1
|
Casey RT, Hendriks E, Deal C, Waguespack SG, Wiegering V, Redlich A, Akker S, Prasad R, Fassnacht M, Clifton-Bligh R, Amar L, Bornstein S, Canu L, Charmandari E, Chrisoulidou A, Freixes MC, de Krijger R, de Sanctis L, Fojo A, Ghia AJ, Huebner A, Kosmoliaptsis V, Kuhlen M, Raffaelli M, Lussey-Lepoutre C, Marks SD, Nilubol N, Parasiliti-Caprino M, Timmers HHJLM, Zietlow AL, Robledo M, Gimenez-Roqueplo AP, Grossman AB, Taïeb D, Maher ER, Lenders JWM, Eisenhofer G, Jimenez C, Pacak K, Pamporaki C. International consensus statement on the diagnosis and management of phaeochromocytoma and paraganglioma in children and adolescents. Nat Rev Endocrinol 2024; 20:729-748. [PMID: 39147856 DOI: 10.1038/s41574-024-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Phaeochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumours that arise not only in adulthood but also in childhood and adolescence. Up to 70-80% of childhood PPGL are hereditary, accounting for a higher incidence of metastatic and/or multifocal PPGL in paediatric patients than in adult patients. Key differences in the tumour biology and management, together with rare disease incidence and therapeutic challenges in paediatric compared with adult patients, mandate close expert cross-disciplinary teamwork. Teams should ideally include adult and paediatric endocrinologists, oncologists, cardiologists, surgeons, geneticists, pathologists, radiologists, clinical psychologists and nuclear medicine physicians. Provision of an international Consensus Statement should improve care and outcomes for children and adolescents with these tumours.
Collapse
Affiliation(s)
- Ruth T Casey
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Department of Endocrinology, Cambridge Cancer Centre and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Emile Hendriks
- Department of Paediatric Diabetes and Endocrinology, Cambridge Cancer Centre and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cheri Deal
- Endocrine and Diabetes Service, CHU Sainte-Justine and University of Montreal, Montreal, Québec, Canada
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Verena Wiegering
- University Children's Hospital, Department of Paediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Antje Redlich
- Paediatric Oncology Department, Otto von Guericke University Children's Hospital, Magdeburg, Germany
| | - Scott Akker
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Roderick Clifton-Bligh
- Department of Diabetes and Endocrinology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Laurence Amar
- Université de Paris, Paris, France
- Hypertension Unit, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Stefan Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Paediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | | | - Maria Currás Freixes
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Ronald de Krijger
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Luisa de Sanctis
- Department of Public Health and Paediatric Sciences, University of Turin, Turin, Italy
| | - Antonio Fojo
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Amol J Ghia
- Department of Radiation Oncology, University Hospital of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Huebner
- Department of Paediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
- Blood and Transplant Research Unit in Organ Donation and Transplantation, National Institute for Health Research, University of Cambridge, Cambridge, UK
| | - Michaela Kuhlen
- Paediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marco Raffaelli
- U.O.C. Chirurgia Endocrina e Metabolica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Semeiotica Chirurgica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Charlotte Lussey-Lepoutre
- Service de médecine nucléaire, Inserm U970, Sorbonne université, Groupe hospitalier Pitié-Salpétrière, Paris, France
| | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR GOSH Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mirko Parasiliti-Caprino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti, Turin, Italy
| | - Henri H J L M Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anna Lena Zietlow
- Clinical Child and Adolescent Psychology, Institute of Clinical Psychology and Psychotherapy, Department of Psychology, TU Dresden, Dresden, Germany
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, PARCC, INSERM, Paris, France
- Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Ashley B Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Christina Pamporaki
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
2
|
de Bresser CJM, de Krijger RR. The Molecular Classification of Pheochromocytomas and Paragangliomas: Discovering the Genomic and Immune Landscape of Metastatic Disease. Endocr Pathol 2024:10.1007/s12022-024-09830-3. [PMID: 39466488 DOI: 10.1007/s12022-024-09830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs, together PPGLs) are the most hereditary tumors known. PPGLs were considered benign, but the fourth edition of the World Health Organisation (WHO) classification redefined all PPGLs as malignant neoplasms with variable metastatic potential. The metastatic rate differs based on histopathology, genetic background, size, and location of the tumor. The challenge in predicting metastatic disease lies in the absence of a clear genotype-phenotype correlation among the more than 20 identified genetic driver variants. Recent advances in molecular clustering based on underlying genetic alterations have paved the way for improved cluster-specific personalized treatments. However, despite some clusters demonstrating a higher propensity for metastatic disease, cluster-specific therapies have not yet been widely adopted in clinical practice. Comprehensive genomic profiling and transcriptomic analyses of large PPGL cohorts have identified potential new biomarkers that may influence metastatic potential. It appears that no single biomarker alone can reliably predict metastatic risk; instead, a combination of these biomarkers may be necessary to develop an effective prediction model for metastatic disease. This review evaluates current guidelines and recent genomic and transcriptomic findings, with the aim of accurately identifying novel biomarkers that could contribute to a predictive model for mPPGLs, thereby enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Carolijn J M de Bresser
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Cortez BN, Kuo MJM, Jha A, Patel M, Carrasquillo JA, Prodanov T, Charles KM, Talvacchio S, Derkyi A, Lin FI, Taïeb D, Del Rivero J, Pacak K. Case Series: ATRX Variants in Four Patients with Metastatic Pheochromocytoma. Front Endocrinol (Lausanne) 2024; 15:1399847. [PMID: 39351526 PMCID: PMC11439680 DOI: 10.3389/fendo.2024.1399847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 10/04/2024] Open
Abstract
Few reports have highlighted the rare presence of somatic ATRX variants in clinically aggressive, metastatic pheochromocytoma/paraganglioma (PCC/PGL); however, none have addressed detailed clinical presentation (including biochemistry and imaging) and management of these patients. Here, we address these clinical features and management based on four PCC patients with somatic ATRX variants from our National Institutes of Health PCC/PGL cohort. A total of 192 patients underwent exome sequencing (germline, somatic, or both), and four males were found to have somatic ATRX variants (with additional somatic VHL and FH oncogenic variants in patients 2 and 4, respectively). Per-lesion and per-patient comparisons were performed among functional imaging scans performed at the NIH. Biochemical phenotype and response to systemic treatment were evaluated. This mini-series supports prior studies showing aggressive/metastatic PCC in patients with somatic ATRX variants, as all developed widespread metastatic disease. All four PCC patients presented with noradrenergic biochemical phenotype, and some with significant elevation in 3-methoxytyramine. 18F-FDOPA PET/CT was found to be the superior functional imaging modality, with 100% lesion detection rate when compared to that of 68Ga-DOTATATE, 18F-FDG, 18F-FDA, and 123I-MIBG scans. While patients did not respond to chemotherapy or tyrosine kinase inhibitors, they responded to targeted radiotherapy using high-specific-activity 131I-MIBG (Azedra®) or 177Lu-DOTATATE (Lutathera®).
Collapse
Affiliation(s)
- Briana N. Cortez
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mickey J. M. Kuo
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Jorge A. Carrasquillo
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tamara Prodanov
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kailah M. Charles
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alberta Derkyi
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Frank I. Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital & Centre de Recherches en Cancérologie de Marseille (CERIMED) & French Institute of Health and Medical Research (Inserm) UMR1068 Marseille Cancerology Research Center, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Jaydira Del Rivero
- Developemental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Wachtel H, Nathanson KL. Molecular Genetics of Pheochromocytoma/Paraganglioma. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 36:100527. [PMID: 39328362 PMCID: PMC11424047 DOI: 10.1016/j.coemr.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGL) are neuroendocrine tumors which secrete catecholamines, causing cardiovascular compromise. While isolated tumors and locoregional disease can be treated surgically, treatment options for metastatic disease are limited, and no targeted therapies exist. Approximately 25% of PPGL are causatively associated with germline pathogenic variants, which are known risk factors for multifocal and metastatic PPGL. Knowledge of somatic driver mutations continues to evolve. Molecular classification of PPGL has identified three genomic subtypes: Cluster 1 (pseudohypoxia), Cluster 2 (kinase signaling) and Cluster 3 (Wnt-altered). This review summaries recent studies characterizing the tumor microenvironment, genomic drivers of tumorigenesis and progression, and current research on molecular targets for novel diagnostic and therapeutic strategies in PPGL.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L Nathanson
- Hospital of the University of Pennsylvania, Department of Medical Genetics, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Jiang J, Liu Y. Recent discoveries of Sino-Caucasian differences in the genetics of phaeochromocytomas and paragangliomas. Best Pract Res Clin Endocrinol Metab 2024:101928. [PMID: 39191630 DOI: 10.1016/j.beem.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) represent the highest degree of heritability of any known tumor types in humans. Previous studies have characterized a dramatic difference between Chinese and European Caucasians with regards to both genetics and clinical features of PPGLs. The proportion of PGLs in Chinese patients was higher than in Caucasians, and the prevalence of metastasis was much lower in Chinese patients. Compared with Caucasians, there were more pathogenic variants (PVs) found in HRAS and FGFR1, but less in NF1 and SDHB. There were less germline PVs found in Chinese patients. Importantly, in Chinese patients, there was a large proportion of PGLs with PVs found in HRAS and FGFR1, mostly with epinephrine-producing capacity. This finding provided solid evidence that genetics (cluster 1 vs. 2), rather than location (PCC vs. PGL), determines the catecholamine-producing phenotype. Besides, the lower prevalence of SDHB partially explained lower occurrence of metastatic lesions in Chinese patients. These findings underscore the importance of considering ethnic differences when evaluating PPGLs and patient outcomes.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, China.
| | - Yujun Liu
- Department of Urology, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
6
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
7
|
De Leo A, Ruscelli M, Maloberti T, Coluccelli S, Repaci A, de Biase D, Tallini G. Molecular pathology of endocrine gland tumors: genetic alterations and clinicopathologic relevance. Virchows Arch 2024; 484:289-319. [PMID: 38108848 PMCID: PMC10948534 DOI: 10.1007/s00428-023-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
Tumors of the endocrine glands are common. Knowledge of their molecular pathology has greatly advanced in the recent past. This review covers the main molecular alterations of tumors of the anterior pituitary, thyroid and parathyroid glands, adrenal cortex, and adrenal medulla and paraganglia. All endocrine gland tumors enjoy a robust correlation between genotype and phenotype. High-throughput molecular analysis demonstrates that endocrine gland tumors can be grouped into molecular groups that are relevant from both pathologic and clinical point of views. In this review, genetic alterations have been discussed and tabulated with respect to their molecular pathogenetic role and clinicopathologic implications, addressing the use of molecular biomarkers for the purpose of diagnosis and prognosis and predicting response to molecular therapy. Hereditary conditions that play a key role in determining predisposition to many types of endocrine tumors are also discussed.
