1
|
Xu L, Xu Y, Jiang Y, Jiang J, Chen S, Sun D, Li S, Wei F, Zhu H. IP3R2 regulates apoptosis by Ca2+ transfer through mitochondria-ER contacts in hypoxic photoreceptor injury. Exp Eye Res 2024; 245:109965. [PMID: 38851477 DOI: 10.1016/j.exer.2024.109965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Mitochondria-associated ER membranes (MAMs) are contact sites that enable bidirectional communication between the ER (endoplasmic reticulum) and mitochondria, including the transfer of Ca2+ signals. MAMs are essential for mitochondrial function and cellular energy metabolism. However, unrestrained Ca2+ transfer to the mitochondria can lead to mitochondria-dependent apoptosis. IP3R2 (Inositol 1,4,5-trisphosphate receptor 2) is an important intracellular Ca2+ channel. This study investigated the contribution of IP3R2-MAMs to hypoxia-induced apoptosis in photoreceptor cells. A photoreceptor hypoxia model was established by subretinal injection of hyaluronic acid (1%) in C57BL/6 mice and 1% O2 treatment in 661W cells. Transmission electron microscopy (TEM), ER-mitochondria colocalization, and the MAM reporter were utilized to evaluate MAM alterations. Cell apoptosis and mitochondrial homeostasis were evaluated using immunofluorescence (IF), flow cytometry, western blotting (WB), and ATP assays. SiRNA transfection was employed to silence IP3R2 in 661W cells. Upon hypoxia induction, MAMs were significantly increased in photoreceptors both in vivo and in vitro. This was accompanied by the activation of mitochondrial apoptosis and disruption of mitochondrial homeostasis. Elevated MAM-enriched IP3R2 protein levels induced by hypoxic injury led to mitochondrial calcium overload and subsequent photoreceptor apoptosis. Notably, IP3R2 knockdown not only improved mitochondrial morphology but also restored mitochondrial function in photoreceptors by limiting MAM formation and thereby attenuating mitochondrial calcium overload under hypoxia. Our results suggest that IP3R2-MAM-mediated mitochondrial calcium overload plays a critical role in mitochondrial dyshomeostasis, ultimately contributing to photoreceptor cell death. Targeting MAM constitutive proteins might provide an option for a therapeutic approach to mitigate photoreceptor death in retinal detachment.
Collapse
Affiliation(s)
- Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihua Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaoxu Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingjing Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
2
|
Tian Z, Jiang S, Zhou J, Zhang W. Copper homeostasis and cuproptosis in mitochondria. Life Sci 2023; 334:122223. [PMID: 38084674 DOI: 10.1016/j.lfs.2023.122223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Mitochondria serve as sites for energy production and are essential for regulating various forms of cell death induced by metal metabolism, targeted anticancer drugs, radiotherapy and immunotherapy. Cuproptosis is an autonomous form of cell death that depends on copper (Cu) and mitochondrial metabolism. Although the recent discovery of cuproptosis highlights the significance of Cu and mitochondria, there is still a lack of biological evidence and experimental verification for the underlying mechanism. We provide an overview of how Cu and cuproptosis affect mitochondrial morphology and function. Through comparison with ferroptosis, similarities and differences in mitochondrial metabolism between cuproptosis and ferroptosis have been identified. These findings provide implications for further exploration of cuproptotic mechanisms. Furthermore, we explore the correlation between cuproptosis and immunotherapy or radiosensitivity. Ultimately, we emphasize the therapeutic potential of targeting cuproptosis as a novel approach for disease treatment.
