1
|
Saba KH, Difilippo V, Styring E, Nilsson J, Magnusson L, van den Bos H, Wardenaar R, Spierings DCJ, Foijer F, Nathrath M, Haglund de Flon F, Baumhoer D, Nord KH. CDK4 is co-amplified with either TP53 promoter gene fusions or MDM2 through distinct mechanisms in osteosarcoma. NPJ Genom Med 2024; 9:42. [PMID: 39322633 PMCID: PMC11424644 DOI: 10.1038/s41525-024-00430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Amplification of the MDM2 and CDK4 genes on chromosome 12 is commonly associated with low-grade osteosarcomas. In this study, we conducted high-resolution genomic and transcriptomic analyses on 33 samples from 25 osteosarcomas, encompassing both high- and low-grade cases with MDM2 and/or CDK4 amplification. We discerned four major subgroups, ranging from nearly intact genomes to heavily rearranged ones, each harbouring CDK4 and MDM2 amplification or CDK4 amplification with TP53 structural alterations. While amplicons involving MDM2 exhibited signs of an initial chromothripsis event, no evidence of chromothripsis was found in TP53-rearranged cases. Instead, the initial disruption of the TP53 locus led to co-amplification of the CDK4 locus. Additionally, we observed recurring promoter swapping events involving the regulatory regions of the FRS2, PLEKHA5, and TP53 genes. These events resulted in ectopic expression of partner genes, with the ELF1 gene being upregulated by the FRS2 and TP53 promoter regions in two distinct cases.
Collapse
Affiliation(s)
- Karim H Saba
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Valeria Difilippo
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Emelie Styring
- Department of Orthopedics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Jenny Nilsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Linda Magnusson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Michaela Nathrath
- Children's Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany
| | - Felix Haglund de Flon
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Daniel Baumhoer
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Karolin H Nord
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Tolomeo D, Agostini A, Macchia G, L'Abbate A, Severgnini M, Cifola I, Frassanito MA, Racanelli V, Solimando AG, Haglund F, Mertens F, Storlazzi CT. BL1391: an established cell line from a human malignant peripheral nerve sheath tumor with unique genomic features. Hum Cell 2020; 34:238-245. [PMID: 32856169 DOI: 10.1007/s13577-020-00418-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors, accounting for around 5% of all soft tissue sarcomas. A better understanding of the pathogenesis of these tumors and the development of effective treatments are needed. In this context, established tumor cell lines can be very informative, as they may be used for in-depth molecular analyses and improvement of treatment strategies. Here, we present the genomic and transcriptomic profiling analysis of a MPNST cell line (BL1391) that was spontaneously established in our laboratory from a primary tumor that had not been exposed to genotoxic treatment. This cell line shows peculiar genetic features, such as a large marker chromosome composed of high-copy number amplifications of regions from chromosomes 1 and 11 with an embedded neocentromere. Moreover, the transcriptome profiling revealed the presence of several fusion transcripts involving the CACHD1, TNMA4, MDM4, and YAP1 genes, all of which map to the amplified regions of the marker. BL1391 could be a useful tool to study genomic amplifications and neocentromere seeding in MPNSTs and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Via G. Orabona no. 4, 70125, Bari, Italy
| | - Antonio Agostini
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Via G. Orabona no. 4, 70125, Bari, Italy
| | - Alberto L'Abbate
- Department of Biology, University of Bari "Aldo Moro", Via G. Orabona no. 4, 70125, Bari, Italy.,Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council (IBIOM-CNR), 70125, Bari, Italy
| | - Marco Severgnini
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, 20090, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, 20090, Milan, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124, Bari, Italy.,IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Felix Haglund
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Mertens
- Department of Clinical Genetics, Lund University and Skåne University Hospital, 221 85, Lund, Sweden
| | - Clelia Tiziana Storlazzi
- Department of Biology, University of Bari "Aldo Moro", Via G. Orabona no. 4, 70125, Bari, Italy.