Collapse
Affiliation(s)
- Antonio De Leo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Martina Ruscelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
| | - Thais Maloberti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Sara Coluccelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy.
| |
Collapse
|
8
|
Tabebi M, Frikha F, Volpe M, Gimm O, Söderkvist P. Domain landscapes of somatic NF1 mutations in pheochromocytoma and paraganglioma. Gene 2023; 872:147432. [PMID: 37062455 DOI: 10.1016/j.gene.2023.147432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Pheochromocytoma and paraganglioma (PPGL), are rare neuroendocrine tumors arising from the adrenal medulla and extra-adrenal paraganglia, respectively. Up to about 60% are explained by germline or somatic mutations in one of the major known susceptibility genes e.g., inNF1,RET,VHL, SDHx,MAXandHRAS. Targeted Next Generation Sequencing was performed in 14 sporadic tumors using a panel including 26 susceptibility genes to characterize the mutation profile. A total of 6 germline and 8 somatic variants were identified. The most frequent somatic mutations were found in NF1(36%), four have not been reported earlier in PCC or PGL. Gene expression profile analysis showed that NF1 mutated tumors are classified into RTK3 subtype, cluster 2, with a high expression of genes associated with chromaffin cell differentiation, and into a RTK2 subtype, cluster 2, as well with overexpression of genes associated with cortisol biosynthesis. On the other hand, by analyzing the entire probe set on the array and TCGA data, ALDOC was found as the most significantly down regulated gene in NF1-mutated tumors compared to NF1-wild-type. Differential gene expression analysis showed a significant difference between Nt - and Ct-NF1 domains in mutated tumors probably engaging different cellular pathways. Notably, we had a metastatic PCC with a Ct-NF1 frameshift mutation and when performing protein docking analysis, Ct-NF1 showed an interaction with Nt-FAK suggesting their involvement in cell adhesion and cell growth. These results show that depending on the location of the NF1-mutation different pathways are activated in PPGLs. Further studies are required to clarify their clinical significance.
Collapse
Affiliation(s)
- Mouna Tabebi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden.
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Massimiliano Volpe
- Clinical Genomics Linköping, Linköping University, 581 83 Linköping, Sweden
| | - Oliver Gimm
- Department of Surgery and Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden; Clinical Genomics Linköping, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
9
|
Sandow L, Thawani R, Kim MS, Heinrich MC. Paraganglioma of the Head and Neck: A Review. Endocr Pract 2023; 29:141-147. [PMID: 36252779 PMCID: PMC9979593 DOI: 10.1016/j.eprac.2022.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To review the epidemiology, presentation, diagnosis, and management of head and neck paragangliomas. METHODS A literature review of english language papers with focus on most current literature. RESULTS Paragangliomas (PGLs) are a group of neuroendocrine tumors that arise in the parasympathetic or sympathetic ganglia. Head and neck PGLs (HNPGLs) comprise 65% to 70% of all PGLs and account for 0.6% of all head and neck cancers. The majority of HNPGLs are benign, and 6% to 19% of all HNPGLs develop metastasis outside the tumor site and significantly compromise survival. PGLs can have a familial etiology with germline sequence variations in different susceptibility genes, with the gene encoding succinate dehydrogenase being the most common sequence variation, or they can arise from somatic sequence variations or fusion genes. Workup includes biochemical testing to rule out secretory components, although it is rare in HNPGLs. In addition, imaging modalities, such as computed tomography and magnetic resonance imaging, help in monitoring in surgical planning. Functional imaging with DOTATATE-positron emission tomography, 18F-fluorodeoxyglucose, or 18F-fluorohydroxyphenylalanine may be necessary to rule out sites of metastases. The management of HNPGLs is complex depending on pathology, location, and aggressiveness of the tumor. Treatment ranges from observation to resection to systemic treatment. Similarly, the prognosis ranges from a normal life expectancy to a 5-year survival of 11.8% in patients with distant metastasis. CONCLUSION Our review is a comprehensive summary of the incidence, mortality, pathogenesis, presentation, workup and management of HNPGLs.
Collapse
Affiliation(s)
- Lyndsey Sandow
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Rajat Thawani
- Division of Hematology and Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.
| | - Myung Sun Kim
- Division of Hematology and Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Michael C Heinrich
- Division of Hematology and Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
10
|
Mellid S, Gil E, Letón R, Caleiras E, Honrado E, Richter S, Palacios N, Lahera M, Galofré JC, López-Fernández A, Calatayud M, Herrera-Martínez AD, Galvez MA, Matias-Guiu X, Balbín M, Korpershoek E, Lim ES, Maletta F, Lider S, Fliedner SMJ, Bechmann N, Eisenhofer G, Canu L, Rapizzi E, Bancos I, Robledo M, Cascón A. Co-occurrence of mutations in NF1 and other susceptibility genes in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 13:1070074. [PMID: 36760809 PMCID: PMC9905101 DOI: 10.3389/fendo.2022.1070074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction The percentage of patients diagnosed with pheochromocytoma and paraganglioma (altogether PPGL) carrying known germline mutations in one of the over fifteen susceptibility genes identified to date has dramatically increased during the last two decades, accounting for up to 35-40% of PPGL patients. Moreover, the application of NGS to the diagnosis of PPGL detects unexpected co-occurrences of pathogenic allelic variants in different susceptibility genes. Methods Herein we uncover several cases with dual mutations in NF1 and other PPGL genes by targeted sequencing. We studied the molecular characteristics of the tumours with co-occurrent mutations, using omic tools to gain insight into the role of these events in tumour development. Results Amongst 23 patients carrying germline NF1 mutations, targeted sequencing revealed additional pathogenic germline variants in DLST (n=1) and MDH2 (n=2), and two somatic mutations in H3-3A and PRKAR1A. Three additional patients, with somatic mutations in NF1 were found carrying germline pathogenic mutations in SDHB or DLST, and a somatic truncating mutation in ATRX. Two of the cases with dual germline mutations showed multiple pheochromocytomas or extra-adrenal paragangliomas - an extremely rare clinical finding in NF1 patients. Transcriptional and methylation profiling and metabolite assessment showed an "intermediate signature" to suggest that both variants had a pathological role in tumour development. Discussion In conclusion, mutations affecting genes involved in different pathways (pseudohypoxic and receptor tyrosine kinase signalling) co-occurring in the same patient could provide a selective advantage for the development of PPGL, and explain the variable expressivity and incomplete penetrance observed in some patients.
Collapse
Affiliation(s)
- Sara Mellid
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Gil
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nuria Palacios
- Endocrinology Department, University Hospital Puerta de Hierro, Madrid, Spain
| | - Marcos Lahera
- Endocrinology and Nutrition Department, La Princesa University Hospital, Madrid, Spain
| | - Juan C. Galofré
- Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Adriá López-Fernández
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Maria Calatayud
- Department of Endocrinology and Nutrition, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - María A. Galvez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Bellvitge University Hospital, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Milagros Balbín
- Molecular Oncology Laboratory, Instituto Universitario de Oncologia del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Esther Korpershoek
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Eugénie S. Lim
- Department of Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Francesca Maletta
- Pathology Unit , Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Sofia Lider
- Endocrinology Department, National Institute of Endocrinology, Bucharest, Romania
| | | | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Letizia Canu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Advances in Adrenal and Extra-adrenal Paraganglioma: Practical Synopsis for Pathologists. Adv Anat Pathol 2023; 30:47-57. [PMID: 36136370 DOI: 10.1097/pap.0000000000000365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adrenal paraganglioma (or "pheochromocytoma") and extra-adrenal paraganglioma, collectively abbreviated PPGL, are rare but spectacular nonepithelial neuroendocrine neoplasms. These are the most inheritable neoplasia of all, with a metastatic potential in a varying degree. As of such, these lesions demand careful histologic, immunohistochemical, and genetic characterization to provide the clinical team with a detailed report taking into account the anticipated prognosis and risk of syndromic/inherited disease. While no histologic algorithm, immunohistochemical biomarker, or molecular aberration single-handedly can identify potentially lethal cases upfront, the combined analysis of various risk parameters may stratify PPGL patients more stringently than previously. Moreover, the novel 2022 WHO Classification of Endocrine and Neuroendocrine Tumors also brings some new concepts into play, not least the reclassification of special neuroendocrine neoplasms (cauda equina neuroendocrine tumor and composite gangliocytoma/neuroma-neuroendocrine tumor) previously thought to belong to the spectrum of PPGL. This review focuses on updated key diagnostic and prognostic concepts that will aid when facing this rather enigmatic tumor entity in clinical practice.
Collapse
|
12
|
Chen H, Chen X, Zeng F, Fu A, Huang M. Prognostic value of SOX9 in cervical cancer: Bioinformatics and experimental approaches. Front Genet 2022; 13:939328. [PMID: 36003340 PMCID: PMC9394184 DOI: 10.3389/fgene.2022.939328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Among gynecological cancers, cervical cancer is a common malignancy and remains the leading cause of cancer-related death for women. However, the exact molecular pathogenesis of cervical cancer is not known. Hence, understanding the molecular mechanisms underlying cervical cancer pathogenesis will aid in the development of effective treatment modalities. In this research, we attempted to discern candidate biomarkers for cervical cancer by using multiple bioinformatics approaches. First, we performed differential expression analysis based on cervical squamous cell carcinoma and endocervical adenocarcinoma data from The Cancer Genome Atlas database, then used differentially expressed genes for weighted gene co-expression network construction to find the most relevant gene module for cervical cancer. Next, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on the module genes, followed by using protein–protein interaction network analysis and Cytoscape to find the key gene. Finally, we validated the key gene by using multiple online sites and experimental methods. Through weighted gene co-expression network analysis, we found the turquoise module was the highest correlated module with cervical cancer diagnosis. The biological process of the module genes focused on cell proliferation, cell adhesion, and protein binding processes, while the Kyoto Encyclopedia of Genes and Genomes pathway of the module significantly enriched pathways related to cancer and cell circle. Among the module genes, SOX9 was identified as the hub gene, and its expression was associated with cervical cancer prognosis. We found the expression of SOX9 correlates with cancer-associated fibroblast immune infiltration in immune cells by Timer2.0. Furthermore, cancer-associated fibroblast infiltration is linked to cervical cancer patients’ prognosis. Compared to those in normal adjacent, immunohistochemical and real-time quantitative polymerase chain reaction (qPCR) showed that the protein and mRNA expression of SOX9 in cervical cancer were higher. Therefore, the SOX9 gene acts as an oncogene in cervical cancer, interactive with immune infiltration of cancer-associated fibroblasts, thereby affecting the prognosis of patients with cervical cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Obstetrics and Gynecology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Xupeng Chen
- Laboratory Medicine Center, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Fanhua Zeng
- Department of Obstetrics and Gynecology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Aizhen Fu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Meiyuan Huang
- Department of Pathology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
- *Correspondence: Meiyuan Huang,
| |
Collapse
|
13
|
Lin EP, Chin BB, Fishbein L, Moritani T, Montoya SP, Ellika S, Newlands S. Head and Neck Paragangliomas: An Update on the Molecular Classification, State-of-the-Art Imaging, and Management Recommendations. Radiol Imaging Cancer 2022; 4:e210088. [PMID: 35549357 DOI: 10.1148/rycan.210088] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paragangliomas are neuroendocrine tumors that derive from paraganglia of the autonomic nervous system, with the majority of parasympathetic paragangliomas arising in the head and neck. More than one-third of all paragangliomas are hereditary, reflecting the strong genetic predisposition of these tumors. The molecular basis of paragangliomas has been investigated extensively in the past couple of decades, leading to the discovery of several molecular clusters and more than 20 well-characterized driver genes (somatic and hereditary), which are more than are known for any other endocrine tumor. Head and neck paragangliomas are largely related to the pseudohypoxia cluster and have been previously excluded from most molecular profiling studies. This review article introduces the molecular classification of paragangliomas, with a focus on head and neck paragangliomas, and discusses its impact on the management of these tumors. Genetic testing is now recommended for all patients with paragangliomas to provide screening and surveillance recommendations for patients and relatives. While CT and MRI provide excellent anatomic characterization of paragangliomas, gallium 68 tetraazacyclododecane tetraacetic acid-octreotate (ie, 68Ga-DOTATATE) has superior sensitivity and is recommended as first-line imaging in patients with head and neck paragangliomas with concern for multifocal and metastatic disease, patients with known multifocal and metastatic disease, and in candidates for targeted peptide-receptor therapy. Keywords: Molecular Imaging, MR Perfusion, MR Spectroscopy, Neuro-Oncology, PET/CT, SPECT/CT, Head/Neck, Genetic Defects © RSNA, 2022.