Collapse
Affiliation(s)
- Ziying Tian
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Su Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Jieyu Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Jelen M, Grochowina I, Grabinska-Rogala A, Ciesielski SJ, Dabrowska K, Tomiczek B, Nierzwicki L, Delewski W, Schilke B, Czub J, Dadlez M, Dutkiewicz R, Craig EA, Marszalek J. Analysis of Reconstituted Tripartite Complex Supports Avidity-based Recruitment of Hsp70 by Substrate Bound J-domain Protein. J Mol Biol 2023; 435:168283. [PMID: 37730084 PMCID: PMC11457148 DOI: 10.1016/j.jmb.2023.168283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Hsp70 are ubiquitous, versatile molecular chaperones that cyclically interact with substrate protein(s). The initial step requires synergistic interaction of a substrate and a J-domain protein (JDP) cochaperone, via its J-domain, with Hsp70 to stimulate hydrolysis of its bound ATP. This hydrolysis drives conformational changes in Hsp70 that stabilize substrate binding. However, because of the transient nature of substrate and JDP interactions, this key step is not well understood. Here we leverage a well characterized Hsp70 system specialized for iron-sulfur cluster biogenesis, which like many systems, has a JDP that binds substrate on its own. Utilizing an ATPase-deficient Hsp70 variant, we isolated a Hsp70-JDP-substrate tripartite complex. Complex formation and stability depended on residues previously identified as essential for bipartite interactions: JDP-substrate, Hsp70-substrate and J-domain-Hsp70. Computational docking based on the established J-domain-Hsp70(ATP) interaction placed the substrate close to its predicted position in the peptide-binding cleft, with the JDP having the same architecture as when in a bipartite complex with substrate. Together, our results indicate that the structurally rigid JDP-substrate complex recruits Hsp70(ATP) via precise positioning of J-domain and substrate at their respective interaction sites - resulting in functionally high affinity (i.e., avidity). The exceptionally high avidity observed for this specialized system may be unusual because of the rigid architecture of its JDP and the additional JDP-Hsp70 interaction site uncovered in this study. However, functionally important avidity driven by JDP-substrate interactions is likely sufficient to explain synergistic ATPase stimulation and efficient substrate trapping in many Hsp70 systems.
Collapse
Affiliation(s)
- Marcin Jelen
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Igor Grochowina
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Aneta Grabinska-Rogala
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Szymon J Ciesielski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katarzyna Dabrowska
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Wojciech Delewski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Brenda Schilke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland; BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Leite AC, Barbedo M, Costa V, Pereira C. The APC/C Activator Cdh1p Plays a Role in Mitochondrial Metabolic Remodelling in Yeast. Int J Mol Sci 2023; 24:ijms24044111. [PMID: 36835555 PMCID: PMC9967508 DOI: 10.3390/ijms24044111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cdh1p is one of the two substrate adaptor proteins of the anaphase promoting complex/cyclosome (APC/C), a ubiquitin ligase that regulates proteolysis during cell cycle. In this work, using a proteomic approach, we found 135 mitochondrial proteins whose abundance was significantly altered in the cdh1Δ mutant, with 43 up-regulated proteins and 92 down-regulated proteins. The group of significantly up-regulated proteins included subunits of the mitochondrial respiratory chain, enzymes from the tricarboxylic acid cycle and regulators of mitochondrial organization, suggesting a metabolic remodelling towards an increase in mitochondrial respiration. In accordance, mitochondrial oxygen consumption and Cytochrome c oxidase activity increased in Cdh1p-deficient cells. These effects seem to be mediated by the transcriptional activator Yap1p, a major regulator of the yeast oxidative stress response. YAP1 deletion suppressed the increased Cyc1p levels and mitochondrial respiration in cdh1Δ cells. In agreement, Yap1p is transcriptionally more active in cdh1Δ cells and responsible for the higher oxidative stress tolerance of cdh1Δ mutant cells. Overall, our results unveil a new role for APC/C-Cdh1p in the regulation of the mitochondrial metabolic remodelling through Yap1p activity.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Barbedo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Clara Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-220408800
| |
Collapse
|
5
|
