1
|
São José C, Garcia-Pelaez J, Ferreira M, Arrieta O, André A, Martins N, Solís S, Martínez-Benítez B, Ordóñez-Sánchez ML, Rodríguez-Torres M, Sommer AK, Te Paske IBAW, Caldas C, Tischkowitz M, Tusié MT, Hoogerbrugge N, Demidov G, de Voer RM, Laurie S, Oliveira C. Combined loss of CDH1 and downstream regulatory sequences drive early-onset diffuse gastric cancer and increase penetrance of hereditary diffuse gastric cancer. Gastric Cancer 2023; 26:653-666. [PMID: 37249750 PMCID: PMC10361908 DOI: 10.1007/s10120-023-01395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Germline CDH1 pathogenic or likely pathogenic variants cause hereditary diffuse gastric cancer (HDGC). Once a genetic cause is identified, stomachs' and breasts' surveillance and/or prophylactic surgery is offered to asymptomatic CDH1 carriers, which is life-saving. Herein, we characterized an inherited mechanism responsible for extremely early-onset gastric cancer and atypical HDGC high penetrance. METHODS Whole-exome sequencing (WES) re-analysis was performed in an unsolved HDGC family. Accessible chromatin and CDH1 promoter interactors were evaluated in normal stomach by ATAC-seq and 4C-seq, and functional analysis was performed using CRISPR-Cas9, RNA-seq and pathway analysis. RESULTS We identified a germline heterozygous 23 Kb CDH1-TANGO6 deletion in a family with eight diffuse gastric cancers, six before age 30. Atypical HDGC high penetrance and young cancer-onset argued towards a role for the deleted region downstream of CDH1, which we proved to present accessible chromatin, and CDH1 promoter interactors in normal stomach. CRISPR-Cas9 edited cells mimicking the CDH1-TANGO6 deletion display the strongest CDH1 mRNA downregulation, more impacted adhesion-associated, type-I interferon immune-associated and oncogenic signalling pathways, compared to wild-type or CDH1-deleted cells. This finding solved an 18-year family odyssey and engaged carrier family members in a cancer prevention pathway of care. CONCLUSION In this work, we demonstrated that regulatory elements lying down-stream of CDH1 are part of a chromatin network that control CDH1 expression and influence cell transcriptome and associated signalling pathways, likely explaining high disease penetrance and very young cancer-onset. This study highlights the importance of incorporating scientific-technological updates and clinical guidelines in routine diagnosis, given their impact in timely genetic diagnosis and disease prevention.
Collapse
Affiliation(s)
- Celina São José
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Garcia-Pelaez
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Department Computer Science Faculty of Science, University of Porto, Porto, Portugal
| | - Oscar Arrieta
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Ana André
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Nelson Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Master Programme in Molecular Medicine and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Samantha Solís
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Braulio Martínez-Benítez
- Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, INCMNSZ Mexico City, Mexico
| | - María Luisa Ordóñez-Sánchez
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Maribel Rodríguez-Torres
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Anna K Sommer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre (ECMC), CRUK Cambridge Centre, NIHR Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Maria Teresa Tusié
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Steve Laurie
- The Barcelona Institute of Science and Technology, CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Carla Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.
- FMUP-Faculty of Medicine of the University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Gharbi S, Mohammadi Z, Dezaki MS, Dokanehiifard S, Dabiri S, Korsching E. Characterization of the first microRNA in human CDH1 that affects cell cycle and apoptosis and indicates breast cancers progression. J Cell Biochem 2022; 123:657-672. [PMID: 34997630 DOI: 10.1002/jcb.30211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/26/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
The E-cadherin protein (Cadherin 1, gene: CDH1), a master regulator of the human epithelial homeostasis, contributes to the epithelial-mesenchymal transition (EMT) which confers cell migratory features to the cells. The EMT is central to many pathophysiological changes in cancer. Therefore, a better understanding of this regulatory scenario is beneficial for therapeutic regiments. The CDH1 gene is approximately 100 kbp long and consists of 16 exons with a relatively large second intron. Since none microRNA (miRNA) has been identified in CDH1 up to now we screened the CDH1 gene for promising miRNA hairpin structures in silico. Out of the 27 hairpin structures we identified, one stable RNA fold with a promising sequence motive was selected for experimental verification. The exogenous validation of the hairpin sequence was performed by transfection of HEK293T cells and the mature miRNA sequences could be verified by quantitative polymerase chain reaction. The endogenous expression of the mature miRNA provisionally named CDH1-i2-miR-1 could be confirmed in two normal (HEK293T, HUVEK) and five cancer cell lines (MCF7, MDA-MB-231, SW480, HT-29, A549). The functional characterization by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a suppression of HEK293T cell proliferation. A flow cytometry-based approach showed the ability of CDH1-i2-miR-1 to arrest transfected cells on a G2/M state while annexin staining exemplified an apoptotic effect. BAX and PTEN expression levels were affected following the overexpression with the new miRNA. The in vivo expression level was assessed in 35 breast tumor tissues and their paired nonmalignant marginal part. A fourfold downregulation in the tumor specimens compared to their marginal controls could be observed. It can be concluded that the sequence of the hub gene CDH1 harbors at least one miRNA but eventually even more relevant for the pathophysiology of breast cancer.