Collapse
Affiliation(s)
- Edward P Lin
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Bennett B Chin
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Lauren Fishbein
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Toshio Moritani
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Simone P Montoya
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Shehanaz Ellika
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Shawn Newlands
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| |
Collapse
|
14
|
Vallera RD, Ding Y, Hatanpaa KJ, Bishop JA, Mirfakhraee S, Alli AA, Tevosian SG, Tabebi M, Gimm O, Söderkvist P, Estrada-Zuniga C, Dahia PLM, Ghayee HK. Case report: Two sisters with a germline CHEK2 variant and distinct endocrine neoplasias. Front Endocrinol (Lausanne) 2022; 13:1024108. [PMID: 36440216 PMCID: PMC9682564 DOI: 10.3389/fendo.2022.1024108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic testing has become the standard of care for many disease states. As a result, physicians treating patients who have tumors often rely on germline genetic testing results for making clinical decisions. Cases of two sisters carrying a germline CHEK2 variant are highlighted whereby possible other genetic drivers were discovered on tumor analysis. CHEK2 (also referred to as CHK2) loss of function has been firmly associated with breast cancer development. In this case report, two siblings with a germline CHEK2 mutation also had distinct endocrine tumors. Pituitary adenoma and pancreatic neuroendocrine tumor (PNET) was found in the first sibling and pheochromocytoma (PCC) discovered in the second sibling. Although pituitary adenomas, PNETs, and PCC have been associated with NF1 gene mutations, the second sister with a PCC did have proven germline CHEK2 with a pathogenic somatic NF1 mutation. We highlight the clinical point that unless the tumor is sequenced, the real driver mutation that is causing the patient's tumor may remain unknown.
Collapse
Affiliation(s)
- Raphaelle D. Vallera
- Department of Medicine, Division of Endocrinology, Baylor Scott & White Health, Dallas, TX, United States
| | - Yanli Ding
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Justin A. Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sasan Mirfakhraee
- Department of Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Abdel A. Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Sergei G. Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Mouna Tabebi
- Department of Surgery and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Division of Cell Biology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Oliver Gimm
- Department of Surgery and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Division of Cell Biology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Science for Life Laboratory, Linköping University, Linköping, Sweden
| | - Cynthia Estrada-Zuniga
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Patricia L. M. Dahia
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hans K. Ghayee
- Department of Medicine, Division of Endocrinology & Metabolism, University of Florida, Malcom Randall VA Medical Center, Gainesville, FL, United States
- *Correspondence: Hans K. Ghayee,
| |
Collapse
|
15
|
Abstract
Abdominal paragangliomas and pheochromocytomas (PPGLs) are rare neuroendocrine tumors of the infradiaphragmatic paraganglia and adrenal medulla, respectively. Although few pathologists outside of endocrine tertiary centers will ever diagnose such a lesion, the tumors are well known through the medical community-possible due to a combination of the sheer rarity, their often-spectacular presentation due to excess catecholamine secretion as well as their unrivaled coupling to constitutional susceptibility gene mutations and hereditary syndromes. All PPGLs are thought to harbor malignant potential, and therefore pose several challenges to the practicing pathologist. Specifically, a responsible diagnostician should recognize both the capacity and limitations of histological, immunohistochemical, and molecular algorithms to pinpoint high risk for future metastatic disease. This focused review aims to provide the surgical pathologist with a condensed update regarding the current strategies available in order to deliver an accurate prognostication of these enigmatic lesions.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of germline and somatic genetics and genomics of pheochromocytomas and paragangliomas (PCC/PGL), describes existing knowledge gaps, and discusses future research directions. RECENT FINDINGS Germline pathogenic variants (PVs) are found in up to 40% of those with PCC/PGL. Tumors with germline PVs are broadly categorized as Cluster 1 (pseudohypoxia), including those with SDH, VHL, FH, and EPAS1 PVs, or Cluster 2 (kinase signaling) including those with NF1, RET, TMEM127, and MAX PVs. Somatic driver mutations exist in some of the same genes (RET, VHL, NF1, EPAS1) as well as in additional genes including HRAS, CSDE1 and genes involved in cell immortalization (ATRX and TERT). Other somatic driver events include recurrent fusion genes involving MAML3. SUMMARY PCC/PGL have the highest association with germline PVs of all human solid tumors. Expanding our understanding of the molecular pathogenesis of PCC/PGL is essential to advancements in diagnosis and surveillance and the development of novel therapies for these unique tumors.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren Fishbein
- University of Colorado School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes and the Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
17
|
Mutation Profile of Aggressive Pheochromocytoma and Paraganglioma with Comparison of TCGA Data. Cancers (Basel) 2021; 13:cancers13102389. [PMID: 34069252 PMCID: PMC8156611 DOI: 10.3390/cancers13102389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors arising from chromaffin cells of the adrenal medulla, or extra-adrenal paraganglia, respectively. In PPGLs, germline or somatic mutations in one of the known susceptibility genes are identified in up to 60% patients. Recent WHO classification defines that all PPGLs can have metastatic potential. The term, ‘malignant’ is replaced with ‘metastatic’ in this group of tumors. However, the peculiar genetic events that drive the aggressive behavior, including metastasis in PPGLs are yet poorly understood. We performed targeted next-generation sequencing analysis to characterize the mutation profile in fifteen aggressive PPGL patients and compared accessible data of aggressive PPGLs from The Cancer Genome Atlas (TCGA) with findings of our cohort. This targeted mutational analysis might expand the mutation profile of aggressive PPGLs, and may also be useful in detecting the possible experimental therapeutic options or predicting poor prognosis. Abstract In pheochromocytoma and paraganglioma (PPGL), germline or somatic mutations in one of the known susceptibility genes are identified in up to 60% patients. However, the peculiar genetic events that drive the aggressive behavior including metastasis in PPGL are poorly understood. We performed targeted next-generation sequencing analysis to characterize the mutation profile in fifteen aggressive PPGL patients and compared accessible data of aggressive PPGLs from The Cancer Genome Atlas (TCGA) with findings of our cohort. A total of 115 germline and 34 somatic variants were identified with a median 0.58 per megabase tumor mutation burden in our cohort. The most frequent mutation was SDHB germline mutation (27%) and the second frequent mutations were somatic mutations for SETD2, NF1, and HRAS (13%, respectively). Patients were subtyped into three categories based on the kind of mutated genes: pseudohypoxia (n = 5), kinase (n = 5), and unknown (n = 5) group. In copy number variation analysis, deletion of chromosome arm 1p harboring SDHB gene was the most frequently observed. In our cohort, SDHB mutation and pseudohypoxia subtype were significantly associated with poor overall survival. In conclusion, subtyping of mutation profile can be helpful in aggressive PPGL patients with heterogeneous prognosis to make relevant follow-up plan and achieve proper treatment.
Collapse
|
18
|
Wachtel H, Hutchens T, Baraban E, Schwartz LE, Montone K, Baloch Z, LiVolsi V, Krumeich L, Fraker DL, Nathanson KL, Cohen DL, Fishbein L. Predicting Metastatic Potential in Pheochromocytoma and Paraganglioma: A Comparison of PASS and GAPP Scoring Systems. J Clin Endocrinol Metab 2020; 105:5900767. [PMID: 32877928 PMCID: PMC7553245 DOI: 10.1210/clinem/dgaa608] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE The Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) and the Grading System for Adrenal Pheochromocytoma and Paraganglioma (GAPP) are scoring systems to predict metastatic potential in pheochromocytomas (PCC) and paragangliomas (PGLs). The goal of this study is to assess PASS and GAPP as metastatic predictors and to correlate with survival outcomes. METHODS The cohort included PCC/PGL with ≥5 years of follow-up or known metastases. Surgical pathology slides were rereviewed. PASS and GAPP scores were assigned. Univariable and multivariable logistic regression, Kaplan-Meier survival analysis, and Cox proportional hazards were performed to assess recurrence-free survival (RFS) and disease-specific survival (DSS). RESULTS From 143 subjects, 106 tumors were PCC and 37 were PGL. Metastases developed in 24%. The median PASS score was 6.5 (interquartile range [IQR]: 4.0-8.0) and median GAPP score was 3.0 (IQR: 2.0-4.0). Interrater reliability was low-moderate for PASS (intraclass correlation coefficient [ICC]: 0.6082) and good for GAPP (ICC 0.7921). Older age (OR: 0.969, P = .0170) was associated with longer RFS. SDHB germline pathogenic variant (OR: 8.205, P = .0049), extra-adrenal tumor (OR: 6.357, P < .0001), Ki-67 index 1% to 3% (OR: 4.810, P = .0477), and higher GAPP score (OR: 1.537, P = .0047) were associated with shorter RFS. PASS score was not associated with RFS (P = .1779). On Cox regression, a GAPP score in the moderately differentiated range was significantly associated with disease recurrence (HR: 3.367, P = .0184) compared with well-differentiated score. CONCLUSION Higher GAPP scores were associated with aggressive PCC/PGL. PASS score was not associated with metastases and demonstrated significant interobserver variability. Scoring systems for predicting metastatic PCC/PGL may be improved by incorporation of histopathology, clinical data, and germline and somatic tumor markers.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic, Surgery, Philadelphia, Pennsylvania
- The Abramson Cancer Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence and Reprint Requests: Heather Wachtel, MD, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Silverstein Pavilion, Philadelphia PA 19104, USA. E-mail:
| | - Troy Hutchens
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Ezra Baraban
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Lauren E Schwartz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Kathleen Montone
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Zubair Baloch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Virginia LiVolsi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Lauren Krumeich
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic, Surgery, Philadelphia, Pennsylvania
| | - Douglas L Fraker
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic, Surgery, Philadelphia, Pennsylvania
- The Abramson Cancer Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine L Nathanson
- The Abramson Cancer Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania
| | - Debbie L Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Medicine, Division of Renal, Electrolytes and Hypertension, Philadelphia, Pennsylvania
| | - Lauren Fishbein
- University of Colorado School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes and the Division of Biomedical Informatics and Personalized Medicine, Aurora, Colorado
| |
Collapse
|
19
|
Islam F, Pillai S, Gopalan V, Lam AKY. Identification of Novel Mutations and Expressions of EPAS1 in Phaeochromocytomas and Paragangliomas. Genes (Basel) 2020; 11:genes11111254. [PMID: 33114456 PMCID: PMC7693385 DOI: 10.3390/genes11111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Endothelial PAS domain-containing protein 1 (EPAS1) is an oxygen-sensitive component of the hypoxia-inducible factors (HIFs) having reported implications in many cancers by inducing a pseudo-hypoxic microenvironment. However, the molecular dysregulation and clinical significance of EPAS1 has never been investigated in depth in phaeochromocytomas/paragangliomas. This study aims to identify EPAS1 mutations and alterations in DNA copy number, mRNA and protein expression in patients with phaeochromocytomas/paragangliomas. The association of molecular dysregulations of EPAS1 with clinicopathological factors in phaeochromocytomas and paragangliomas were also analysed. High-resolution melt-curve analysis followed by Sanger sequencing was used to detect mutations in EPAS1. EPAS1 DNA number changes and mRNA expressions were examined by polymerase chain reaction (PCR). Immunofluorescence assay was used to study EPAS1 protein expression. In phaeochromocytomas, 12% (n = 7/57) of patients had mutations in the EPAS1 sequence, which includes two novel mutations (c.1091A>T; p.Lys364Met and c.1129A>T; p.Ser377Cys). Contrastingly, in paragangliomas, 7% (n = 1/14) of patients had EPAS1 mutations and only the c.1091A>T; p.Lys364Met mutation was detected. In silico analysis revealed that the p.Lys364Met mutation has pathological potential based on the functionality of the protein, whereas the p.Ser377Cys mutation was predicted to be neutral or tolerated. The majority of the patients had EPAS1 DNA amplification (79%; n = 56/71) and 53% (n = 24/45) patients shown mRNA overexpression. Most of the patients with EPAS1 mutations exhibited aberrant DNA changes, mRNA and protein overexpression. In addition, these alterations of EPAS1 were associated with tumour weight and location. Thus, the molecular dysregulation of EPAS1 could play crucial roles in the pathogenesis of phaeochromocytomas and paragangliomas.