| |
Collapse
|
3
|
The Hidden Genomic and Transcriptomic Plasticity of Giant Marker Chromosomes in Cancer. Genetics 2017; 208:951-961. [PMID: 29279323 DOI: 10.1534/genetics.117.300552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/11/2017] [Indexed: 01/16/2023] Open
Abstract
Genome amplification in the form of rings or giant rod-shaped marker chromosomes (RGMs) is a common genetic alteration in soft tissue tumors. The mitotic stability of these structures is often rescued by perfectly functioning analphoid neocentromeres, which therefore significantly contribute to cancer progression. Here, we disentangled the genomic architecture of many neocentromeres stabilizing marker chromosomes in well-differentiated liposarcoma and lung sarcomatoid carcinoma samples. In cells carrying heavily rearranged RGMs, these structures were assembled as patchworks of multiple short amplified sequences, disclosing an extremely high level of complexity and definitely ruling out the existence of regions prone to neocentromere seeding. Moreover, by studying two well-differentiated liposarcoma samples derived from the onset and the recurrence of the same tumor, we documented an expansion of the neocentromeric domain that occurred during tumor progression, which reflects a strong selective pressure acting toward the improvement of the neocentromeric functionality in cancer. In lung sarcomatoid carcinoma cells we documented, extensive "centromere sliding" phenomena giving rise to multiple, closely mapping neocentromeric epialleles on separate coexisting markers occur, likely due to the instability of neocentromeres arising in cancer cells. Finally, by investigating the transcriptional activity of neocentromeres, we came across a burst of chimeric transcripts, both by extremely complex genomic rearrangements, and cis/trans-splicing events. Post-transcriptional editing events have been reported to expand and variegate the genetic repertoire of higher eukaryotes, so they might have a determining role in cancer. The increased incidence of fusion transcripts, might act as a driving force for the genomic amplification process, together with the increased transcription of oncogenes.
Collapse
|
4
|
Mandahl N, Magnusson L, Nilsson J, Viklund B, Arbajian E, von Steyern FV, Isaksson A, Mertens F. Scattered genomic amplification in dedifferentiated liposarcoma. Mol Cytogenet 2017; 10:25. [PMID: 28652867 PMCID: PMC5483303 DOI: 10.1186/s13039-017-0325-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Background Atypical lipomatous tumor (ALT), well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) are cytogenetically characterized by near-diploid karyotypes with no or few other aberrations than supernumerary ring or giant marker chromosomes, although DDLS tend to have somewhat more complex rearrangements. In contrast, pleomorphic liposarcomas (PLS) have highly aberrant and heterogeneous karyotypes. The ring and giant marker chromosomes contain discontinuous amplicons, in particular including multiple copies of the target genes CDK4, HMGA2 and MDM2 from 12q, but often also sequences from other chromosomes. Results The present study presents a DDLS with an atypical hypertriploid karyotype without any ring or giant marker chromosomes. SNP array analyses revealed amplification of almost the entire 5p and discontinuous amplicons of 12q including the classical target genes, in particular CDK4. In addition, amplicons from 1q, 3q, 7p, 9p, 11q and 20q, covering from 2 to 14 Mb, were present. FISH analyses showed that sequences from 5p and 12q were scattered, separately or together, over more than 10 chromosomes of varying size. At RNA sequencing, significantly elevated expression, compared to myxoid liposarcomas, was seen for TRIO and AMACR in 5p and of CDK4, HMGA2 and MDM2 in 12q. Conclusions The observed pattern of scattered amplification does not show the characteristics of chromothripsis, but is novel and differs from the well known cytogenetic manifestations of amplification, i.e., double minutes, homogeneously staining regions and ring chromosomes. Possible explanations for this unusual distribution of amplified sequences might be the mechanism of alternative lengthening of telomeres that is frequently active in DDLS and events associated with telomere crisis. Electronic supplementary material The online version of this article (doi:10.1186/s13039-017-0325-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Jenny Nilsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Björn Viklund
- Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Elsa Arbajian
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik Vult von Steyern
- Department of Orthopedics, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Anders Isaksson
- Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
5
|
Panagopoulos I, Gorunova L, Lobmaier I, Bjerkehagen B, Heim S. Identification of SETD2-NF1 fusion gene in a pediatric spindle cell tumor with the chromosomal translocation t(3;17)(p21;q12). Oncol Rep 2017; 37:3181-3188. [PMID: 28498454 PMCID: PMC5442398 DOI: 10.3892/or.2017.5628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/29/2017] [Indexed: 01/20/2023] Open
Abstract
Spindle cell tumors are clinically heterogeneous but morphologically similar neoplasms. The term refers to the tumor cells' long and slender microscopic appearance. Distinct subgroups of spindle cell tumors are characterized by chromosomal translocations and also fusion genes. Other spindle cell tumors exist that have not yet been found to have characteristic, let alone pathognomonic, genetic or pathogenetic features. Continuous examination of spindle cell tumors is likely to reveal other subgroups that may, in the future, be seen to correspond to meaningful clinical differences and may even be therapeutically decisive. We analyzed genetically a pediatric spindle cell tumor. Karyotyping showed the tumor cells to carry a t(3;17)(p21;q12) chromosomal translocation whereas RNA sequencing identified a SETD2-NF1 fusion gene caused by the translocation. RT-PCR together with Sanger sequencing verified the presence of the above-mentioned fusion transcript. Interphase FISH analysis confirmed the existence of the chimeric gene and showed that there was no reciprocal fusion. The fusion transcript codes for a protein in which the last 114 amino acids of SETD2, i.e., the entire Set2 Rpb1 interacting (SRI) domain of SETD2, are replaced by 30 amino acids encoded by the NF1 sequence. The result would be similar to that seen with truncating SETD2 mutations in leukemias. Absence of the SRI domain would result in inability to recruit SETD2 to its target gene locus through binding to the phosphor-C-terminal repeat domain of elongating RNA polymerase II and may affect H3K36 methylation. Alternatively, loss of one of two functional SETD2 alleles might be the crucial tumorigenic factor.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Rommel B, Holzmann C, Bullerdiek J. Malignant mesenchymal tumors of the uterus - time to advocate a genetic classification. Expert Rev Anticancer Ther 2016; 16:1155-1166. [PMID: 27602604 DOI: 10.1080/14737140.2016.1233817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Sarcomas are rare uterine tumors with leiomyosarcomas and endometrial stromal sarcomas constituting the predominant entities often making their first appearance in young and middle-aged women. By histology combined with immunostaining alone some of these tumors can offer diagnostic challenges e.g. for the differential diagnosis between leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP). Areas covered: Recent advances in the genetic classification and subclassification, respectively, have shown that genetic markers can offer a valuable adjunct to conventional diagnostic tools. Herein, we will review these recent data from the literature also referring to genetic alterations found in STUMP, endometrial stromal nodules, and leiomyomas including their variants. Expert commentary: For the future, we consider genetic classification as a necessary step in the clinical management of these tumors which will help not only to improve the diagnosis but also the therapy of these malignancies often associated with a worse prognosis.