Leite AC, Martins TS, Campos A, Costa V, Pereira C. Phosphoregulation of the ATP synthase beta subunit stimulates mitochondrial activity for G2/M progression. Adv Biol Regul 2022; 85:100905. [PMID: 36030696 DOI: 10.1016/j.jbior.2022.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Mitochondrial ATP synthase is a multifunctional enzyme complex involved in ATP production. We previously reported that the ATP synthase catalytic beta subunit (Atp2p in yeast) is regulated by the 2A-like protein phosphatase Sit4p, which targets Atp2p at T124/T317 impacting on ATP synthase levels and mitochondrial respiration. Here we report that Atp2-T124/T317 is also potentially regulated by Cdc5p, a polo-like mitotic kinase. Since both Cdc5p and Sit4p have established roles in cell cycle regulation, we investigated whether Atp2-T124/T317 phosphorylation was cell cycle-related. We present evidence that Atp2p levels and phosphorylation vary during cell cycle progression, with an increase at G2/M phase. Atp2-T124/T317 phosphorylation stimulates mitochondrial membrane potential, respiration and ATP levels at G2/M phase, indicating that dynamic Atp2p phosphorylation contributes to mitochondrial activity at this specific cell cycle phase. Preventing Atp2p phosphorylation delays G2/M to G1 transition, suggesting that enhanced bioenergetics at G2/M may help meet the energetic demands of cell cycle progression. However, mimicking constitutive T124/T317 phosphorylation or overexpressing Atp2p leads to mitochondrial DNA instability, indicating that reversible Atp2p phosphorylation is critical for homeostasis. These results indicate that transient phosphorylation of Atp2p, a protein at the core of the ATP production machinery, impacts on mitochondrial bioenergetics and supports cell cycle progression at G2/M.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Telma Silva Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Ana Campos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Clara Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| |
Collapse
|
6
|
Vishwanathan V, D’Silva P. Loss of Function of mtHsp70 Chaperone Variants Leads to Mitochondrial Dysfunction in Congenital Sideroblastic Anemia. Front Cell Dev Biol 2022; 10:847045. [PMID: 35252210 PMCID: PMC8888832 DOI: 10.3389/fcell.2022.847045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital Sideroblastic Anemias (CSA) is a group of rare genetic disorders characterized by the abnormal accumulation of iron in erythrocyte precursors. A common hallmark underlying these pathological conditions is mitochondrial dysfunction due to altered protein homeostasis, heme biosynthesis, and oxidative phosphorylation. A clinical study on congenital sideroblastic anemia has identified mutations in mitochondrial Hsp70 (mtHsp70/Mortalin). Mitochondrial Hsp70 plays a critical role in maintaining mitochondrial function by regulating several pathways, including protein import and folding, and iron-sulfur cluster synthesis. Owing to the structural and functional homology between human and yeast mtHsp70, we have utilized the yeast system to delineate the role of mtHsp70 variants in the etiology of CSA’s. Analogous mutations in yeast mtHsp70 exhibited temperature-sensitive growth phenotypes under non-respiratory and respiratory conditions. In vivo analyses indicate a perturbation in mitochondrial mass and functionality accompanied by an alteration in the organelle network and cellular redox levels. Preliminary in vitro biochemical studies of mtHsp70 mutants suggest impaired import function, altered ATPase activity and substrate interaction. Together, our findings suggest the loss of chaperone activity to be a pivotal factor in the pathophysiology of congenital sideroblastic anemia.
Collapse
|
7
|
Zhu JY, Hannan SB, Dräger NM, Vereshchagina N, Krahl AC, Fu Y, Elliott CJ, Han Z, Jahn TR, Rasse TM. Autophagy inhibition rescues structural and functional defects caused by the loss of mitochondrial chaperone Hsc70-5 in Drosophila. Autophagy 2021; 17:3160-3174. [PMID: 33404278 PMCID: PMC8526020 DOI: 10.1080/15548627.2020.1871211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We investigated in larval and adult Drosophila models whether loss of the mitochondrial chaperone Hsc70-5 is sufficient to cause pathological alterations commonly observed in Parkinson disease. At affected larval neuromuscular junctions, no effects on terminal size, bouton size or number, synapse size, or number were observed, suggesting that we studied an early stage of pathogenesis. At this stage, we noted a loss of synaptic vesicle proteins and active zone components, delayed synapse maturation, reduced evoked and spontaneous excitatory junctional potentials, increased synaptic fatigue, and cytoskeleton rearrangements. The adult model displayed ATP depletion, altered body posture, and susceptibility to heat-induced paralysis. Adult phenotypes could be suppressed by knockdown of dj-1β, Lrrk, DCTN2-p50, DCTN1-p150, Atg1, Atg101, Atg5, Atg7, and Atg12. The knockdown of components of the macroautophagy/autophagy machinery or overexpression of human HSPA9 broadly rescued larval and adult phenotypes, while disease-associated HSPA9 variants did not. Overexpression of Pink1 or promotion of autophagy exacerbated defects.Abbreviations: AEL: after egg laying; AZ: active zone; brp: bruchpilot; Csp: cysteine string protein; dlg: discs large; eEJPs: evoked excitatory junctional potentials; GluR: glutamate receptor; H2O2: hydrogen peroxide; mEJP: miniature excitatory junctional potentials; MT: microtubule; NMJ: neuromuscular junction; PD: Parkinson disease; Pink1: PTEN-induced putative kinase 1; PSD: postsynaptic density; SSR: subsynaptic reticulum; SV: synaptic vesicle; VGlut: vesicular glutamate transporter.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | - Shabab B. Hannan