Collapse
Affiliation(s)
- Sedigheh Gharbi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Mohammadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Saedi Dezaki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sadat Dokanehiifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shahriar Dabiri
- Department of Pathology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Eberhard Korsching
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Al-Mulhim F, Alqosaibi AI, Al-Muhnna A, Farid K, Abdel-Ghany S, Rizk H, Prince AB, Isichei A, Sabit H. CRISPR/Cas9-mediated activation of CDH1 suppresses metastasis of breast cancer in rats. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
4
|
Wang J, Yan HB, Zhang Q, Liu WY, Jiang YH, Peng G, Wu FZ, Liu X, Yang PY, Liu F. Enhancement of E-cadherin expression and processing and driving of cancer cell metastasis by ARID1A deficiency. Oncogene 2021; 40:5468-5481. [PMID: 34290402 DOI: 10.1038/s41388-021-01930-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
The ARID1A gene, which encodes a subunit of the SWI/SNF chromatin remodeling complex, has been found to be frequently mutated in many human cancer types. However, the function and mechanism of ARID1A in cancer metastasis are still unclear. Here, we show that knockdown of ARID1A increases the ability of breast cancer cells to proliferate, migrate, invade, and metastasize in vivo. The ARID1A-related SWI/SNF complex binds to the second exon of CDH1 and negatively modulates the expression of E-cadherin/CDH1 by recruiting the transcriptional repressor ZEB2 to the CDH1 promoter and excluding the presence of RNA polymerase II. The silencing of CDH1 attenuated the migration, invasion, and metastasis of breast cancer cells in which ARID1A was silenced. ARID1A depletion increased the intracellular enzymatic processing of E-cadherin and the production of C-terminal fragment 2 (CTF2) of E-cadherin, which stabilized β-catenin by competing for binding to the phosphorylation and degradation complex of β-catenin. The matrix metalloproteinase inhibitor GM6001 inhibited the production of CTF2. In zebrafish and nude mice, ARID1A silencing or CTF2 overexpression activated β-catenin signaling and promoted migration/invasion and metastasis of cancer cells in vivo. The inhibitors GM6001, BB94, and ICG-001 suppressed the migration and invasion of cancer cells with ARID1A-deficiency. Our findings provide novel insights into the mechanism of ARID1A metastasis and offer a scientific basis for targeted therapy of ARID1A-deficient cancer cells.
Collapse
Affiliation(s)
- Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Hai-Bo Yan
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Qian Zhang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Wei-Yan Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Gang Peng
- Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fei-Zhen Wu
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng-Yuan Yang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China.
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of Chemistry, Fudan University, Shanghai, China.
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China.
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Li B, Yin J, Chang J, Zhang J, Wang Y, Huang H, Wang W, Zeng X. Apelin/APJ relieve diabetic cardiomyopathy by reducing microvascular dysfunction. J Endocrinol 2021; 249:1-18. [PMID: 33504680 PMCID: PMC8052525 DOI: 10.1530/joe-20-0398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022]
Abstract
Microcirculatory injuries had been reported to be involved in diabetic cardiomyopathy, which was mainly related to endothelial cell dysfunction. Apelin, an adipokine that is upregulated in diabetes mellitus, was reported to improve endothelial cell dysfunction and attenuate cardiac insufficiency induced by ischemia and reperfusion. Therefore, it is hypothesized that apelin might be involved in alleviating endothelial cell dysfunction and followed cardiomyopathy in diabetes mellitus. The results showed that apelin improved endothelial cell dysfunction via decreasing apoptosis and expression of adhesion molecules and increasing proliferation, angiogenesis, and expression of E-cadherin, VEGFR 2 and Tie-2 in endothelial cells, which resulted in the attenuation of the capillary permeability in cardiac tissues and following diabetic cardiomyopathy. Meanwhile, the results from endothelial cell-specific APJ knockout mice and cultured endothelial cells confirmed that the effects of apelin on endothelial cells were dependent on APJ and the downstream NFκB pathways. In conclusion, apelin might reduce microvascular dysfunction induced by diabetes mellitus via improving endothelial dysfunction dependent on APJ activated NFκB pathways.