Collapse
Affiliation(s)
- Birgit Rommel
- a Center for Human Genetics , University of Bremen , Bremen , Germany
| | - Carsten Holzmann
- b Institute of Medical Genetics , University Rostock Medical Center , Rostock , Germany
| | - Jörn Bullerdiek
- b Institute of Medical Genetics , University Rostock Medical Center , Rostock , Germany
| |
Collapse
|
7
|
Saâda-Bouzid E, Burel-Vandenbos F, Ranchère-Vince D, Birtwisle-Peyrottes I, Chetaille B, Bouvier C, Château MC, Peoc'h M, Battistella M, Bazin A, Gal J, Michiels JF, Coindre JM, Pedeutour F, Bianchini L. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod Pathol 2015; 28:1404-14. [PMID: 26336885 DOI: 10.1038/modpathol.2015.96] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/09/2022]
Abstract
HMGA2, CDK4, and JUN genes have been described as frequently coamplified with MDM2 in atypical lipomatous tumor, well-differentiated liposarcoma, and dedifferentiated liposarcoma. We studied the frequency of amplification of these genes in a series of 48 dedifferentiated liposarcomas and 68 atypical lipomatous tumors/well-differentiated liposarcomas. We correlated their amplification status with clinicopathological features and outcomes. Histologically, both CDK4 (P=0.007) and JUN (P=0.005) amplifications were associated with dedifferentiated liposarcoma, whereas amplification of the proximal parts of HMGA2 (5'-untranslated region (UTR) and exons 1-3) was associated with atypical lipomatous tumor/well-differentiated liposarcoma (P=0.01). CDK4 amplification was associated with axial tumors. Amplification of 5'-UTR and exons 1-3 of HMGA2 was associated with primary status and grade 1. Shorter overall survival was correlated with: age >64 years (P=0.03), chemotherapy used in first intent (P<0.001), no surgery (P=0.003), grade 3 (P<0.001), distant metastasis (P<0.001), node involvement (P=0.006), and CDK4 amplification (P=0.07). In multivariate analysis, distant metastasis (HR=8.8) and grade 3 (HR=18.2) were associated with shorter overall survival. A shorter recurrence-free survival was associated with dedifferentiated liposarcoma (P<0.001), grade 3 (P<0.001), node involvement (P<0.001), distant metastasis (P=0.02), recurrent status (P=0.009), axial location (P=0.001), and with molecular features such as CDK4 (P=0.05) and JUN amplification (P=0.07). Amplification of 5'-UTR and exons 1-3 (P=0.08) and 3'-UTR (P=0.01) of HMGA2 were associated with longer recurrence-free survival. Distant metastasis was associated with shorter recurrence-free survival (HR=5.8) in multivariate analysis. Dedifferentiated liposarcoma type was associated with axial location, grade 3 and recurrent status. In conclusion, we showed that the amplification of HMGA2 was associated with the atypical lipomatous tumor/well-differentiated liposarcoma histological type and a good prognosis, whereas CDK4 and JUN amplifications were associated with dedifferentiated liposarcoma histology and a bad prognosis. In addition, we also provided the first description of the molecular evolution of a well-differentiated liposarcoma into four successive dedifferentiated liposarcoma relapses, which was consistent with our general observations.
Collapse
Affiliation(s)
- Esma Saâda-Bouzid
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France.,Medical Oncology Department, Centre Antoine-Lacassagne, Nice, France
| | | | | | | | - Bruno Chetaille
- Biopathology Department, Institut Paoli-Calmettes, Marseille, France
| | - Corinne Bouvier
- Pathology Department, Marseille University Hospital La Timone, Marseille, France
| | | | - Michel Peoc'h
- Laboratory of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Maxime Battistella
- Laboratory of Pathology, Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | - Audrey Bazin
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France
| | - Jocelyn Gal
- Department of Biostatistics, Centre Antoine-Lacassagne, Nice, France
| | | | | | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France
| | - Laurence Bianchini
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
8
|
Hofvander J, Tayebwa J, Nilsson J, Magnusson L, Brosjö O, Larsson O, von Steyern FV, Domanski HA, Mandahl N, Mertens F. RNA sequencing of sarcomas with simple karyotypes: identification and enrichment of fusion transcripts. J Transl Med 2015; 95:603-9. [PMID: 25867764 DOI: 10.1038/labinvest.2015.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 11/09/2022] Open
Abstract
Gene fusions are neoplasia-associated mutations arising from structural chromosomal rearrangements. They have a strong impact on tumor development and constitute important diagnostic markers. Malignant soft tissue tumors (sarcomas) constitute a heterogeneous group of neoplasms with >50 distinct subtypes, each of which is rare. In addition, there is considerable morphologic overlap between sarcomas and benign lesions. Several subtypes display distinct gene fusions, serving as excellent biomarkers. The development of methods for deep sequencing of the complete transcriptome (RNA-Seq) has substantially improved the possibilities for detecting gene fusions. With the aim of identifying new gene fusions of biological and clinical relevance, eight sarcomas with simple karyotypes, ie, only one or a few structural rearrangements, were subjected to massively parallel paired-end sequencing of mRNA. Three different algorithms were used to identify fusion transcripts from RNA-Seq data. Three novel (KIAA2026-NUDT11, CCBL1-ARL1, and AFF3-PHF1) and two previously known fusions (FUS-CREB3L2 and HAS2-PLAG1) were found and could be verified by other methods. These findings show that RNA-Seq is a powerful tool for detecting gene fusions in sarcomas but also suggest that it is advisable to use more than one algorithm to analyze the output data as only two of the confirmed fusions were reported by more than one of the gene fusion detection software programs. For all of the confirmed gene fusions, at least one of the genes mapped to a chromosome band implicated by the karyotype, suggesting that sarcomas with simple karyotypes constitute an excellent resource for identifying novel gene fusions.