Collapse
Affiliation(s)
- Farhadul Islam
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Suja Pillai
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Gold Coast, QLD 4222, Australia;
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Gold Coast, QLD 4222, Australia;
- Correspondence: ; Tel.: +61-7-5678-0718; Fax: +61-7-5678-0708
| |
Collapse
|
20
|
Jiang J, Zhang J, Pang Y, Bechmann N, Li M, Monteagudo M, Calsina B, Gimenez-Roqueplo AP, Nölting S, Beuschlein F, Fassnacht M, Deutschbein T, Timmers HJLM, Åkerström T, Crona J, Quinkler M, Fliedner SMJ, Liu Y, Guo J, Li X, Guo W, Hou Y, Wang C, Zhang L, Xiao Q, Liu L, Gao X, Burnichon N, Robledo M, Eisenhofer G. Sino-European Differences in the Genetic Landscape and Clinical Presentation of Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab 2020; 105:5880618. [PMID: 32750708 DOI: 10.1210/clinem/dgaa502] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) are characterized by distinct genotype-phenotype relationships according to studies largely restricted to Caucasian populations. OBJECTIVE To assess for possible differences in genetic landscapes and genotype-phenotype relationships of PPGLs in Chinese versus European populations. DESIGN Cross-sectional study. SETTING 2 tertiary-care centers in China and 9 in Europe. PARTICIPANTS Patients with pathologically confirmed diagnosis of PPGL, including 719 Chinese and 919 Europeans. MAIN OUTCOME MEASURES Next-generation sequencing performed in tumor specimens with mutations confirmed by Sanger sequencing and tested in peripheral blood if available. Frequencies of mutations were examined according to tumor location and catecholamine biochemical phenotypes. RESULTS Among all patients, higher frequencies of HRAS, FGFR1, and EPAS1 mutations were observed in Chinese than Europeans, whereas the reverse was observed for NF1, VHL, RET, and SDHx. Among patients with apparently sporadic PPGLs, the most frequently mutated genes in Chinese were HRAS (16.5% [13.6-19.3] vs 9.8% [7.6-12.1]) and FGFR1 (9.8% [7.6-12.1] vs 2.2% [1.1-3.3]), whereas among Europeans the most frequently mutated genes were NF1 (15.9% [13.2-18.6] vs 6.6% [4.7-8.5]) and SDHx (10.7% [8.4-13.0] vs 4.2% [2.6-5.7]). Among Europeans, almost all paragangliomas lacked appreciable production of epinephrine and identified gene mutations were largely restricted to those leading to stabilization of hypoxia inducible factors. In contrast, among Chinese there was a larger proportion of epinephrine-producing paragangliomas, mostly due to HRAS and FGFR1 mutations. CONCLUSIONS This study establishes Sino-European differences in the genetic landscape and presentation of PPGLs, including ethnic differences in genotype-phenotype relationships indicating a paradigm shift in our understanding of the biology of these tumors.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Minghao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Maria Monteagudo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Anne-Paule Gimenez-Roqueplo
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Genetics Department, Paris, France
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Svenja Nölting
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Felix Beuschlein
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, Univiersitäts Spital Zürich, Zurich, Switzerland
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Timo Deutschbein
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of medical sciences, Uppsala University, Uppsala, Sweden
| | | | - Stephanie M J Fliedner
- First Department of Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Yujun Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cikui Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Nelly Burnichon
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Genetics Department, Paris, France
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
21
|
Dunnett-Kane V, Burkitt-Wright E, Blackhall FH, Malliri A, Evans DG, Lindsay CR. Germline and sporadic cancers driven by the RAS pathway: parallels and contrasts. Ann Oncol 2020; 31:873-883. [PMID: 32240795 PMCID: PMC7322396 DOI: 10.1016/j.annonc.2020.03.291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Somatic mutations in RAS and related pathway genes such as NF1 have been strongly implicated in the development of cancer while also being implicated in a diverse group of developmental disorders named the 'RASopathies', including neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), Costello syndrome (CS), cardiofaciocutaneous syndrome (CFC), and capillary malformation-arteriovenous syndrome (CM-AVM). It remains unclear why (i) there is little overlap in mutational subtype between Ras-driven malignancies associated with sporadic disease and those associated with the RASopathy syndromes, and (ii) RASopathy-associated cancers are usually of different histological origin to those seen with sporadic mutations of the same genes. For instance, germline variants in KRAS and NRAS are rarely found at codons 12, 13 or 61, the most common sites for somatic mutations in sporadic cancers. An exception is CS, where germline variants in codons 12 and 13 of HRAS occur relatively frequently. Given recent renewed drug interest following early clinical success of RAS G12C and farnesyl transferase inhibitors, an improved understanding of this relationship could help guide targeted therapies for both sporadic and germline cancers associated with the Ras pathway.
Collapse
Affiliation(s)
- V Dunnett-Kane
- Manchester University NHS Foundation Trust, Manchester, UK
| | - E Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - F H Blackhall
- Department of Medical Oncology, the Christie NHS Foundation Trust, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, London and Manchester, UK; Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
| | - A Malliri
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - D G Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK; Division of Evolution and Genomic Medicine, Faculty of Biology and Health, University of Manchester, Manchester, UK
| | - C R Lindsay
- Department of Medical Oncology, the Christie NHS Foundation Trust, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, London and Manchester, UK; Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Uçaktürk SA, Mengen E, Azak E, Çetin İİ, Kocaay P, Şenel E. Catecholamine-induced Myocarditis in a Child with Pheochromocytoma. J Clin Res Pediatr Endocrinol 2020; 12:202-205. [PMID: 31208160 PMCID: PMC7291411 DOI: 10.4274/jcrpe.galenos.2019.2019.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors. The clinical presentation of pediatric PPGLs is highly variable. In cases with pheochromocytoma (PCC), excess catecholamine may stimulate myocytes and cause structural changes, leading to life-threatening complications ranging from stress cardiomyopathy (CM) to dilated CM. Herein, we report the case of catecholamine-induced myocarditis in a child with asymptomatic PCC. A 12-year-and-2-month-old male patient with a known diagnosis of type-1 neurofibromatosis was brought to the emergency department due to palpitations and vomiting. On physical examination, arterial blood pressure was 113/81 mmHg, pulse was 125/min, and body temperature was 36.5 °C. Laboratory tests showed a leucocyte count of 12.8x103 μL/L and a serum C-reactive protein level of 1.1 mg/dL (Normal range: 0-0.5). Thyroid function tests were normal, while cardiac enzymes were elevated. Electrocardiogram revealed no pathological findings other than sinus tachycardia. The patient was diagnosed with and treated for myocarditis as echocardiography revealed a left ventricular ejection fraction of 48%. Viral and bacterial agents that may cause myocarditis were excluded via serological tests and blood cultures. Blood pressure, normal at the time of admission, was elevated (140/90 mmHg) on the 5th day of hospitalization. Magnetic resonance imaging revealed a 41x46x45 mm solid adrenal mass. The diagnosis of PCC was confirmed by elevated urinary and plasma metanephrines. The patient underwent surgery. Histopathology of the excised mass was compatible with PCC. It should be kept in mind that, even if there are no signs and symptoms of catecholamine elevation, CM may be the first sign of PCC.
Collapse
Affiliation(s)
- S. Ahmet Uçaktürk
- Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey,* Address for Correspondence: Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey Phone: +90 505 251 09 14 E-mail:
| | - Eda Mengen
- Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey
| | - Emine Azak
- Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Cardiology, Ankara, Turkey
| | - İbrahim İlker Çetin
- Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Cardiology, Ankara, Turkey
| | - Pınar Kocaay
- Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey
| | - Emrah Şenel
- Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Surgery, Ankara, Turkey
| |
Collapse
|
23
|
Yamazaki Y, Gao X, Pecori A, Nakamura Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Satoh F, Sasano H. Recent Advances in Histopathological and Molecular Diagnosis in Pheochromocytoma and Paraganglioma: Challenges for Predicting Metastasis in Individual Patients. Front Endocrinol (Lausanne) 2020; 11:587769. [PMID: 33193100 PMCID: PMC7652733 DOI: 10.3389/fendo.2020.587769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PHEO/PGL) are rare but occasionally life-threatening neoplasms, and are potentially malignant according to WHO classification in 2017. However, it is also well known that histopathological risk stratification to predict clinical outcome has not yet been established. The first histopathological diagnostic algorithm for PHEO, "PASS", was proposed in 2002 by Thompson et al. Another algorithm, GAPP, was then proposed by Kimura et al. in 2014. However, neither algorithm has necessarily been regarded a 'gold standard' for predicting post-operative clinical behavior of tumors. This is because the histopathological features of PHEO/PGL are rather diverse and independent of their hormonal activities, as well as the clinical course of patients. On the other hand, recent developments in wide-scale genetic analysis using next-generation sequencing have revealed the molecular characteristics of pheochromocytomas and paragangliomas. More than 30%-40% of PHEO/PGL are reported to be associated with hereditary genetic abnormalities involving > 20 genes, including SDHXs, RET, VHL, NF1, TMEM127, MAX, and others. Such genetic alterations are mainly involved in the pathogenesis of pseudohypoxia, Wnt, and kinase signaling, and other intracellular signaling cascades. In addition, recurrent somatic mutations are frequently detected and overlapped with the presence of genetic alterations associated with hereditary diseases. In addition, therapeutic strategies specifically targeting such genetic abnormalities have been proposed, but they are not clinically applicable at this time. Therefore, we herein review recent advances in relevant studies, including histopathological and molecular analyses, to summarize the current status of potential prognostic factors in patients with PHEO/PGL.
Collapse
Affiliation(s)
- Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alessio Pecori
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Hironobu Sasano,
| |
Collapse
|
24
|
Agarwal S, Jindal I, Balazs A, Paul D. Catecholamine-Secreting Tumors in Pediatric Patients With Cyanotic Congenital Heart Disease. J Endocr Soc 2019; 3:2135-2150. [PMID: 31687640 PMCID: PMC6821216 DOI: 10.1210/js.2019-00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Catecholamine-secreting tumors are rare among the pediatric population but are increasingly being reported in children with sustained hypoxia secondary to cyanotic congenital heart disease (CCHD). With this review, we report the clinical characteristics of these tumors in children with CCHD. The articles included in the present review were identified using PubMed through February 2019. A manual search of the references retrieved from relevant articles was also performed. Pheochromocytomas and paragangliomas (PPGL) in children are commonly associated with high-risk germline or somatic mutations. There is evidently a higher risk of tumorigenesis in children with CCHD as compared with the general pediatric population, even in the absence of susceptible gene mutations. This is due to molecular mechanisms involving the aberrant activation of hypoxia-response elements, likely secondary to sustained hypoxemia, resulting in tumorigenesis. Due to overlapping symptoms with CCHD, the diagnosis of PPGL may be delayed or missed in these patients. We studied all previously reported PPGL cases in children with CCHD and reviewed phenotypic and biochemical features to assess for contributing factors in tumorigenesis. Larger studies are needed to help determine other potential predisposing factors and to establish screening guidelines in this high-risk population. A delay in diagnosis of the PPGL tumors can lead to exacerbation of cardiac failure, and therefore early diagnosis and intervention may provide better outcomes in these patients, necessitating the need for regular surveillance. We recommend routine biochemical screening in patients with sustained hypoxia secondary to CCHD.