Collapse
Affiliation(s)
- Bin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiming Yin
- Beijing You An Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing, China
| | - Jing Chang
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Jia Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yangjia Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haixia Huang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Xiangjun Zeng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Correspondence should be addressed to X Zeng:
| |
Collapse
|
6
|
Expression analysis and clinical significance of eIF4E, VEGF-C, E-cadherin and MMP-2 in colorectal adenocarcinoma. Oncotarget 2018; 7:85502-85514. [PMID: 27907907 PMCID: PMC5356753 DOI: 10.18632/oncotarget.13453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The underlying mechanisms of colorectal carcinoma (CRC) metastasis remain to be elucidated. The aim of this study is to investigate clinical significance and the expression of eIF4E, VEGF-C, MMP-2, and E-cadherin in the CRC metastasis. We investigated their expressions in 108 patients, analyzed the relationships between their expressions in CRC and evaluated the relationships between their expressions and clinical pathogenic parameters. Furthermore, their roles in patient survival and in CRC metastasis were also investigated. We found that eIF4E, VEGF-C and MMP-2 were up-regulated in CRC, and their expression frequencies (EFs) were higher in cancerous tissues than in adjacent normal tissues. The EF of E-cadherin is lower in cancerous tissues than in adjacent normal tissues. Totally, their EFs were not associated with sex and age of patient, however, their EFs were associated with tumor differentiation, the depth of invasion, lymph node metastasis and tumor stages. Furthermore, eIF4E, VEGF-C, and MMP-2 shortened and E-cadherin prolonged survival in patient-derived CRC xenografts. Similarly, eIF4E, VEGF-C, and MMP-2 promoted and E-cadherin suppressed the lung metastasis of CRC cells. In addition, knockdown of eIF4E inhibited migration of CRC cells, downregulated VEGF-C, MMP-2 and upregulated E-cadherin. In conclusion, eIF4E promoted CRC metastasis via up-regulating the expression of VEGF-C, MMP-2 and suppressing E-cadherin.
Collapse
|
7
|
Molinari C, Abou Khouzam R, Salvi S, Rossi T, Ranzani GN, Calistri D. Detection of a CDH1 Rare Transcript Variant in Fresh-frozen Gastric Cancer Tissues by Chip-based Digital PCR. J Vis Exp 2018. [PMID: 29443099 DOI: 10.3791/57066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
CDH1a, a non-canonical transcript of the CDH1 gene, has been found to be expressed in some gastric cancer (GC) cell lines, whereas it is absent in normal gastric mucosa. Recently, we detected CDH1a transcript variant in fresh-frozen tumor tissues obtained from patients with GC. The expression of this variant in tissue samples was investigated by the chip-based digital PCR (dPCR) approach presented here. dPCR offers the potential for an accurate, robust, and highly sensitive measurement of nucleic acids and is increasingly utilized for many applications in different fields. dPCR is capable of detecting rare targets; in addition, dPCR offers the possibility for absolute and precise quantification of nucleic acids without the need for calibrators and standard curves. In fact, the reaction partitioning enriches the target from the background, which improves amplification efficiency and tolerance to inhibitors. Such characteristics make dPCR an optimal tool for the detection of the CDH1a rare transcript.