Collapse
Affiliation(s)
- Jakob Hofvander
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Johnbosco Tayebwa
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Jenny Nilsson
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Linda Magnusson
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Otte Brosjö
- Department of Orthopedics, Karolinska University Hospital, Solna, Sweden
| | - Olle Larsson
- Department of Pathology, Karolinska University Hospital, Solna, Sweden
| | | | - Henryk A Domanski
- Department of Pathology, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Nils Mandahl
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Macchia G, Nord KH, Zoli M, Purgato S, D'Addabbo P, Whelan CW, Carbone L, Perini G, Mertens F, Rocchi M, Storlazzi CT. Ring chromosomes, breakpoint clusters, and neocentromeres in sarcomas. Genes Chromosomes Cancer 2014; 54:156-67. [PMID: 25421174 DOI: 10.1002/gcc.22228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 01/04/2023] Open
Abstract
Gene amplification is relatively common in tumors. In certain subtypes of sarcoma, it often occurs in the form of ring and/or giant rod-shaped marker (RGM) chromosomes whose mitotic stability is frequently rescued by ectopic novel centromeres (neocentromeres). Little is known about the origin and structure of these RGM chromosomes, including how they arise, their internal organization, and which sequences underlie the neocentromeres. To address these questions, 42 sarcomas with RGM chromosomes were investigated to detect regions prone to double strand breaks and possible functional or structural constraints driving the amplification process. We found nine breakpoint cluster regions potentially involved in the genesis of RGM chromosomes, which turned out to be significantly enriched in poly-pyrimidine traits. Some of the clusters were located close to genes already known to be relevant for sarcomas, thus indicating a potential functional constraint, while others mapped to transcriptionally inactive chromatin domains enriched in heterochromatic sites. Of note, five neocentromeres were identified after analyzing 13 of the cases by fluorescent in situ hybridization. ChIP-on-chip analysis with antibodies against the centromeric protein CENP-A showed that they were a patchwork of small genomic segments derived from different chromosomes, likely joint to form a contiguous sequence during the amplification process.
Collapse
Affiliation(s)
- Gemma Macchia
- Department of Biology, University of Bari, Bari, Italy; Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Garsed DW, Marshall OJ, Corbin VDA, Hsu A, Di Stefano L, Schröder J, Li J, Feng ZP, Kim BW, Kowarsky M, Lansdell B, Brookwell R, Myklebost O, Meza-Zepeda L, Holloway AJ, Pedeutour F, Choo KHA, Damore MA, Deans AJ, Papenfuss AT, Thomas DM. The architecture and evolution of cancer neochromosomes. Cancer Cell 2014; 26:653-67. [PMID: 25517748 DOI: 10.1016/j.ccell.2014.09.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/15/2014] [Accepted: 09/19/2014] [Indexed: 01/21/2023]
Abstract
We isolated and analyzed, at single-nucleotide resolution, cancer-associated neochromosomes from well- and/or dedifferentiated liposarcomas. Neochromosomes, which can exceed 600 Mb in size, initially arise as circular structures following chromothripsis involving chromosome 12. The core of the neochromosome is amplified, rearranged, and corroded through hundreds of breakage-fusion-bridge cycles. Under selective pressure, amplified oncogenes are overexpressed, while coamplified passenger genes may be silenced epigenetically. New material may be captured during punctuated chromothriptic events. Centromeric corrosion leads to crisis, which is resolved through neocentromere formation or native centromere capture. Finally, amplification terminates, and the neochromosome core is stabilized in linear form by telomere capture. This study investigates the dynamic mutational processes underlying the life history of a special form of cancer mutation.