Collapse
Affiliation(s)
- Swashti Agarwal
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Ishita Jindal
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Andrea Balazs
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - David Paul
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
25
|
Liu Y, Liu L, Zhu F. Therapies targeting the signal pathways of pheochromocytoma and paraganglioma. Onco Targets Ther 2019; 12:7227-7241. [PMID: 31564906 PMCID: PMC6732510 DOI: 10.2147/ott.s219056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Pheochromocytoma and paraganglioma (PCC/PGL) are rare tumors that originate from adrenal or extra-adrenal chromaffin cells. A significant clinical manifestation of PCC/PGL is that the tumors release a large number of catecholamines continuously or intermittently, causing persistent or paroxysmal hypertension and multiple organ functions and metabolic disorders. Though majority of the tumors are non-metastatic, about 10% are metastatic tumors. Others even have estimated that the rate of metastasis may be as high as 26%. The disease is most common in individuals ranging from 20 to 50 years old and the age of onset strongly depends on the genetic background: patients with germline mutations in susceptible genes have an earlier presentation. Besides, there are no significant differences in the incidence between men and women. At present, traditional treatments, such as surgical treatment, radionuclide therapy, and chemotherapy are still prior choices. However, they all have several deficiencies so that the effects are not extremely significant. Contemporary studies have shown that hypoxia-associated signal pathway, associated with the cluster 1 genes of PCC/PGL, and increased kinase signal pathways, associated with the cluster 2 genes of PCC/PGL, are the two major pathways involving the molecular pathogenesis of PCC/PGL, indicating that PCC/PGL can be treated with targeted therapies in emerging trends. This article reviews the progress of molecular-targeted therapies for PCC/PGL.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Biochemistry and Molecular Biology, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Feizhou Zhu
- Department of Biochemistry and Molecular Biology, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
26
|
Guha A, Musil Z, Vícha A, Zelinka T, Pacák K, Astl J, Chovanec M. A systematic review on the genetic analysis of paragangliomas: primarily focused on head and neck paragangliomas. Neoplasma 2019; 66:671-680. [PMID: 31307198 PMCID: PMC6826254 DOI: 10.4149/neo_2018_181208n933] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Head and neck paragangliomas Paragangliomas and pheochromocytomas are rare, mostly benign neuroendocrine tumors, which are embryologically derived from neural crest cells of the autonomic nervous system. Paragangliomas are essentially the extra-adrenal counterparts of pheochromocytomas. As such this family of tumors can be subdivided into head and neck paragangliomas, pheochromocytomas and thoracic and abdominal extra-adrenal paragangliomas. Ten out of fifteen genes that contribute to the development of paragangliomas are more susceptible to the development of head and neck paragangliomas when mutated. Gene expression profiling revealed that pheochromocytomas and paragangliomas can be classified into two main clusters (C1 and C2) based on transcriptomes. These groups were defined according to their mutational status and as such strongly associated with specific tumorigenic pathways. The influence of the main genetic drivers on the somatic molecular phenotype was shown by DNA methylation and miRNA profiling. Certain subunits of succinate dehydrogenase (SDHx), von Hippel-Lindau (VHL) and transmembrane protein 127 (TMEM127) still have the highest impact on development of head and neck paragangliomas. The link between RAS proteins and the formation of pheochromocytoma and paragangliomas is clear due to the effect of receptor tyrosine-protein kinase (RET) and neurofibromatosis type 1 (NF1) in RAS signaling and recent discovery of the role of HRAS. The functions of MYC-associated factor X (MAX) and prolyl hydroxylase 2 (PHD2) mutations in the contribution to the pathogenesis of paragangliomas still remain unclear. Ongoing studies give us insight into the incidence of germline and somatic mutations, thus offering guidelines to early detection. Furthermore, these also show the risk of mistakenly assuming sporadic cases in the absence of definitive family history in head and neck paragangliomas.
Collapse
Affiliation(s)
- Anasuya Guha
- Department of Otorhinolaryngology, 3 Faculty of Medicine and University Hospital Kralovske Vinohrady, Charles University in Prague, Czech Republic
| | - Zdenek Musil
- Department of Biology and Medical Genetics, 1 Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic
| | - Aleš Vícha
- Department of Pediatric Hematology and Oncology, 2 Faculty of Medicine and University Hospital Motol, Charles University in Prague, Czech Republic
| | - Tomáš Zelinka
- Department of Endocrinology and Metabolism, 1 Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic
| | - Karel Pacák
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jaromir Astl
- Department of Otorhinolaryngology and Maxillofacial Surgery, 3 Faculty of Medicine and Military University Hospital, Charles University in Prague, Czech Republic
| | - Martin Chovanec
- Department of Otorhinolaryngology, 3 Faculty of Medicine and University Hospital Kralovske Vinohrady, Charles University in Prague, Czech Republic
| |
Collapse
|
27
|
Smestad JA, Maher LJ. Master regulator analysis of paragangliomas carrying SDHx, VHL, or MAML3 genetic alterations. BMC Cancer 2019; 19:619. [PMID: 31234811 PMCID: PMC6591808 DOI: 10.1186/s12885-019-5813-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/10/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Succinate dehydrogenase (SDH) loss and mastermind-like 3 (MAML3) translocation are two clinically important genetic alterations that correlate with increased rates of metastasis in subtypes of human paraganglioma and pheochromocytoma (PPGL) neuroendocrine tumors. Although hypotheses propose that succinate accumulation after SDH loss poisons dioxygenases and activates pseudohypoxia and epigenomic hypermethylation, it remains unclear whether these mechanisms account for oncogenic transcriptional patterns. Additionally, MAML3 translocation has recently been identified as a genetic alteration in PPGL, but is poorly understood. We hypothesize that a key to understanding tumorigenesis driven by these genetic alterations is identification of the transcription factors responsible for the observed oncogenic transcriptional changes. METHODS We leverage publicly-available human tumor gene expression profiling experiments (N = 179) to reconstruct a PPGL tumor-specific transcriptional network. We subsequently use the inferred transcriptional network to perform master regulator analyses nominating transcription factors predicted to control oncogenic transcription in specific PPGL molecular subtypes. Results are validated by analysis of an independent collection of PPGL tumor specimens (N = 188). We then perform a similar master regulator analysis in SDH-loss mouse embryonic fibroblasts (MEFs) to infer aspects of SDH loss master regulator response conserved across species and tissue types. RESULTS A small number of master regulator transcription factors are predicted to drive the observed subtype-specific gene expression patterns in SDH loss and MAML3 translocation-positive PPGL. Interestingly, although EPAS1 perturbation is detectible in SDH-loss and VHL-loss tumors, it is by no means the most potent factor driving observed patterns of transcriptional dysregulation. Analysis of conserved SDH-loss master regulators in human tumors and MEFs implicated ZNF423, a known modulator of retinoic acid response in neuroblastoma. Subsequent functional analysis revealed a blunted cell death response to retinoic acid in SDH-loss MEFs and blunted differentiation response in SDH-inhibited SH-SY5Y neuroblastoma cells. CONCLUSIONS The unbiased analyses presented here nominate specific transcription factors that are likely drivers of oncogenic transcription in PPGL tumors. This information has the potential to be exploited for targeted therapy. Additionally, the observation that SDH loss or inhibition results in blunted retinoic acid response suggests a potential developmental etiology for this tumor subtype.
Collapse
Affiliation(s)
- John A Smestad
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
28
|
Abstract
Significant advances in genomics and molecular genetics in recent years have reshaped the practice of endocrine pathology. Pan-genomic studies, including the pioneering ones on papillary thyroid carcinoma, phaeochromocytoma/paraganglioma, and adrenal cortical carcinoma from the Cancer Genome Atlas (TCGA) project, provided a comprehensive integrated genomic analysis of endocrine tumors into distinct molecularly defined subtypes. Better understanding of the molecular landscape and more accurate definition of biological behavior has been accordingly achieved. Nevertheless, how any of these advances are translated into routine practice still remains a challenge in the era of precision medicine. The challenge for modern pathology is to keep up the pace with scientific discoveries by integrating novel concepts in tumor classification, molecular genetics, prognostication, and theranostics. As an example, pathology plays a role in the identification of hereditary disease, while it offers the tools for complementing molecular genetics, for example, validation of variants of unknown significance deriving from targeted sequencing or whole exome/genome sequencing approach. Immunohistochemistry has arisen as a cost-effective strategy in the evaluation either of somatic mutations in tumors and/or germline mutations in patients with familial cancer syndromes. Herein, a comprehensive review focusing on novel and emerging biomarkers is presented in order pathologists and other endocrine-related specialists to remain updated and become aware of potential pitfalls and limitations in the field of endocrine pathology.
Collapse
|
29
|
Crona J, Lamarca A, Ghosal S, Welin S, Skogseid B, Pacak K. Genotype-phenotype correlations in pheochromocytoma and paraganglioma: a systematic review and individual patient meta-analysis. Endocr Relat Cancer 2019; 26:539-550. [PMID: 30893643 PMCID: PMC6717695 DOI: 10.1530/erc-19-0024] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
Abstract
Pheochromocytoma and paraganglioma (PPGL) can be divided into at least four molecular subgroups. Whether such categorizations are independent factors for prognosis or metastatic disease is unknown. We performed a systematic review and individual patient meta-analysis aiming to estimate if driver mutation status can predict metastatic disease and survival. Driver mutations were used to categorize patients according to three different molecular systems: two subgroups (SDHB mutated or wild type), three subgroups (pseudohypoxia, kinase signaling or Wnt/unknown) and four subgroups (tricarboxylic acid cycle, VHL/EPAS1, kinase signaling or Wnt/unknown). Twenty-one studies and 703 patients were analyzed. Multivariate models for association with metastasis showed correlation with SDHB mutation (OR 5.68 (95% CI 1.79-18.06)) as well as norepinephrine (OR 3.01 (95% CI 1.02-8.79)) and dopamine (OR 6.39 (95% CI 1.62-25.24)) but not to PPGL location. Other molecular systems were not associated with metastasis. In multivariate models for association with survival, age (HR 1.04 (95% CI 1.02-1.06)) and metastases (HR 6.13 (95% CI 2.86-13.13)) but neither paraganglioma nor SDHB mutation remained significant. Other molecular subgroups did not correlate with survival. We conclude that molecular categorization accordingly to SDHB provided independent information on the risk of metastasis. Driver mutations status did not correlate independently with survival. These data may ultimately be used to guide current and future risk stratification of PPGL.