Collapse
Affiliation(s)
- Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS;
| | | | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| | - Tania Rossi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| | | | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| |
Collapse
|
8
|
Digital PCR identifies changes in CDH1 (E-cadherin) transcription pattern in intestinal-type gastric cancer. Oncotarget 2017; 8:18811-18820. [PMID: 27861150 PMCID: PMC5386649 DOI: 10.18632/oncotarget.13401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
E-cadherin is a cell-cell adhesion protein encoded by CDH1 tumor-suppressor gene. CDH1 inactivating mutations, leading to loss of protein expression, are common in gastric cancer of the diffuse histotype, while alternative mechanisms modulating E-cadherin expression characterize the more common intestinal histotype. These mechanisms are still poorly understood. CDH1 intron 2 has recently emerged as a cis-modulator of E-cadherin expression, encoding non-canonical transcripts. One in particular, CDH1a, proved to be expressed in gastric cancer cell lines, while being absent in the normal stomach. For the first time, we evaluated by digital PCR the expression of CDH1 and CDH1a transcripts in cancer and normal tissue samples from 32 patients with intestinal-type gastric cancer. We found a significant decrease in CDH1 expression in tumors compared to normal counterparts (P = 0.001), which was especially evident in 76% of cases. CDH1a was detected at extremely low levels in 47% of tumors, but not in normal mucosa. A trend was observed of having less CDH1 in tumors expressing CDH1atranscript. The majority of tumors with both a decrease in CDH1 and presence of CDH1a also showed a decrease in miR-101 expression levels. On the whole, the decrease of CDH1 transcript, corresponding to the canonical protein, and the presence of CDH1a, corresponding to an alternative isoform, are likely to perturb E-cadherin-mediated signaling and cell-cell adhesion, thus contributing to intestinal-type gastric carcinogenesis.
Collapse
|
9
|
Borg D, Hedner C, Gaber A, Nodin B, Fristedt R, Jirström K, Eberhard J, Johnsson A. Expression of IFITM1 as a prognostic biomarker in resected gastric and esophageal adenocarcinoma. Biomark Res 2016; 4:10. [PMID: 27186374 PMCID: PMC4867989 DOI: 10.1186/s40364-016-0064-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is an increasing amount of reports on IFITM1 (interferon-inducible transmembrane protein 1) in various malignancies. The aim of this study was to examine the expression of IFITM1 and its prognostic significance in gastroesophageal adenocarcinoma. METHODS Tissue samples were obtained from a consecutive cohort of 174 patients surgically treated between 2006 and 2010 for gastroesophageal (gastric, gastroesophageal junction and esophageal) adenocarcinoma, not subjected to neoadjuvant therapy. Expression of IFITM1 was examined using immunohistochemistry on tissue microarrays of primary tumors and paired samples of adjacent normal epithelium, intestinal metaplasia and lymph node metastases. RESULTS Expression of IFITM1 was significantly elevated in primary tumors and lymph node metastases compared to adjacent normal epithelium and intestinal metaplasia, regardless of tumor location. Overexpression of IFITM1 was associated with M0-disease (no distant metastases). In gastric cancer IFITM1 expression was significantly associated with improved TTR (time to recurrence) in Kaplan-Meier analysis and Cox regression, both in the unadjusted analysis (HR 0.33, 95 % CI 0.12-0.88) and in the adjusted analysis (HR 0.32, 95 % CI 0.12-0.87) but there was no significant impact on OS (overall survival). In esophageal adenocarcinoma expression of IFITM1 had no impact on TTR or OS in Kaplan-Meier-analyses, but in the adjusted Cox regression IFITM1 expression had a negative impact on both TTR (HR 3.05, 95 % CI 1.09-8.53) and OS (HR 2.71, 95 % CI 1.11-6.67). CONCLUSIONS IFITM1 was overexpressed in gastroesophageal adenocarcinoma and associated with M0-disease. In gastric cancer IFITM1 expression had a positive impact on TTR but in esophageal cancer it seemed to have an adverse impact on survival. The reason for the diverging prognostic impact of IFITM1 in esophageal and gastric cancer is unclear and warrants further studies.
Collapse
Affiliation(s)
- David Borg
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Charlotta Hedner
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Alexander Gaber
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Richard Fristedt
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Anders Johnsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
10
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Regulated genes in mesenchymal stem cells and gastric cancer. World J Stem Cells 2015; 7:208-222. [PMID: 25621121 PMCID: PMC4300932 DOI: 10.4252/wjsc.v7.i1.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/18/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the genes regulated in mesenchymal stem cells (MSCs) and diffuse-type gastric cancer (GC), gene expression was analyzed.
METHODS: Gene expression of MSCs and diffuse-type GC cells were analyzed by microarray. Genes related to stem cells, cancer and the epithelial-mesenchymal transition (EMT) were extracted from human gene lists using Gene Ontology and reference information. Gene panels were generated, and messenger RNA gene expression in MSCs and diffuse-type GC cells was analyzed. Cluster analysis was performed using the NCSS software.