Collapse
Affiliation(s)
- Dale W Garsed
- Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia; Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Owen J Marshall
- Chromosome Research, Murdoch Childrens Research Institute, and Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Vincent D A Corbin
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010, Australia; Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia
| | - Arthur Hsu
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Leon Di Stefano
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Jan Schröder
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010, Australia
| | - Jason Li
- Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Zhi-Ping Feng
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010, Australia
| | - Bo W Kim
- Chromosome Research, Murdoch Childrens Research Institute, and Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark Kowarsky
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ben Lansdell
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ross Brookwell
- Sullivan Nicolaides Pathology, Indooroopilly, QLD 4068, Australia
| | - Ola Myklebost
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo 0424, Norway
| | - Leonardo Meza-Zepeda
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo 0424, Norway
| | - Andrew J Holloway
- Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Florence Pedeutour
- Laboratory of Solid Tumors Genetics, Nice University Hospital, Nice 06107, France
| | - K H Andy Choo
- Chromosome Research, Murdoch Childrens Research Institute, and Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | | | | | - Anthony T Papenfuss
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010, Australia; Department of Mathematics and Statistics, University of Melbourne, VIC, 3010, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia; Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia.
| | - David M Thomas
- Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| |
Collapse
|
11
|
Panagopoulos I, Bjerkehagen B, Gorunova L, Berner JM, Boye K, Heim S. Several fusion genes identified by whole transcriptome sequencing in a spindle cell sarcoma with rearrangements of chromosome arm 12q and MDM2 amplification. Int J Oncol 2014; 45:1829-36. [PMID: 25176350 PMCID: PMC4203330 DOI: 10.3892/ijo.2014.2605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/11/2014] [Indexed: 12/04/2022] Open
Abstract
Spindle cell tumors are clinically heterogeneous but morphologically similar neoplasms that can occur anywhere, mostly in adult patients. They are treated primarily with surgery to which is often added adjuvant or neoadjuvant radiation. Sub-classification of spindle cell sarcomas requires integration of histology, clinicopathological parameters, immunohistochemistry, cytogenetics (including fluorescence in situ hybridization) and/or molecular genetics. Some of the tumor subtypes are characterized by the presence of distinct chromosomal translocations and fusion genes. When no signs of differentiation are seen, the diagnosis by exclusion becomes undifferentiated spindle cell sarcoma. Cytogenetic, RNA sequencing and RT-PCR analyses were performed on a case of spindle cell sarcoma. The karyotype of the primary tumor was 46,X,del(X)(p?11p?22), der(12)(12pter→12q?22::12q?15→ q?22::16p11→16pter),-16,+r(12). MDM2 was found amplified in both the primary tumor and a metastasis. RNA-Seq of the primary tumor identified four fusion genes, PTGES3-PTPRB, HMGA2-DYRK2, TMBIM4-MSRB3 and USP15-CNTN1, in which all the partner genes map to the q arm of chromosome 12. In material from the metastasis, RT-PCR detected the PTGES3-PTPRB, HMGA2-DYRK2 and TMBIM4-MSRB3 whereas no USP15-CNTN1 fusion transcript was found. Because MDM2 amplification and the fusion transcripts PTGES3-PTPRB, HMGA2-DYRK2 and TMBIM4-MSRB3 were found both in the primary tumor and in the metastasis, they are components of the same clone and may be involved both in initiation and progression of the tumor. Which of them is pathogenetically primary remains unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jeanne-Marie Berner
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjetil Boye
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|