Collapse
Affiliation(s)
- Joakim Crona
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185, Uppsala, Sweden
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, Room 1E-3140, Bethesda, MD, 20892, USA
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust (ENETS Centre of Excellence), Manchester, M20 4BX, UK
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, Room 1E-3140, Bethesda, MD, 20892, USA
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185, Uppsala, Sweden
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, Room 1E-3140, Bethesda, MD, 20892, USA
| |
Collapse
|
30
|
Molecular Alterations in Dog Pheochromocytomas and Paragangliomas. Cancers (Basel) 2019; 11:cancers11050607. [PMID: 31052272 PMCID: PMC6563419 DOI: 10.3390/cancers11050607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
8658860258318000Recently, genetic alterations in the genes encoding succinate dehydrogenase subunit B and D (SDHB and SDHD) were identified in pet dogs that presented with spontaneously arising pheochromocytomas (PCC) and paragangliomas (PGL; together PPGL), suggesting dogs might be an interesting comparative model for the study of human PPGL. To study whether canine PPGL resembled human PPGL, we investigated a series of 50 canine PPGLs by immunohistochemistry to determine the expression of synaptophysin (SYP), tyrosine hydroxylase (TH) and succinate dehydrogenase subunit A (SDHA) and B (SDHB). In parallel, 25 canine PPGLs were screened for mutations in SDHB and SDHD by Sanger sequencing. To detect large chromosomal alterations, single nucleotide polymorphism (SNP) arrays were performed for 11 PPGLs, including cases for which fresh frozen tissue was available. The immunohistochemical markers stained positive in the majority of canine PPGLs. Genetic screening of the canine tumors revealed the previously described variants in four cases; SDHB p.Arg38Gln (n = 1) and SDHD p.Lys122Arg (n = 3). Furthermore, the SNP arrays revealed large chromosomal alterations of which the loss of chromosome 5, partly homologous to human chromosome 1p and chromosome 11, was the most frequent finding (100% of the six cases with chromosomal alterations). In conclusion, canine and human PPGLs show similar genomic alterations, suggestive of common interspecies PPGL-related pathways.
Collapse
|
31
|
Ben Aim L, Pigny P, Castro-Vega LJ, Buffet A, Amar L, Bertherat J, Drui D, Guilhem I, Baudin E, Lussey-Lepoutre C, Corsini C, Chabrier G, Briet C, Faivre L, Cardot-Bauters C, Favier J, Gimenez-Roqueplo AP, Burnichon N. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J Med Genet 2019; 56:513-520. [DOI: 10.1136/jmedgenet-2018-105714] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 01/29/2023]
Abstract
BackgroundKnowing the genetic status of patients affected by paragangliomas and pheochromocytomas (PPGL) is important for the guidance of their management and their relatives. Our objective was to improve the diagnostic performances of PPGL genetic testing by next-generation sequencing (NGS).MethodsWe developed a custom multigene panel, which includes 17 PPGL genes and is compatible with both germline and tumour DNA screening. The NGS assay was first validated in a retrospective cohort of 201 frozen tumour DNAs and then applied prospectively to 623 DNAs extracted from leucocytes, frozen or paraffin-embedded PPGL tumours.ResultsIn the retrospective cohort, the sensitivity of the NGS assay was evaluated at 100% for point and indels mutations and 86% for large rearrangements. The mutation rate was re-evaluated from 65% (132/202) to 78% (156/201) after NGS analysis. In the prospective cohort, NGS detected not only germline and somatic mutations but also co-occurring variants and mosaicism. A mutation was identified in 74% of patients for whom both germline and tumour DNA were available.ConclusionThe analysis of 824 DNAs from patients with PPGL demonstrated that NGS assay significantly improves the performances of PPGL genetic testing compared with conventional methods, increasing the rate of identified mutations and identifying rare genetic mechanisms.
Collapse
|
32
|
Bernardo-Castiñeira C, Sáenz-de-Santa-María I, Valdés N, Astudillo A, Balbín M, Pitiot AS, Jiménez-Fonseca P, Scola B, Tena I, Molina-Garrido MJ, Sevilla MA, Beristein E, Forga L, Villabona C, Oriola J, Halperin I, Suarez C, Chiara MD. Clinical significance and peculiarities of succinate dehydrogenase B and hypoxia inducible factor 1α expression in parasympathetic versus sympathetic paragangliomas. Head Neck 2018; 41:79-91. [PMID: 30549360 DOI: 10.1002/hed.25386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/22/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Succinate dehydrogenase subunit B (SDHB) immunohistochemistry was considered a valuable tool to identify patients with inherited paraganglioma/pheochromocytoma (PGL/PCC). However, previous studies jointly analyzed 2 related but clinically distinct entities, parasympathetic head and neck paragangliomas (HNPGLs) and sympathetic PCCs/PGLs. Additionally, a role for hypoxia inducible factor-1α (HIF-1α) as a biomarker for succinate dehydrogenase (SDHx)-mutated tumors has not been studied. Here, we evaluated the utility of SDHB/HIF-1α proteins in HNPGLs and PCCs/PGLs as clinically useful biomarkers. METHODS The SDHB/succinate dehydrogenase subunit A (SDHA)/HIF-1α immunohistochemistry analysis was performed in 158 genetically defined patients. RESULTS Similarly to PCCs/PGLs, SDHB immune-negativity correlated with SDHx-mutations in HNPGLs (P < .0001). The HIF-1α stabilization was associated with SDHx-mutations in HNPGLs (P = .020), not in PCCs/PGLs (P = .319). However, 25% of SDHx-HNPGLs lacked HIF-1α positive cells. CONCLUSION As in PCCs/PGLs, SDHB immunohistochemistry in HNPGLs is a valuable method for identification of candidates for SDHx-genetic testing. On the contrary, although SDHx mutations may favor HIF-1α stabilization in HNPGLs, this is not a clinically useful biomarker.
Collapse
Affiliation(s)
- Cristóbal Bernardo-Castiñeira
- Institute of Sanitary Research of Asturias, Institute of Oncology of Asturias (IUOPA), CIBERONC, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Inés Sáenz-de-Santa-María
- Institute of Sanitary Research of Asturias, Institute of Oncology of Asturias (IUOPA), CIBERONC, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Nuria Valdés
- Service of Endocrinology and Nutrition, Hospital Central de Asturias, Oviedo, Spain
| | - Aurora Astudillo
- Service of Pathology, Hospital Central de Asturias, Oviedo, Spain
| | - Milagros Balbín
- Service of Molecular Oncology, Hospital Central de Asturias, Oviedo, Spain
| | - Ana S Pitiot
- Service of Molecular Oncology, Hospital Central de Asturias, Oviedo, Spain
| | | | - Bartolomé Scola
- Service of Otorhinolaryngology, Hospital Gregorio Marañón, Madrid, Spain
| | - Isabel Tena
- Service of Medical Oncology, Hospital Provincial de Castellón, Castellón, Spain
| | | | | | - Elena Beristein
- Laboratory of Molecular Genetic, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Lluís Forga
- Service of Endocrinology and Nutrition, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Carles Villabona
- Service of Endocrinology and Nutrition, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Josep Oriola
- Laboratory of Biochemistry and Molecular Genetics and Endocrinology and Nutrition Service, Hospital Clinic, Barcelona, Spain
| | - Irene Halperin
- Laboratory of Biochemistry and Molecular Genetics and Endocrinology and Nutrition Service, Hospital Clinic, Barcelona, Spain
| | - Carlos Suarez
- Service of Otorhinolaryngology, Hospital Central de Asturias, Oviedo, Spain
| | - María-Dolores Chiara
- Institute of Sanitary Research of Asturias, Institute of Oncology of Asturias (IUOPA), CIBERONC, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
33
|
Noë M, Pea A, Luchini C, Felsenstein M, Barbi S, Bhaijee F, Yonescu R, Ning Y, Adsay NV, Zamboni G, Lawlor RT, Scarpa A, Offerhaus GJA, Brosens LAA, Hruban RH, Roberts NJ, Wood LD. Whole-exome sequencing of duodenal neuroendocrine tumors in patients with neurofibromatosis type 1. Mod Pathol 2018; 31:1532-1538. [PMID: 29849115 PMCID: PMC6168403 DOI: 10.1038/s41379-018-0082-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a hereditary cancer predisposition syndrome characterized by frequent cutaneous and nervous system abnormalities. Patients with NF1 also have an increased prevalence of multiple gastrointestinal and peripancreatic neoplasms-neuroendocrine tumors of the ampulla that express somatostatin are particularly characteristic of NF1. In this study, we characterize the genetic alterations of a clinically well-characterized cohort of six NF1-associated duodenal neuroendocrine tumors using whole-exome sequencing. We identified inactivating somatic mutations in the NF1 gene in three of six tumors; the only other gene altered in more than one tumor was IFNB1. Copy number analysis revealed deletion/loss of heterozygosity of chromosome 22 in three of six patients. Analysis of germline variants revealed germline deleterious NF1 variants in four of six patients, as well as deleterious variants in other tumor suppressor genes in two of four patients with deleterious NF1 variants. Taken together, these data confirm the importance of somatic inactivation of the wild-type NF1 allele in the formation of NF1-associated duodenal neuroendocrine tumors and suggest that loss of chromosome 22 is important in at least a subset of cases. However, we did not identify any genes altered in the majority of NF1-associated duodenal neuroendocrine tumors that uniquely characterize the genomic landscape of this tumor. Still, the genetic alterations in these tumors are distinct from sporadic neuroendocrine tumors occurring at these sites, highlighting that unique genetic alterations drive syndromic tumors.
Collapse
Affiliation(s)
- Michaël Noë
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonio Pea
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Matthäus Felsenstein
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stefano Barbi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Feriyl Bhaijee
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raluca Yonescu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Ning
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Giuseppe Zamboni
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy,Sacro Cuore Don Calabria Hospital, 37024 Negrar, Verona, Italy
| | - Rita T. Lawlor
- ARC-Net Research Center, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy,ARC-Net Research Center, University of Verona, Verona, Italy
| | - G. Johan A. Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lodewijk A. A. Brosens
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ralph H. Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J. Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D. Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Whole Exome Sequencing Uncovers Germline Variants of Cancer-Related Genes in Sporadic Pheochromocytoma. Int J Genomics 2018; 2018:6582014. [PMID: 30211214 PMCID: PMC6120303 DOI: 10.1155/2018/6582014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Background Pheochromocytomas (PCCs) show the highest degree of heritability in human neoplasms. However, despite the wide number of alterations until now reported in PCCs, it is likely that other susceptibility genes remain still unknown, especially for those PCCs not clearly syndromic. Methods Whole exome sequencing of tumor DNA was performed on a set of twelve PCCs clinically defined as sporadic. Results About 50% of PCCs examined had somatic mutations on the known susceptibility VHL, NF1, and RET genes. In addition to these driver events, mutations on SYNE1, ABCC10, and RAD54B genes were also detected. Moreover, extremely rare germline variants were present in half of the sporadic PCC samples analyzed, in particular variants of MAX and SAMD9L were detected in the germline of cases wild-type for mutations in the known susceptibility genes. Conclusions Additional somatic passenger mutations can be associated with known susceptibility VHL, NF1, and RET genes in PCCs, and a wide number of germline variants with still unknown clinical significance can be detected in these patients. Therefore, many efforts should be aimed to better define the pathogenetic role of all these germline variants for discovering novel potential therapeutic targets for this disease still orphan of effective treatments.