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Nina M. Dräger
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Natalia Vereshchagina
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ann-Christin Krahl
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yulong Fu
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | | | - Zhe Han
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | - Thomas R. Jahn
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Tobias M. Rasse
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany,Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,CONTACT Tobias Rasse Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
8
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
9
|
Pradhan P, Majhi O, Biswas A, Joshi VK, Sinha D. Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson's model. Cell Death Dis 2020; 11:739. [PMID: 32913179 PMCID: PMC7484898 DOI: 10.1038/s41419-020-02942-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Parkinson’s disease (PD) is a neuromotor disorder, primarily manifested by motor anomalies due to progressive loss of dopaminergic neurons. Although alterations in genetic factors have been linked with its etiology, exponential accumulation of environmental entities such as reactive oxygen species (ROS) initiate a cyclic chain reaction resulting in accumulation of cellular inclusions, dysfunctional mitochondria, and overwhelming of antioxidant machinery, thus accelerating disease pathogenesis. Involvement of oxidative stress in PD is further substantiated through ROS induced Parkinsonian models and elevated oxidative markers in clinical PD samples; thereby, making modulation of neuronal oxidative load as one of the major approaches in management of PD. Here we have found a potent antioxidant moiety Scopoletin (Sp), a common derivative in most of the nootropic herbs, with robust neuroprotective ability. Sp increased cellular resistance to ROS through efficient recycling of GSH to prevent oxidative damage. The Sp treated cells showed higher loads of reduced glutathione making them resistant to perturbation of antioxidant machinery or neurotoxin MPP+. Sp could restore the redox balance, mitochondrial function, and prevented oxidative damage, leading to recovery of dopaminergic neural networks and motion abilities in Drosophila genetic model of PD. Our data also suggest that Sp, in combination increases the therapeutic potency of L-DOPA by mitigating its chronic toxicity. Together, we highlight the possible ability of Sp in preventing oxidative stress mediated loss of dopaminergic neurons and at the same time enhance the efficacy of dopamine recharging regimens.
Collapse
Affiliation(s)
- Priyadarshika Pradhan
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Olivia Majhi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhijit Biswas
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar Joshi
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Characterizing Gene Copy Number of Heat Shock Protein Gene Families in the Emerald Rockcod, Trematomus bernacchii. Genes (Basel) 2020; 11:genes11080867. [PMID: 32751814 PMCID: PMC7466066 DOI: 10.3390/genes11080867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 01/05/2023] Open
Abstract
The suborder Notothenioidae is comprised of Antarctic fishes, several of which have lost their ability to rapidly upregulate heat shock proteins in response to thermal stress, instead adopting a pattern of expression resembling constitutive genes. Given the cold-denaturing effect that sub-zero waters have on proteins, evolution in the Southern Ocean has likely selected for increased expression of molecular chaperones. These selective pressures may have also enabled retention of gene duplicates, bolstering quantitative output of cytosolic heat shock proteins (HSPs). Given that newly duplicated genes are under more relaxed selection, it is plausible that gene duplication enabled altered regulation of such highly conserved genes. To test for evidence of gene duplication, copy number of various isoforms within major heat shock gene families were characterized via qPCR and compared between the Antarctic notothen, Trematomus bernacchii, which lost the inducible heat shock response, and the non-Antarctic notothen, Notothenia angustata, which maintains an inducible heat shock response. The results indicate duplication of isoforms within the hsp70 and hsp40 super families have occurred in the genome of T. bernacchii. The findings suggest gene duplications may have been critical in maintaining protein folding efficiency in the sub-zero waters and provided an evolutionary mechanism of alternative regulation of these conserved gene families.
