. We also report the first PNA–PNA duplex containing mismatches. A comparison of the PNA homoduplex and the PNA–RNA heteroduplexes reveals PNA's intrinsic structural properties, shedding light on its reported sequence selectivity or intolerance of mismatches when it interacts with nucleic acids. PNA has a much lower helical twist than RNA and the resulting duplex has an intermediate conformation. PNA retains its overall conformation while locally there is much disorder, especially peptide bond flipping. In addition to the Watson–Crick pairing, the structures contain interesting interactions between the RNA's phosphate groups and the Π electrons of the peptide bonds in PNA.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Banaszak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
27
|
Sun X, Li PP, Zhu S, Cohen R, Marque LO, Ross CA, Pulst SM, Chan HYE, Margolis RL, Rudnicki DD. Nuclear retention of full-length HTT RNA is mediated by splicing factors MBNL1 and U2AF65. Sci Rep 2015. [PMID: 26218986 PMCID: PMC4517393 DOI: 10.1038/srep12521] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Recent evidence suggests that HD is a consequence of multimodal, non-mutually exclusive mechanisms of pathogenesis that involve both HTT protein- and HTT RNA-triggered mechanisms. Here we provide further evidence for the role of expanded HTT (expHTT) RNA in HD by demonstrating that a fragment of expHTT is cytotoxic in the absence of any translation and that the extent of cytotoxicity is similar to the cytotoxicity of an expHTT protein fragment encoded by a transcript of similar length and with a similar repeat size. In addition, full-length (FL) expHTT is retained in the nucleus. Overexpression of the splicing factor muscleblind-like 1 (MBNL1) increases nuclear retention of expHTT and decreases the expression of expHTT protein in the cytosol. The splicing and nuclear export factor U2AF65 has the opposite effect, decreasing expHTT nuclear retention and increasing expression of expHTT protein. This suggests that MBNL1 and U2AF65 play a role in nuclear export of expHTT RNA.
Collapse
Affiliation(s)
- Xin Sun
- 1] Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [2] Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Pan P Li
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Zhu
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachael Cohen
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leonard O Marque
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher A Ross
- 1] Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [3] Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [4] Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Russell L Margolis
- 1] Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [3] Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dobrila D Rudnicki
- 1] Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [2] Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Chan HYE. RNA-mediated pathogenic mechanisms in polyglutamine diseases and amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:431. [PMID: 25565965 PMCID: PMC4271607 DOI: 10.3389/fncel.2014.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/29/2014] [Indexed: 12/12/2022] Open
Abstract
Gene transcription produces a wide variety of ribonucleic acid (RNA) species in eukaryotes. Individual types of RNA, such as messenger, structural and regulatory RNA, are known to play distinct roles in the cell. Recently, researchers have identified a large number of RNA-mediated toxicity pathways that play significant pathogenic roles in numerous human disorders. In this article, we describe various common RNA toxicity pathways, namely epigenetic gene silencing, nucleolar stress, nucleocytoplasmic transport, bi-directional gene transcription, repeat-associated non-ATG translation, RNA foci formation and cellular protein sequestration. We emphasize RNA toxicity mechanisms that involve nucleotide repeat expansion, such as those related to polyglutamine (polyQ) disorders and frontotemporal lobar degeneration-amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China ; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
29
|
Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res 2014; 42:6787-810. [PMID: 24848018 PMCID: PMC4066792 DOI: 10.1093/nar/gku385] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Considerable advances have been recently made in understanding the molecular aspects of pathogenesis and in developing therapeutic approaches for polyglutamine (polyQ) diseases. Studies on pathogenic mechanisms have extended our knowledge of mutant protein toxicity, confirmed the toxicity of mutant transcript and identified other toxic RNA and protein entities. One very promising therapeutic strategy is targeting the causative gene expression with oligonucleotide (ON) based tools. This straightforward approach aimed at halting the early steps in the cascade of pathogenic events has been widely tested for Huntington's disease and spinocerebellar ataxia type 3. In this review, we gather information on the use of antisense oligonucleotides and RNA interference triggers for the experimental treatment of polyQ diseases in cellular and animal models. We present studies testing non-allele-selective and allele-selective gene silencing strategies. The latter include targeting SNP variants associated with mutations or targeting the pathologically expanded CAG repeat directly. We compare gene silencing effectors of various types in a number of aspects, including their design, efficiency in cell culture experiments and pre-clinical testing. We discuss advantages, current limitations and perspectives of various ON-based strategies used to treat polyQ diseases.