RESULTS: The gene expression of regulator of G-protein signaling 1 (RGS1) was up-regulated in diffuse-type GC cells compared with MSCs. A panel of stem-cell related genes and genes involved in cancer or the EMT were examined. Stem-cell related genes, such as growth arrest-specific 6, musashi RNA-binding protein 2 and hairy and enhancer of split 1 (Drosophila), NOTCH family genes and Notch ligands, such as delta-like 1 (Drosophila) and Jagged 2, were regulated.
CONCLUSION: Expression of RGS1 is up-regulated, and genes related to stem cells and NOTCH signaling are altered in diffuse-type GC compared with MSCs.
Collapse
|
11
|
Bordeira-Carriço R, Ferreira D, Mateus DD, Pinheiro H, Pêgo AP, Santos MAS, Oliveira C. Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. Eur J Hum Genet 2014; 22:1085-92. [PMID: 24424122 DOI: 10.1038/ejhg.2013.292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) syndrome, although rare, is highly penetrant at an early age, and is severe and incurable because of ineffective screening tools and therapy. Approximately 45% of HDGC families carry germline CDH1/E-cadherin alterations, 20% of which are nonsense leading to premature protein truncation. Prophylactic gastrectomy is the only recommended approach for all asymptomatic CDH1 mutation carriers. Suppressor-tRNAs can replace premature stop codons (PTCs) with a cognate amino acid, inducing readthrough and generating full-length proteins. The use of suppressor-tRNAs in HDGC patients could therefore constitute a less invasive therapeutic option for nonsense mutation carriers, delaying the development of gastric cancer. Our analysis revealed that 23/108 (21.3%) of E-cadherin-mutant families carried nonsense mutations that could be potentially corrected by eight suppressor-tRNAs, and arginine was the most frequently affected amino acid. Using site-directed mutagenesis, we developed an arginine suppressor-tRNA vector to correct one HDGC nonsense mutation. E-cadherin- deficient cell lines were transfected with plasmids carrying simultaneously the suppressor-tRNA and wild-type or mutant CDH1 mini-genes. RT-PCR, western blot, immunofluorescence, flow cytometry and proximity ligation assay (PLA) were used to establish the model, and monitor mRNA and protein expression and function recovery from CDH1 vectors. Cells expressing a CDH1 mini-gene, carrying a nonsense mutation and the suppressor-tRNA, recovered full-length E-cadherin expression and its correct localization and incorporation into the adhesion complex. This is the first demonstration of functional recovery of a mutated causative gene in hereditary cancer by cognate amino acid replacement with suppressor-tRNAs. Of the HDGC families, 21.3% are candidates for correction with suppressor-tRNAs to potentially delay cancer onset.
Collapse
Affiliation(s)
- Renata Bordeira-Carriço
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Daniel Ferreira
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Denisa D Mateus
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Hugo Pinheiro
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Paula Pêgo
- 1] INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal [2] Universidade do Porto-Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal [3] Universidade do Porto-Faculdade de Engenharia, Porto, Portugal
| | - Manuel A S Santos
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- 1] Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal [2] Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Lyu T, Jia N, Wang J, Yan X, Yu Y, Lu Z, Bast RC, Hua K, Feng W. Expression and epigenetic regulation of angiogenesis-related factors during dormancy and recurrent growth of ovarian carcinoma. Epigenetics 2013; 8:1330-46. [PMID: 24135786 DOI: 10.4161/epi.26675] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The initiation of angiogenesis can mark the transition from tumor dormancy to active growth and recurrence. Mechanisms that regulate recurrence in human cancers are poorly understood, in part because of the absence of relevant models. The induction of ARHI (DIRAS3) induces dormancy and autophagy in human ovarian cancer xenografts but produces autophagic cell death in culture. The addition of VEGF to cultures maintains the viability of dormant autophagic cancer cells, thereby permitting active growth when ARHI is downregulated, which mimics the "recurrence" of growth in xenografts. Two inducible ovarian cancer cell lines, SKOv3-ARHI and Hey-ARHI, were used. The expression level of angiogenesis factors was evaluated by real-time PCR, immunohistochemistry, immunocytochemistry and western blot; their epigenetic regulation was measured by bisulfite sequencing and chromatin immunoprecipitation. Six of the 15 angiogenesis factors were upregulated in dormant cancer cells (tissue inhibitor of metalloproteinases-3, TIMP3; thrombospondin-1, TSP1; angiopoietin-1; angiopoietin-2; angiopoietin-4; E-cadherin, CDH1). We found that TIMP3 and CDH1 expression was regulated epigenetically and was related inversely to the DNA methylation of their promoters in cell cultures and in xenografts. Increased H3K9 acetylation was associated with higher TIMP3 expression in dormant SKOv3-ARHI cells, while decreased H3K27me3 resulted in the upregulation of TIMP3 in dormant Hey-ARHI cells. Elevated CDH1 expression during dormancy was associated with an increase in both H3K4me3 and H3K9Ac in two cell lines. CpG demethylating agents and/or histone deacetylase inhibitors inhibited the re-growth of dormant cancer cells, which was associated with the re-expression of anti-angiogenic genes. The expression of the anti-angiogenic genes TIMP3 and CDH1 is elevated during dormancy and is reduced during the transition to active growth by changes in DNA methylation and histone modification.