Collapse
|
35
|
Welander J, Łysiak M, Brauckhoff M, Brunaud L, Söderkvist P, Gimm O. Activating FGFR1 Mutations in Sporadic Pheochromocytomas. World J Surg 2018; 42:482-489. [PMID: 29159601 PMCID: PMC5762800 DOI: 10.1007/s00268-017-4320-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction Pheochromocytomas are neuroendocrine tumors of the adrenal glands. Up to 40% of the cases are caused by germline mutations in one of at least 15 susceptibility genes, making them the human neoplasms with the highest degree of heritability. Recurrent somatic alterations are found in about 50% of the more common sporadic tumors with NF1 being the most common mutated gene (20–25%). In many sporadic tumors, however, a genetic explanation is still lacking. Materials and methods We investigated the genomic landscape of sporadic pheochromocytomas with whole-exome sequencing of 16 paired tumor and normal DNA samples and extended confirmation analysis in 2 additional cohorts comprising a total of 80 sporadic pheochromocytomas. Results We discovered on average 33 non-silent somatic variants per tumor. One of the recurrently mutated genes was FGFR1, encoding the fibroblast growth factor receptor 1, which was recently revealed as an oncogene in pediatric brain tumors. Including a subsequent analysis of a larger cohort, activating FGFR1 mutations were detected in three of 80 sporadic pheochromocytomas (3.8%). Gene expression microarray profiling showed that these tumors clustered with NF1-, RET,- and HRAS-mutated pheochromocytomas, indicating activation of the MAPK and PI3K-AKT signal transduction pathways. Conclusion Besides RET and HRAS, FGFR1 is only the third protooncogene found to be recurrently mutated in pheochromocytomas. The results advance our biological understanding of pheochromocytoma and suggest that somatic FGFR1 activation is an important event in a subset of sporadic pheochromocytomas. Electronic supplementary material The online version of this article (10.1007/s00268-017-4320-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenny Welander
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 58185, Linköping, Sweden
| | - Małgorzata Łysiak
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 58185, Linköping, Sweden
| | - Michael Brauckhoff
- Department of Surgery, Haukeland University Hospital, 5021, Bergen, Norway.,Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
| | - Laurent Brunaud
- Department of Digestive, Hepato-Biliary and Endocrine Surgery, CHU Nancy - Hospital Brabois Adultes, University de Lorraine, 54511, Vandoeuvre-les-Nancy, France
| | - Peter Söderkvist
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 58185, Linköping, Sweden.
| | - Oliver Gimm
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 58185, Linköping, Sweden.,Department of Surgery, County Council of Östergötland, 58185, Linköping, Sweden
| |
Collapse
|
36
|
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors arising in the medullae of the adrenal glands or in paraganglia. The knowledge of the tumor biology of these lesions has increased dramatically during the past two decades and more than a dozen recurrently mutated genes have been identified. Different clusters have been described that share epigenetic signatures. Mutations in the succinate dehydrogenase complex subunit genes play a pivotal role in reprogramming the epigenetic state of these tumors by inhibiting epigenetic regulators such as TET enzymes and histone demethylases. Another subgroup of tumors carries hypomethylated genomes, and overexpression of several micro-RNAs has been described. While much remains to be investigated regarding the epigenetics of PPGLs, it is clear that it plays an important role in PPGL biology.
Collapse
Affiliation(s)
- Peyman Björklund
- Experimental Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Samuel Backman
- Experimental Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
Snezhkina AV, Lukyanova EN, Kalinin DV, Pokrovsky AV, Dmitriev AA, Koroban NV, Pudova EA, Fedorova MS, Volchenko NN, Stepanov OA, Zhevelyuk EA, Kharitonov SL, Lipatova AV, Abramov IS, Golovyuk AV, Yegorov YE, Vishnyakova KS, Moskalev AA, Krasnov GS, Melnikova NV, Shcherbo DS, Kiseleva MV, Kaprin AD, Alekseev BY, Zaretsky AR, Kudryavtseva AV. Exome analysis of carotid body tumor. BMC Med Genomics 2018; 11:17. [PMID: 29504908 PMCID: PMC5836820 DOI: 10.1186/s12920-018-0327-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Carotid body tumor (CBT) is a form of head and neck paragangliomas (HNPGLs) arising at the bifurcation of carotid arteries. Paragangliomas are commonly associated with germline and somatic mutations involving at least one of more than thirty causative genes. However, the specific functionality of a number of these genes involved in the formation of paragangliomas has not yet been fully investigated. Methods Exome library preparation was carried out using Nextera® Rapid Capture Exome Kit (Illumina, USA). Sequencing was performed on NextSeq 500 System (Illumina). Results Exome analysis of 52 CBTs revealed potential driver mutations (PDMs) in 21 genes: ARNT, BAP1, BRAF, BRCA1, BRCA2, CDKN2A, CSDE1, FGFR3, IDH1, KIF1B, KMT2D, MEN1, RET, SDHA, SDHB, SDHC, SDHD, SETD2, TP53BP1, TP53BP2, and TP53I13. In many samples, more than one PDM was identified. There are also 41% of samples in which we did not identify any PDM; in these cases, the formation of CBT was probably caused by the cumulative effect of several not highly pathogenic mutations. Estimation of average mutation load demonstrated 6–8 mutations per megabase (Mb). Genes with the highest mutation rate were identified. Conclusions Exome analysis of 52 CBTs for the first time revealed the average mutation load for these tumors and also identified potential driver mutations as well as their frequencies and co-occurrence with the other PDMs. Electronic supplementary material The online version of this article (10.1186/s12920-018-0327-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Elena N Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anatoly V Pokrovsky
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda V Koroban
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda N Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Oleg A Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ekaterina A Zhevelyuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Khava S Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Shcherbo
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marina V Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
38
|
Gieldon L, Masjkur JR, Richter S, Därr R, Lahera M, Aust D, Zeugner S, Rump A, Hackmann K, Tzschach A, Januszewicz A, Prejbisz A, Eisenhofer G, Schrock E, Robledo M, Klink B. Next-generation panel sequencing identifies NF1 germline mutations in three patients with pheochromocytoma but no clinical diagnosis of neurofibromatosis type 1. Eur J Endocrinol 2018; 178:K1-K9. [PMID: 29158289 DOI: 10.1530/eje-17-0714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Our objective was to improve molecular diagnostics in patients with hereditary pheochromocytoma and paraganglioma (PPGL) by using next-generation sequencing (NGS) multi-gene panel analysis. Derived from this study, we here present three cases that were diagnosed with NF1 germline mutations but did not have a prior clinical diagnosis of neurofibromatosis type 1 (NF1). DESIGN We performed genetic analysis of known tumor predisposition genes, including NF1, using a multi-gene NGS enrichment-based panel applied to a total of 1029 PPGL patients. We did not exclude genes known to cause clinically defined syndromes such as NF1 based on missing phenotypic expression as is commonly practiced. METHODS Genetic analysis was performed using NGS (TruSight Cancer Panel/customized panel by Illumina) for analyzing patients' blood and tumor samples. Validation was carried out by Sanger sequencing. RESULTS Within our cohort, three patients, who were identified to carry pathogenic NF1 germline mutations, attracted attention, since none of the patients had a clinical suspicion of NF1 and one of them was initially suspected to have MEN2A syndrome due to co-occurrence of a medullary thyroid carcinoma. In these cases, one splice site, one stop and one frameshift mutation in NF1 were identified. CONCLUSIONS Since phenotypical presentation of NF1 is highly variable, we suggest analysis of the NF1 gene also in PPGL patients who do not meet diagnostic NF1 criteria. Co-occurrence of medullary thyroid carcinoma and PPGL was found to be a clinical decoy in NF1 diagnostics. These observations underline the value of multi-gene panel NGS for PPGL patients.
Collapse
Affiliation(s)
- Laura Gieldon
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Partner Site Dresden, Dresden, Germany
| | - Jimmy Rusdian Masjkur
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Roland Därr
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcos Lahera
- Endocrinology and Nutrition Department, La Princesa University Hospital, Madrid, Spain
| | - Daniela Aust
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Partner Site Dresden, Dresden, Germany
- Institute for Pathology, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- Tumor- and Normal Tissuebank of the University Cancer Center/NCT-Standort Dresden, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Silke Zeugner
- Institute for Pathology, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Partner Site Dresden, Dresden, Germany
| | - Andreas Tzschach
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | | | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Evelin Schrock
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Partner Site Dresden, Dresden, Germany
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Partner Site Dresden, Dresden, Germany
| |
Collapse
|
39
|
|
40
|
Tabebi M, Söderkvist P, Jensen LD. Hypoxia Signaling and Circadian Disruption in and by Pheochromocytoma. Front Endocrinol (Lausanne) 2018; 9:612. [PMID: 30386298 PMCID: PMC6198511 DOI: 10.3389/fendo.2018.00612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Abstract
Disruption of the daily (i.e., circadian) rhythms of cell metabolism, proliferation and blood perfusion is a hallmark of many cancer types, perhaps most clearly exemplified by the rare but detrimental pheochromocytomas. These tumors arise from genetic disruption of genes critical for hypoxia signaling, such as von Hippel-Lindau and hypoxia-inducible factor-2 or cellular metabolism, such as succinate dehydrogenase, which in turn impacts on the cellular circadian clock function by interfering with the Bmal1 and/or Clock transcription factors. While pheochromocytomas are often non-malignant, the resulting changes in cellular physiology are coupled to de-regulated production of catecholamines, which in turn disrupt circadian blood pressure variation and therefore circadian entrainment of other tissues. In this review we thoroughly discuss the molecular and physiological interplay between hypoxia signaling and the circadian clock in pheochromocytoma, and how this underlies endocrine disruption leading to loss of circadian blood pressure variation in the affected patients. We furthermore discuss potential avenues for targeting these tumor-specific pathophysiological mechanisms therapeutically in the future.
Collapse
Affiliation(s)
- Mouna Tabebi
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lasse D. Jensen
- Department of Medicine and Health Science, Linköping University, Linköping, Sweden
- *Correspondence: Lasse D. Jensen
| |
Collapse
|
41
|
Jimenez C. Treatment for Patients With Malignant Pheochromocytomas and Paragangliomas: A Perspective From the Hallmarks of Cancer. Front Endocrinol (Lausanne) 2018; 9:277. [PMID: 29892268 PMCID: PMC5985332 DOI: 10.3389/fendo.2018.00277] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Malignant pheochromocytomas and paragangliomas affect a very small percentage of the general population. A substantial number of these patients have a hereditary predisposition for the disease and consequently, bear the risk of developing these tumors throughout their entire lives. It is, however, unclear why some patients with no hereditary predisposition develop these tumors, which frequently share a similar molecular phenotype with their hereditary counterparts. Both hereditary and sporadic tumors usually appear at an early age, and affected people often die before reaching their expected lifespans. Unfortunately, there is currently no systemic therapy approved for patients with this orphan disease. Therefore, pheochromocytomas and paragangliomas are very challenging malignancies. The recognition of genetic and molecular abnormalities responsible for the development of these tumors as well as the identification of effective therapies for other malignancies that share a similar pathogenesis is leading to the development of exciting clinical trials. Tyrosine kinase inhibitors, radiopharmaceutical agents, and immunotherapy are currently under evaluation in prospective clinical trials. A phase 2 clinical trial of the highly specific metaiodobenzylguanidine, iobenguane 131I, has provided impressive results; this radiopharmaceutical agent may become the first approved systemic therapy for patients with malignant pheochromocytoma and paraganglioma by the United States Food and Drug Administration. Nevertheless, systemic therapies are still not able to cure the disease. This review will discuss the development of systemic therapeutic approaches using the hallmarks of cancer as a framework. This approach will help the reader to understand where research efforts currently stand and what the future for this difficult field may be.
Collapse
|
42
|
Abstract
Neuroendocrine tumours (NETs) are a heterogenous group of tumours arising from neuroendocrine cells in several sites around the body. They include tumours of the gastroenteropancreatic system, phaeochromocytoma and paraganglioma and medullary thyroid cancer. In recent years, it has become increasingly apparent that a number of these tumours arise as a result of germline genetic mutations and are inherited in an autosomal dominant pattern. The number of genes implicated is increasing rapidly. Identifying which patients are likely to have a germline mutation enables clinicians to counsel patients adequately about their future disease risk, and allows for earlier detection of at-risk patients through family screening. The institution of screening and surveillance programmes may in turn lead to a major shift in presentation patterns for some of these tumours. In this review, we examine the features which may lead a clinician to suspect that a patient may have an inherited cause of a NET and we outline which underlying conditions should be suspected. We also discuss what type of screening may be appropriate in a variety of situations.