Collapse
|
11
|
Bankapalli K, Vishwanathan V, Susarla G, Sunayana N, Saladi S, Peethambaram D, D'Silva P. Redox-dependent regulation of mitochondrial dynamics by DJ-1 paralogs in Saccharomyces cerevisiae. Redox Biol 2020; 32:101451. [PMID: 32070881 PMCID: PMC7026286 DOI: 10.1016/j.redox.2020.101451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are indispensable organelles that perform critical cellular functions, including energy metabolism, neurotransmission, and synaptic maintenance. Mitochondrial dysfunction and impairment in the organellar homeostasis are key hallmarks implicated in the progression of neurodegenerative disorders. The members of DJ-1/ThiJ/PfpI family are highly conserved, and loss of DJ-1 (PARK7) function in humans results in the impairment of mitochondrial homeostasis, which is one of the key cellular etiology implicated in the progression of Parkinson's Disease. However, the underlying molecular mechanism involved in mitochondrial maintenance and other cellular processes by DJ-1 paralogs is poorly understood. By utilizing genetic approaches from S. cerevisiae, we uncovered intricate mechanisms associated with the mitochondrial phenotypic variations regulated by DJ-1 paralogs. The deletion of DJ-1 paralogs led to respiratory incompetence and the accumulation of enhanced functional mitochondrial mass. The lack of DJ-1 paralogs also displayed enriched mitochondrial interconnectivity due to upregulation in the fusion-mediating proteins, facilitated by the elevation in the basal cellular ROS and oxidized glutathione levels. Intriguingly, these mitochondrial phenotypes variations cause cell size abnormalities, partially suppressed by reestablishing redox balance and upregulation of fission protein levels. Besides, in the absence of DJ-1 paralogs, cells exhibited a significant delay in the cell-cycle progression in the G2/M phase, attributed to mitochondrial hyperfusion and partial DNA damage. Additionally, the aberrations in mitochondrial dynamics and cell-cycle induce cell death mediated by apoptosis. Taken together, our findings first-time provide evidence to show how DJ-1 family members regulate mitochondrial homeostasis and other intricate cellular processes, including cell cycle and apoptosis. Lack of DJ-1 members causes respiratory incompetence and elevated basal ROS levels. Enhanced ROS and GSSG levels promote increased mitochondrial mass and hyperfusion. Mitochondrial hyperfusion together with ROS-induced DNA damage cause G2/M arrest. Impairment in cell cycle progression triggers apoptotic cell death in yeast.
Collapse
Affiliation(s)
- Kondalarao Bankapalli
- Department of Biochemistry, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Vinaya Vishwanathan
- Department of Biochemistry, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Gautam Susarla
- Department of Biochemistry, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Ningaraju Sunayana
- Department of Biochemistry, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - SreeDivya Saladi
- Department of Biochemistry, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Divya Peethambaram
- Department of Biochemistry, Indian Institute of Science, CV Raman Avenue, Bangalore, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, CV Raman Avenue, Bangalore, India.
| |
Collapse
|
12
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Kumar A, Matta SK, D'Silva P. Role of conserved regions of Tim22 in the structural organization of the carrier translocase. J Cell Sci 2020; 133:jcs.244632. [DOI: 10.1242/jcs.244632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial biogenesis requires efficient sorting of various proteins into different mitochondrial sub-compartments mediated by dedicated protein machinery present in the outer and inner membrane. Among them, the TIM22 complex enables the integration of complex membrane proteins with internal targeting signals into the inner membrane. Although the Tim22 forms the core of the complex, the dynamic recruitment of subunits to the channel is still enigmatic. The present study first-time highlights that IMS and TM4 regions of Tim22 are critically required for the interaction of the membrane-embedded subunits including, Tim54, Tim18, and Sdh3, thereby maintain the functional architecture of TIM22 translocase. On the other hand, TM1 and TM2 regions of Tim22 are important for the Tim18 association, while TM3 is exclusively required for the Sdh3 interaction. Moreover, the impairment in TIM22 complex assembly influences its translocase activity, mitochondrial network, and the viability of cells lacking mitochondrial DNA. Overall our findings provide compelling evidence to highlight the significance of conserved regions of Tim22 that are important for the maintenance of the TIM22 complex and mitochondrial integrity.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| | - Srujan Kumar Matta
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| | - Patrick D'Silva
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| |
Collapse
|
14
|
Dong YN, McMillan E, Clark EM, Lin H, Lynch DR. GRP75 overexpression rescues frataxin deficiency and mitochondrial phenotypes in Friedreich ataxia cellular models. Hum Mol Genet 2019; 28:1594-1607. [PMID: 30590615 PMCID: PMC6494971 DOI: 10.1093/hmg/ddy448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein crucial for iron-sulfur cluster biogenesis and adenosine triphosphate (ATP) production. Currently, there is no therapy to slow down the progression of FRDA. Recent evidence indicates that posttranslational regulation of residual frataxin levels can rescue some of the functional deficit of FRDA, raising the possibility of enhancing levels of residual frataxin as a treatment for FRDA. Here, we present evidence that mitochondrial molecular chaperone GRP75, also known as mortalin/mthsp70/PBP74, directly interacts with frataxin both in vivo in mouse cortex and in vitro in cortical neurons. Overexpressing GRP75 increases the levels of both wild-type frataxin and clinically relevant missense frataxin variants in human embryonic kidney 293 cells, while clinical GRP75 variants such as R126W, A476T and P509S impair the binding of GRP75 with frataxin and the effect of GRP75 on frataxin levels. In addition, GRP75 overexpression rescues frataxin deficiency and abnormal cellular phenotypes such as the abnormal mitochondrial network and decreased ATP levels in FRDA patient-derived cells. The effect of GRP75 on frataxin might be in part mediated by the physical interaction between GRP75 and mitochondrial processing peptidase (MPP), which makes frataxin more accessible to MPP. As GRP75 levels are decreased in multiple cell types of FRDA patients, restoring GRP75 might be effective in treating both typical FRDA patients with two guanine-adenine-adenine repeat expansions and compound heterozygous patients with point mutations.