Collapse
Affiliation(s)
- Tianjiao Lyu
- Department of Gynecology; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China
| | - Nan Jia
- Department of Gynecology; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China
| | - Jieyu Wang
- Department of Gynecology; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China
| | - Xiaohui Yan
- Department of Gynecology; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China
| | - Yinhua Yu
- Department of Gynecology; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China; Department of Experimental Therapeutics; University of Texas, M.D. Anderson Cancer Center; Houston, TX USA
| | - Zhen Lu
- Department of Experimental Therapeutics; University of Texas, M.D. Anderson Cancer Center; Houston, TX USA
| | - Robert C Bast
- Department of Experimental Therapeutics; University of Texas, M.D. Anderson Cancer Center; Houston, TX USA
| | - Keqin Hua
- Department of Gynecology; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China
| | - Weiwei Feng
- Department of Gynecology; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital; Fudan University; Shanghai, PR China
| |
Collapse
|
13
|
|
14
|
Abstract
Gastric carcinogenesis is a complex and multifactorial process, in which infection with Helicobacter pylori plays a major role. Additionally, environmental factors as well as genetic susceptibility factors are significant players in gastric cancer (GC) etiology. Gastric cancer development results from the accumulation of multiple genetic and epigenetic changes during the lifetime of the cancer patient that will activate oncogenic and/or inactivate tumor-suppressor pathways. Numerous studies published last year provided new insights into the molecular phenotypes of GC, which will be the main focus of this review. This article also reviews the recent findings on GC tumor-suppressor genes, including putative novel genes. The understanding of the basic mechanisms that underlie gastric carcinogenesis will be of utmost importance for developing strategies of screening, early detection, and treatment of the disease, as most GC patients present with late-stage disease and have poor overall survival.
Collapse
Affiliation(s)
- Ceu Figueiredo
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | | |
Collapse
|
15
|
Paulson AF, Prasad MS, Thuringer AH, Manzerra P. Regulation of cadherin expression in nervous system development. Cell Adh Migr 2013; 8:19-28. [PMID: 24526207 DOI: 10.4161/cam.27839] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review addresses our current understanding of the regulatory mechanisms for classical cadherin expression during development of the vertebrate nervous system. The complexity of the spatial and temporal expression patterns is linked to morphogenic and functional roles in the developing nervous system. While the regulatory networks controlling cadherin expression are not well understood, it is likely that the multiple signaling pathways active in the development of particular domains also regulate the specific cadherins expressed at that time and location. With the growing understanding of the broader roles of cadherins in cell-cell adhesion and non-adhesion processes, it is important to understand both the upstream regulation of cadherin expression and the downstream effects of specific cadherins within their cellular context.
Collapse
Affiliation(s)
- Alicia F Paulson
- Division of Basic Biomedical Sciences; Sanford School of Medicine of The University of South Dakota; Vermillion, SD USA
| | - Maneeshi S Prasad
- Department of Molecular Biosciences; Northwestern University; Evanston, IL USA
| | | | - Pasquale Manzerra
- Division of Basic Biomedical Sciences; Sanford School of Medicine of The University of South Dakota; Vermillion, SD USA
| |
Collapse
|
16
|
Wang K, Li N, Yeung C, Li J, Wang H, Cooper T. Oncogenic Wnt/β-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research. ACTA ACUST UNITED AC 2012; 19:57-71. [DOI: 10.1093/molehr/gas051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|