Collapse
Affiliation(s)
- Triona O'Shea
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Maralyn Druce
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
43
|
Davison AS, Jones DM, Ruthven S, Helliwell T, Shore SL. Clinical evaluation and treatment of phaeochromocytoma. Ann Clin Biochem 2017; 55:34-48. [DOI: 10.1177/0004563217739931] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phaeochromocytoma and extra adrenal paraganglioma are rare neuroendocrine tumours and have the potential to secrete adrenaline, noradrenaline and dopamine causing a myriad of clinical symptoms. Prompt diagnosis is essential for clinicians and requires a multidisciplinary specialist approach for the clinical and laboratory investigation, diagnosis, treatment and follow-up of patients. This paper is an integrated review of the clinical and laboratory evaluation and treatment of patients suspected to have phaeochromocytoma or paraganglioma, highlighting recent developments and best practices from recent published clinical guidelines.
Collapse
Affiliation(s)
- Andrew S Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Danielle M Jones
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - Stuart Ruthven
- Department of Cellular Pathology, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - Timothy Helliwell
- Department of Cellular Pathology, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| | - Susannah L Shore
- Department of Endocrine Surgery, Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, UK
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The purpose of this manuscript is to review the progress in the field of therapeutics for malignant pheochromocytomas and sympathetic paraganglioma (MPPG) over the past 5 years. RECENT FINDINGS The manuscript will describe the clinical predictors of survivorship and their influence on the first TNM staging classification for pheochromocytomas and sympathetic paragangliomas, the treatment of hormonal complications, and the rationale that supports the resection of the primary tumor and metastases in patients with otherwise incurable disease. Therapeutic options for patients with bone metastasis to the spine will be presented. The manuscript will also review chemotherapy and propose a maintenance regimen with dacarbazine for patients initially treated with cyclophosphamide, vincristine, and dacarbazine. Finally, the manuscript will review preliminary results of several phase 2 clinical trials of novel radiopharmaceutical agents and tyrosine kinase inhibitors. MPPGs are very rare neuroendocrine tumors. MPPGs are usually characterized by a large tumor burden, excessive secretion of catecholamines, and decreased overall survival. Recent discoveries have enhanced our knowledge of the pathogenesis and phenotypes of MPPG. This knowledge is leading to a better understanding of the indications and limitations of the currently available localized and systemic therapies as well as the development of phase 2 clinical trials for novel medications.
Collapse
|
45
|
ARHI is a novel epigenetic silenced tumor suppressor in sporadic pheochromocytoma. Oncotarget 2017; 8:86325-86338. [PMID: 29156798 PMCID: PMC5689688 DOI: 10.18632/oncotarget.21149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
Pheochromocytoma (PCC) is related to germline mutations in 12 susceptibility genes. Although comparative genomic hybridization array has revealed some putative tumor suppressor genes on the short arm of chromosome 1 that are likely to be involved in PCC tumorigenesis, the molecules involved, except for those encoded by known susceptibility genes, have not been found in the generation of sporadic tumors. In the present work, we first identified that the unmethylated allele of Aplasia Ras homolog member I (ARHI) was deleted in most PCC tumors which retained a hypermethylated copy, while its mRNA level was significantly correlated with the unmethylated copy. De-methylation experiments confirmed that expression of ARHI was also regulated by the methylation level of the remaining allele. Furthermore, ARHI overexpression inhibited cell proliferation, with cell cycle arrest and induction of apoptosis, in ARHI-negative primary human PCC cells, whereas knockdown of ARHI demonstrated the opposite effect in ARHI-positive primary human PCC cells. Finally, we demonstrated that ARHI has the ability to suppress pAKT and pErK1/2, to promote the expression of p21Waf1/Cip1 and p27Kip1, and also to increase p27Kip1 protein stability. In summary, ARHI was silenced or downregulated in PCC tissues harboring only one hypermethylated allele. ARHI contributes to tumor suppression through inhibition of PI3K/AKT and MAKP/ERK pathways, to upregulate cell cycle inhibitors such as p27Kip1. We therefore reasoned that ARHI is a novel epigenetic silenced tumor suppressor gene on chromosome 1p that is involved in sporadic PCC tumorigenesis.
Collapse
|
46
|
Seidel E, Scholl UI. Genetic mechanisms of human hypertension and their implications for blood pressure physiology. Physiol Genomics 2017; 49:630-652. [PMID: 28887369 DOI: 10.1152/physiolgenomics.00032.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypertension, or elevated blood pressure, constitutes a major public health burden that affects more than 1 billion people worldwide and contributes to ~9 million deaths annually. Hereditary factors are thought to contribute to up to 50% of interindividual blood pressure variability. Blood pressure in the general population approximately shows a normal distribution and is thought to be a polygenic trait. In rare cases, early-onset hypertension or hypotension are inherited as Mendelian traits. The identification of the underlying Mendelian genes and variants has contributed to our understanding of the physiology of blood pressure regulation, emphasizing renal salt handling and the renin angiotensin aldosterone system as players in the determination of blood pressure. Genome-wide association studies (GWAS) have revealed more than 100 variants that are associated with blood pressure, typically with small effect sizes, which cumulatively explain ~3.5% of blood pressure trait variability. Several GWAS associations point to a role of the vasculature in the pathogenesis of hypertension. Despite these advances, the majority of the genetic contributors to blood pressure regulation are currently unknown; whether large-scale exome or genome sequencing studies will unravel these factors remains to be determined.
Collapse
Affiliation(s)
- Eric Seidel
- Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ute I Scholl
- Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Abstract
The fourth edition of the World Health Organization (WHO) classification of endocrine tumours contains substantial new findings for the adrenal tumours. The tumours are presented in two chapters labelled as "Tumours of the adrenal cortex" and "Tumours of the adrenal medulla and extra-adrenal paraganglia." Tumours of the adrenal cortex are classified as cortical carcinoma, cortical adenoma, sex cord stromal tumours, adenomatoid tumour, mesenchymal and stromal tumours (myelolipoma and schwannoma), haematological tumours, and secondary tumours. Amongst them, schwannoma and haematological tumours are newly documented. The major updates in adrenal cortical lesions are noted in the genetics of the cortical carcinoma and cortical adenoma based on the data from The Cancer Genome Atlas (TCGA). Also, a system for differentiation of oncocytoma from oncocytic cortical carcinoma is adopted. Tumours of the adrenal medulla and extra-adrenal paraganglia comprise pheochromocytoma, paraganglioma (head and neck paraganglioma and sympathetic paraganglioma), neuroblastic tumours (neuroblastoma, nodular ganglioneuroblastoma, intermixed ganglioneuroblastoma, and ganglioneuroma), composite pheochromocytoma, and composite paraganglioma. In this group, neuroblastic tumours are newly included in the classification. The clinical features, histology, associated pathologies, genetics, and predictive factors of pheochromocytoma and paraganglioma are the main changes introduced in this chapter of WHO classification of endocrine tumours. The term "metastatic pheochromocytoma/paraganglioma" is used to replace "malignant pheochromocytoma/paraganglioma." Also, composite pheochromocytoma and composite paraganglioma are now documented in separate sections instead of one. Overall, the new classification incorporated new data on pathology, clinical behaviour, and genetics of the adrenal tumours that are important for current management of patients with these tumours.
Collapse
Affiliation(s)
- Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia.
| |
Collapse
|
48
|
Evenepoel L, Helaers R, Vroonen L, Aydin S, Hamoir M, Maiter D, Vikkula M, Persu A. KIF1B and NF1 are the most frequently mutated genes in paraganglioma and pheochromocytoma tumors. Endocr Relat Cancer 2017; 24:L57-L61. [PMID: 28515046 DOI: 10.1530/erc-17-0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Lucie Evenepoel
- Pole of Cardiovascular ResearchInstitut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Human Molecular Geneticsde Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Raphaël Helaers
- Human Molecular Geneticsde Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laurent Vroonen
- Department of EndocrinologyCentre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège, Belgium
| | - Selda Aydin
- Pathology DepartmentCliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Marc Hamoir
- Otolaryngology DepartmentCliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Dominique Maiter
- Endocrinology DepartmentCliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Geneticsde Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Alexandre Persu
- Pole of Cardiovascular ResearchInstitut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Cardiology DepartmentCliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
49
|
Abstract
Background Neurofibromatosis type 1 (NF1: Online Mendelian Inheritance in Man (OMIM) #162200) is an autosomal dominantly inherited tumour predisposition syndrome. Heritable constitutional mutations in the NF1 gene result in dysregulation of the RAS/MAPK pathway and are causative of NF1. The major known function of the NF1 gene product neurofibromin is to downregulate RAS. NF1 exhibits variable clinical expression and is characterized by benign cutaneous lesions including neurofibromas and café-au-lait macules, as well as a predisposition to various types of malignancy, such as breast cancer and leukaemia. However, acquired somatic mutations in NF1 are also found in a wide variety of malignant neoplasms that are not associated with NF1. Main body Capitalizing upon the availability of next-generation sequencing data from cancer genomes and exomes, we review current knowledge of somatic NF1 mutations in a wide variety of tumours occurring at a number of different sites: breast, colorectum, urothelium, lung, ovary, skin, brain and neuroendocrine tissues, as well as leukaemias, in an attempt to understand their broader role and significance, and with a view ultimately to exploiting this in a diagnostic and therapeutic context. Conclusion As neurofibromin activity is a key to regulating the RAS/MAPK pathway, NF1 mutations are important in the acquisition of drug resistance, to BRAF, EGFR inhibitors, tamoxifen and retinoic acid in melanoma, lung and breast cancers and neuroblastoma. Other curiosities are observed, such as a high rate of somatic NF1 mutation in cutaneous melanoma, lung cancer, ovarian carcinoma and glioblastoma which are not usually associated with neurofibromatosis type 1. Somatic NF1 mutations may be critical drivers in multiple cancers. The mutational landscape of somatic NF1 mutations should provide novel insights into our understanding of the pathophysiology of cancer. The identification of high frequency of somatic NF1 mutations in sporadic tumours indicates that neurofibromin is likely to play a critical role in development, far beyond that evident in the tumour predisposition syndrome NF1.
Collapse
|
50
|
Toledo RA. Genetics of Pheochromocytomas and Paragangliomas: An Overview on the Recently Implicated Genes MERTK, MET, Fibroblast Growth Factor Receptor 1, and H3F3A. Endocrinol Metab Clin North Am 2017; 46:459-489. [PMID: 28476232 DOI: 10.1016/j.ecl.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic studies conducted by different centers have uncovered various new genes mutated in pheochromocytomas and paragangliomas (PPGLs) at germline, mosaic, and/or somatic levels, greatly expanding our knowledge of the genetic events occurring in these tumors. The current review focuses on very new findings and discusses the previously not recognized role of MERTK, MET, fibroblast growth factor receptor 1, and H3F3A genes in syndromic and nonsyndromic PPGLs. These 4 new genes were selected because although their association with PPGLs is very recent, mounting evidence was generated that rapidly consolidated the prominence of these genes in the molecular pathogenesis of PPGLs.
Collapse
Affiliation(s)
- Rodrigo Almeida Toledo
- Division of Hematology and Medical Oncology, Department of Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Dr, San Antonio, TX 78229, USA; Clinical Research Program, Spanish National Cancer Research Centre, CNIO, Calle de Melchor Fernández Almagro, 3, Madrid 28029, Spain.
| |
Collapse
|