Collapse
Affiliation(s)
- Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
30
|
Tsoi H, Chan HYE. Roles of the nucleolus in the CAG RNA-mediated toxicity. Biochim Biophys Acta Mol Basis Dis 2013; 1842:779-84. [PMID: 24269666 DOI: 10.1016/j.bbadis.2013.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
The nucleolus is a subnuclear compartment within the cell nucleus that serves as the site for ribosomal RNA (rRNA) transcription and the assembly of ribosome subunits. Apart from its classical role in ribosomal biogenesis, a number of cellular regulatory roles have recently been assigned to the nucleolus, including governing the induction of apoptosis. "Nucleolar stress" is a term that is used to describe a signaling pathway through which the nucleolus communicates with other subcellular compartments, including the mitochondria, to induce apoptosis. It is an effective mechanism for eliminating cells that are incapable of performing protein synthesis efficiently due to ribosome biogenesis defects. The down-regulation of rRNA transcription is a common cause of nucleolar function disruption that subsequently triggers nucleolar stress, and has been associated with the pathogenesis of neurological disorders such as spinocerebellar ataxias (SCAs) and Huntington's diseases (HD). This article discusses recent advances in mechanistic studies of how expanded CAG trinucleotide repeat RNA transcripts trigger nucleolar stress in SCAs, HD and other trinucleotide repeat disorders. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Ho Tsoi
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
31
|
Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis 2013; 4:e752. [PMID: 23907466 PMCID: PMC3763438 DOI: 10.1038/cddis.2013.276] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/27/2023]
Abstract
Several inherited neurodegenerative disorders are caused by CAG trinucleotide repeat expansions, which can be located either in the coding region or in the untranslated region (UTR) of the respective genes. Polyglutamine diseases (polyQ diseases) are caused by an expansion of a stretch of CAG repeats within the coding region, translating into a polyQ tract. The polyQ tract expansions result in conformational changes, eventually leading to aggregate formation. It is widely believed that the aggregation of polyQ proteins is linked with disease development. In addition, in the last couple of years, it has been shown that RNA-mediated mechanisms also have a profound role in neurotoxicity in both polyQ diseases and diseases caused by elongated CAG repeat motifs in their UTRs. Here, we review the different molecular mechanisms assigned to mRNAs with expanded CAG repeats. One aspect is the mRNA folding of CAG repeats. Furthermore, pathogenic mechanisms assigned to CAG repeat mRNAs are discussed. First, we discuss mechanisms that involve the sequestration of the diverse proteins to the expanded CAG repeat mRNA molecules. As a result of this, several cellular mechanisms are aberrantly regulated. These include the sequestration of MBNL1, leading to misregulated splicing; sequestration of nucleolin, leading to reduced cellular rRNA; and sequestration of proteins of the siRNA machinery, resulting in the production of short silencing RNAs that affect gene expression. Second, we discuss the effect of expanded CAG repeats on the subcellular localization, transcription and translation of the CAG repeat mRNA itself. Here we focus on the MID1 protein complex that triggers an increased translation of expanded CAG repeat mRNAs and a mechanism called repeat-associated non-ATG translation, which leads to proteins aberrantly translated from CAG repeat mRNAs. In addition, therapeutic approaches for CAG repeat disorders are discussed. Together, all the findings summarized here show that mutant mRNA has a fundamental role in the pathogenesis of CAG repeat diseases.
Collapse
|
32
|
Fiszer A, Krzyzosiak WJ. RNA toxicity in polyglutamine disorders: concepts, models, and progress of research. J Mol Med (Berl) 2013; 91:683-91. [PMID: 23512265 PMCID: PMC3659269 DOI: 10.1007/s00109-013-1016-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 01/13/2023]
Abstract
In Huntington's disease and other polyglutamine (polyQ) disorders, mutant proteins containing a long polyQ stretch are well documented as the trigger of numerous aberrant cellular processes that primarily lead to degeneration and, ultimately, the death of neuronal cells. However, mutant transcripts containing expanded CAG repeats may also be toxic and contribute to cellular dysfunction. The exact nature and importance of RNA toxicity in polyQ diseases are only beginning to be recognized, and the first insights have mainly resulted from studies using simple model systems. In this review, we briefly present the basic mechanisms of protein toxicity in polyQ disorders and RNA toxicity in myotonic dystrophy type 1 and discuss recent results suggesting that the pathogenesis of polyQ diseases may also be mediated by mutant transcripts. This review is focused on the experimental systems used thus far to demonstrate RNA toxicity in polyQ disorders and the design of new systems that will be more relevant to the human disease situation and capable of separating RNA toxicity from protein toxicity.