Collapse
Affiliation(s)
- Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily McMillan
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisia M Clark
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Lin
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Chen Y, Shao Q, Yuan YH, Chen NH. Prion-like propagation of α-synuclein in the gut-brain axis. Brain Res Bull 2018; 140:341-346. [PMID: 29894766 DOI: 10.1016/j.brainresbull.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD) is a progressive degenerative disease of the nervous system, which is characterized by movement disorders, such as static tremor, rigidity, and bradykinesia in advanced patients. Gastrointestinal (GI) dysfunction, such as gastric dysmotility, constipation, and anorectic dysfunction, is common non-motor symptom in the early stage of PD. The progression of PD includes the degenerative loss of dopaminergic (DA) neurons and aggregation of α-synuclein in the substantia nigra (SN). Interestingly, both of them are also present in the enteric nervous system (ENS) of PD patients. In this review, we describe the relationship between non-motor symptoms particularly GI dysfunction and the pathogenesis of PD, aiming to show the powerful evidences about the prion-like propagation of α-synuclein and support the hypothesis of gut-brain axis in PD. We then summarize the mechanism of the gut-brain axis and confirm α-synuclein as a potential target for drug design or new clinical treatment.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qianhang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
16
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|
17
|
RNA Aptamers Rescue Mitochondrial Dysfunction in a Yeast Model of Huntington's Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:45-56. [PMID: 30195782 PMCID: PMC6023792 DOI: 10.1016/j.omtn.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/27/2018] [Accepted: 04/25/2018] [Indexed: 01/27/2023]
Abstract
Huntington’s disease (HD) is associated with the misfolding and aggregation of mutant huntingtin harboring an elongated polyglutamine stretch at its N terminus. A distinguishing pathological hallmark of HD is mitochondrial dysfunction. Any strategy that can restore the integrity of the mitochondrial environment should have beneficial consequences for the disease. Specific RNA aptamers were selected that were able to inhibit aggregation of elongated polyglutamine stretch containing mutant huntingtin fragment (103Q-htt). They were successful in reducing the calcium overload, which leads to mitochondrial membrane depolarization in case of HD. In one case, the level of Ca2+ was restored to the level of cells not expressing 103Q-htt, suggesting complete recovery. The presence of aptamers was able to increase mitochondrial mass in cells expressing 103Q-htt, along with rescuing loss of mitochondrial genome. The oxidative damage to the proteome was prevented, which led to increased viability of cells, as monitored by flow cytometry. Thus, the presence of aptamers was able to inhibit aggregation of mutant huntingtin fragment and restore mitochondrial dysfunction in the HD cell model, confirming the advantage of the strategy in a disease-relevant parameter.
Collapse
|
18
|
Segev N, Gerst JE. Specialized ribosomes and specific ribosomal protein paralogs control translation of mitochondrial proteins. J Cell Biol 2017; 217:117-126. [PMID: 29118025 PMCID: PMC5748985 DOI: 10.1083/jcb.201706059] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins exist mainly as paralog pairs in eukaryotes, yet the reasons for maintaining duplication are unclear. By using a novel proteomic approach, Segev and Gerst show paralog-specific regulation of the translation of mitochondrial proteins using specialized ribosomes. Genome duplication in eukaryotes created paralog pairs of ribosomal proteins (RPs) that show high sequence similarity/identity. However, individual paralogs can confer vastly different effects upon cellular processes, e.g., specific yeast paralogs regulate actin organization, bud site selection, and mRNA localization, although how specificity is conferred is unknown. Changes in the RP composition of ribosomes might allow for specialized translation of different subsets of mRNAs, yet it is unclear whether specialized ribosomes exist and if paralog specificity controls translation. Using translatome analyses, we show that the translation of mitochondrial proteins is highly down-regulated in yeast lacking RP paralogs required for normal mitochondrial function (e.g., RPL1b). Although RPL1a and RPL1b encode identical proteins, Rpl1b-containing ribosomes confer more efficient translation of respiration-related proteins. Thus, ribosomes varying in RP composition may confer specialized functions, and RP paralog specificity defines a novel means of translational control.