Collapse
Affiliation(s)
- Agnieszka Fiszer
- Laboratory of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J. Krzyzosiak
- Laboratory of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
33
|
Tsoi H, Lau TCK, Tsang SY, Lau KF, Chan HYE. CAG expansion induces nucleolar stress in polyglutamine diseases. Proc Natl Acad Sci U S A 2012; 109:13428-33. [PMID: 22847428 PMCID: PMC3421186 DOI: 10.1073/pnas.1204089109] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cell nucleus is a major site for polyglutamine (polyQ) toxicity, but the underlying mechanisms involved have yet been fully elucidated. Here, we report that mutant RNAs that carry an expanded CAG repeat (expanded CAG RNAs) induce apoptosis by activating the nucleolar stress pathway in both polyQ patients and transgenic animal disease models. We showed that expanded CAG RNAs interacted directly with nucleolin (NCL), a protein that regulates rRNA transcription. Such RNA-protein interaction deprived NCL of binding to upstream control element (UCE) of the rRNA promoter, which resulted in UCE DNA hypermethylation and subsequently perturbation of rRNA transcription. The down-regulation of rRNA transcription induced nucleolar stress and provoked apoptosis by promoting physical interaction between ribosomal proteins and MDM2. Consequently, p53 protein was found to be stabilized in cells and became concentrated in the mitochondria. Finally, we showed that mitochondrial p53 disrupted the interaction between the antiapoptotic protein, Bcl-xL, and the proapoptotic protein, Bak, which then caused cytochrome c release and caspase activation. Our work provides in vivo evidence that expanded CAG RNAs trigger nucleolar stress and induce apoptosis via p53 and describes a polyQ pathogenic mechanism that involves the nucleolus.
Collapse
Affiliation(s)
- Ho Tsoi
- Laboratory of Drosophila Research
- Biochemistry Program
| | - Terrence Chi-Kong Lau
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Suk-Ying Tsang
- Biochemistry Program
- Cell and Molecular Biology Program, and
| | - Kwok-Fai Lau
- Biochemistry Program
- Cell and Molecular Biology Program, and
- Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; and
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research
- Biochemistry Program
- Cell and Molecular Biology Program, and
- Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; and
| |
Collapse
|
34
|
Nelson LD, Bender C, Mannsperger H, Buergy D, Kambakamba P, Mudduluru G, Korf U, Hughes D, Van Dyke MW, Allgayer H. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer. Mol Cancer 2012; 11:38. [PMID: 22682314 PMCID: PMC3537547 DOI: 10.1186/1476-4598-11-38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022] Open
Abstract
Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G)-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA) for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024). EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated with ErbB1, mTOR, PTEN, and Stat5. Western blots confirmed that full-length and truncated beta-catenin expression correlated with U2AF65 expression in tumor extracts. Conclusions Increased triplex DNA-binding activity in vitro correlates with lymph node disease, metastasis, and reduced overall survival in colorectal cancer, and increased U2AF65 expression is associated with total and truncated beta-catenin expression in high-stage colorectal tumors.
Collapse
Affiliation(s)
- Laura D Nelson
- Dept. of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kumar A, Parkesh R, Sznajder LJ, Childs-Disney JL, Sobczak K, Disney MD. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts. ACS Chem Biol 2012; 7:496-505. [PMID: 22252896 DOI: 10.1021/cb200413a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)(exp)) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5'CAG/3'GAC motif found in r(CAG)(exp) hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)(exp). The compound was identified by first studying the binding of RNA 1 × 1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5'CAG/3'GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate, a small molecule that improves pre-mRNA splicing defects associated with the r(CAG)(exp)-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)(exp) and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)(exp) toxicity. The approach used in these studies, defining the small RNA motifs that bind small molecules with known affinity for nucleic acids and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in the human genomic sequence.
Collapse
Affiliation(s)
- Amit Kumar
- Department
of Chemistry, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Raman Parkesh
- Department
of Chemistry, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Lukasz J. Sznajder
- Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan,
Poland
| | - Jessica L. Childs-Disney
- Department
of Chemistry, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Krzysztof Sobczak
- Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan,
Poland
| | - Matthew D. Disney
- Department
of Chemistry, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| |
Collapse
|
36
|
Affiliation(s)
- Dobrila D Rudnicki
- Division of Neurobiology, Laboratory of Genetic Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | |
Collapse
|