Collapse
Affiliation(s)
- Nadav Segev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
|
20
|
Andreini C, Banci L, Rosato A. Exploiting Bacterial Operons To Illuminate Human Iron–Sulfur Proteins. J Proteome Res 2016; 15:1308-22. [DOI: 10.1021/acs.jproteome.6b00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Bellipanni G, Cappello F, Scalia F, Conway de Macario E, Macario AJ, Giordano A. Zebrafish as a Model for the Study of Chaperonopathies. J Cell Physiol 2016; 231:2107-14. [DOI: 10.1002/jcp.25319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
| | - Francesco Cappello
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Federica Scalia
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Alberto J.L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| |
Collapse
|
22
|
Bankapalli K, Saladi S, Awadia SS, Goswami AV, Samaddar M, D'Silva P. Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. J Biol Chem 2015; 290:26491-507. [PMID: 26370081 DOI: 10.1074/jbc.m115.673624] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.
Collapse
Affiliation(s)
- Kondalarao Bankapalli
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - SreeDivya Saladi
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sahezeel S Awadia
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Arvind Vittal Goswami
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Madhuja Samaddar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
23
|
Saha PP, Srivastava S, Kumar S K P, Sinha D, D'Silva P. Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19. J Biol Chem 2015; 290:25876-90. [PMID: 26342079 DOI: 10.1074/jbc.m115.678508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.
Collapse
Affiliation(s)
- Prasenjit Prasad Saha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and
| | - Shubhi Srivastava
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and
| | - Praveen Kumar S K
- the Department of Biochemistry, Karnatak University, Dharwad 580003, Karnataka, India
| | - Devanjan Sinha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and
| |
Collapse
|
24
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
25
|
Samaddar M, Goswami AV, Purushotham J, Hegde P, D'Silva P. Role of the loop L4,5 in allosteric regulation in mtHsp70s: in vivo significance of domain communication and its implications in protein translocation. Mol Biol Cell 2014; 25:2129-42. [PMID: 24829379 PMCID: PMC4091826 DOI: 10.1091/mbc.e14-03-0821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The SBD loop L4,5 in mtHsp70s functions synergistically with the linker region to maintain the interdomain interface governing protein translocation and mitochondrial biogenesis. Intragenic suppressors of a communication-impaired L4,5 mutant reveal molecular insights into the allosteric regulation of mtHsp70s at the in vivo level. Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L4,5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L4,5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L4,5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein–bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Madhuja Samaddar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Jaya Purushotham
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pushpa Hegde
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1. Cell Death Dis 2014; 5:e1180. [PMID: 24743735 PMCID: PMC4001296 DOI: 10.1038/cddis.2014.103] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/30/2014] [Accepted: 02/14/2014] [Indexed: 11/14/2022]
Abstract
The mitochondrial chaperone mortalin was implicated in Parkinson's disease (PD) because of its reduced levels in the brains of PD patients and disease-associated rare genetic variants that failed to rescue impaired mitochondrial integrity in cellular knockdown models. To uncover the molecular mechanisms underlying mortalin-related neurodegeneration, we dissected the cellular surveillance mechanisms related to mitochondrial quality control, defined the effects of reduced mortalin function at the molecular and cellular levels and investigated the functional interaction of mortalin with Parkin and PINK1, two PD-related proteins involved in mitochondrial homeostasis. We found that reduced mortalin function leads to: (1) activation of the mitochondrial unfolded protein response (UPR(mt)), (2) increased susceptibility towards intramitochondrial proteolytic stress, (3) increased autophagic degradation of fragmented mitochondria and (4) reduced mitochondrial mass in human cells in vitro and ex vivo. These alterations caused increased vulnerability toward apoptotic cell death. Proteotoxic perturbations induced by either partial loss of mortalin or chemical induction were rescued by complementation with native mortalin, but not disease-associated mortalin variants, and were independent of the integrity of autophagic pathways. However, Parkin and PINK1 rescued loss of mortalin phenotypes via increased lysosomal-mediated mitochondrial clearance and required intact autophagic machinery. Our results on loss of mortalin function reveal a direct link between impaired mitochondrial proteostasis, UPR(mt) and PD and show that effective removal of dysfunctional mitochondria via either genetic (PINK1 and Parkin overexpression) or pharmacological intervention (rapamycin) may compensate mitochondrial phenotypes.
Collapse
|
27
|
Amick J, Schlanger SE, Wachnowsky C, Moseng MA, Emerson CC, Dare M, Luo WI, Ithychanda SS, Nix JC, Cowan JA, Page RC, Misra S. Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone. Protein Sci 2014; 23:833-42. [PMID: 24687350 DOI: 10.1002/pro.2466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/18/2014] [Indexed: 01/18/2023]
Abstract
Mortalin, a member of the Hsp70-family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe-S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT-077. Like other Hsp70-family members, Mortalin consists of a nucleotide-binding domain (NBD) and a substrate-binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide-binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease-associated mutation is located on the Mortalin-NBD surface and may contribute to Mortalin aggregation. We present structure-based models for how the Mortalin-NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT-077. Our structure may contribute to the understanding of disease-associated Mortalin mutations and to improved Mortalin-targeting antitumor compounds.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Molecular Cardiology, The Cleveland Clinic, Cleveland, Ohio, 44195
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Saha PP, Kumar SKP, Srivastava S, Sinha D, Pareek G, D'Silva P. The presence of multiple cellular defects associated with a novel G50E iron-sulfur cluster scaffold protein (ISCU) mutation leads to development of mitochondrial myopathy. J Biol Chem 2014; 289:10359-10377. [PMID: 24573684 DOI: 10.1074/jbc.m113.526665] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044G→C), compound heterozygous patients with severe myopathy have been identified to carry the c.149G→A missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.
Collapse
Affiliation(s)
- Prasenjit Prasad Saha
- Department of Biochemistry, Indian Institute of Science, Biological Sciences Building, Bangalore 560012, Karnataka, India
| | - S K Praveen Kumar
- Department of Biochemistry, Indian Institute of Science, Biological Sciences Building, Bangalore 560012, Karnataka, India
| | - Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Biological Sciences Building, Bangalore 560012, Karnataka, India
| | - Devanjan Sinha
- Department of Biochemistry, Indian Institute of Science, Biological Sciences Building, Bangalore 560012, Karnataka, India
| | - Gautam Pareek
- Department of Biochemistry, Indian Institute of Science, Biological Sciences Building, Bangalore 560012, Karnataka, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Biological Sciences Building, Bangalore 560012, Karnataka, India.
| |
Collapse
|
29
|
Molecular insights revealing interaction of Tim23 and channel subunits of presequence translocase. Mol Cell Biol 2013; 33:4641-59. [PMID: 24061477 DOI: 10.1128/mcb.00876-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tim23 is an essential channel-forming subunit of the presequence translocase recruiting multiple components for assembly of the core complex, thereby regulating the protein translocation process. However, understanding of the precise interaction of subunits associating with Tim23 remains largely elusive. Our findings highlight that transmembrane helix 1 (TM1) is required for homodimerization of Tim23, while, together with TM2, it is involved in preprotein binding within the channel. Based on our evidence, we predict that the TM1 and TM2 from each dimer are involved in the formation of the central translocation pore, aided by Tim17. Furthermore, TM2 is also involved in the recruitment of Tim21 and the presequence-associated motor (PAM) subcomplex to the Tim23 channel, while the matrix-exposed loop L1 generates specificity in their association with the core complex. Strikingly, our findings indicate that the C-terminal sequence of Tim23 is dispensable for growth and functions as an inhibitor for binding of Tim21. Our model conceptually explains the cooperative function between Tam41 and Pam17 subunits, while the antagonistic activity of Tim21 predominantly determines the bound and free forms of the PAM subcomplex during import.
Collapse
|
30
|
Böttinger L, Guiard B, Oeljeklaus S, Kulawiak B, Zufall N, Wiedemann N, Warscheid B, van der Laan M, Becker T. A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase. Mol Biol Cell 2013; 24:2609-19. [PMID: 23864706 PMCID: PMC3756914 DOI: 10.1091/mbc.e13-02-0106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biogenesis of Cox4 is unknown. Cox4, mtHsp70, and Mge1 form a complex that promotes the assembly of cytochrome c oxidase. In the absence of the mature cytochrome c oxidase, Cox4 arrests at the chaperone complex. This complex delivers Cox4 into the assembly line of complex IV when needed. The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed.
Collapse
Affiliation(s)
- Lena Böttinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|