1
|
Zhang Z, Wang Z, Liu T, Tang J, Liu Y, Gou T, Chen K, Wang L, Zhang J, Yang Y, Zhang H. Exploring the role of ITGB6: fibrosis, cancer, and other diseases. Apoptosis 2024; 29:570-585. [PMID: 38127283 DOI: 10.1007/s10495-023-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Integrin β6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvβ6. Importantly, ITGB6 determines αvβ6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Tong Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yanqing Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Tiantian Gou
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Kangli Chen
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Li Wang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Huan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
2
|
Smitchger JA, Taylor JB, Mousel MR, Schaub D, Thorne JW, Becker GM, Murdoch BM. Genome-wide associations with longevity and reproductive traits in U.S. rangeland ewes. Front Genet 2024; 15:1398123. [PMID: 38859938 PMCID: PMC11163081 DOI: 10.3389/fgene.2024.1398123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction: Improving ewe longevity is an important breeding and management goal, as death loss and early culling of mature ewes are economic burdens in the sheep industry. Ewe longevity can be improved by selecting for positive reproductive outcomes. However, the breeding approaches for accomplishing this come with the challenge of recording a lifetime trait. Characterizing genetic factors underpinning ewe longevity and related traits could result in the development of genomic selection strategies to improve the stayability of sheep through early, informed selection of replacement ewes. Methods: Towards this aim, a genome-wide association study (GWAS) was performed to identify genetic markers associated with ewe longevity, reproductive, and production traits. Traits evaluated included longevity (i.e., length of time in the flock), parity and the lifetime number of lambs born, lambs born alive, lambs weaned, and weight of lambs weaned. Ewe records from previous studies were used. Specifically, Rambouillet (n = 480), Polypay (n = 404), Suffolk (n = 182), and Columbia (n = 64) breed ewes (N = 1,130) were analyzed against 503,617 SNPs in across-breed and within-breed GWAS conducted with the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model in R. Results: The across-breed GWAS identified 25 significant SNPs and the within-breed GWAS for Rambouillet, Polypay, and Suffolk ewes identified an additional 19 significant SNPs. The most significant markers were rs411309094 (13:22,467,143) associated with longevity in across-breed GWAS (p-value = 8.3E-13) and rs429525276 (2:148,398,336) associated with both longevity (p-value = 6.4E-15) and parity (p-value = 4.8E-15) in Rambouillet GWAS. Significant SNPs were identified within or in proximity (±50 kb) of genes with known or proposed roles in reproduction, dentition, and the immune system. These genes include ALPL, ANOS1, ARHGEF26, ASIC2, ASTN2, ATP8A2, CAMK2D, CEP89, DISC1, ITGB6, KCNH8, MBNL3, MINDY4, MTSS1, PLEKHA7, PRIM2, RNF43, ROBO2, SLCO1A2, TMEM266, TNFRSF21, and ZNF804B. Discussion: This study proposes multiple SNPs as candidates for use in selection indices and suggests genes for further research towards improving understanding of the genetic factors contributing to longevity, reproductive, and production traits of ewes.
Collapse
Affiliation(s)
- Jamin A. Smitchger
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - J. Bret Taylor
- USDA, Agriculture Research Service, Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, Dubois, ID, United States
| | - Michelle R. Mousel
- Animal Diseases Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, United States
| | - Daniel Schaub
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Jacob W. Thorne
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
- Texas A&M AgriLife Research and Extension, San Angelo, TX, United States
| | - Gabrielle M. Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
3
|
Luo M, Song C, Zuo J, Feng W, Wu C, Geng X, Okeke ES, Mao G, Chen Y, Zhao T, Wu X. Neurodevelopmental toxicity and molecular mechanism of environmental concentration of tetrabromobisphenol A bis (2- hydroxyethyl) ether exposure to sexually developing male SD rats. CHEMOSPHERE 2024; 353:141378. [PMID: 38442777 DOI: 10.1016/j.chemosphere.2024.141378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Tetrabromobisphenol A bis (2- hydroxyethyl) ether (TBBPA-DHEE), as one of the main derivatives of Tetrabromobisphenol A, been attracted attention for its health risks. In this study, the neurotoxicity, mechanism, and susceptivity of TBBPA-DHEE exposure to sexually developing male rats were systematically studied. Neurobehavioral research showed that TBBPA-DHEE exposure could significantly affect the behavior, learning,and memory abilities of male-developing rats, and aggravate their depression. TBBPA-DHEE exposure could inhibit the secretion of neurotransmitters. Transcriptomics studies show that TBBPA-DHEE can significantly affect gene expression, and a total of 334 differentially expressed genes are enriched. GO function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of genes related to synapses and cell components. KEGG function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of signal pathways related to nerves, nerve development, and signal transduction. Susceptibility analysis showed that female rats were more susceptible to TBBPA-DHEE exposure than male rats. Therefore, TBBPA-DHEE exposure has neurodevelopmental toxicity to male developmental rats, and female developmental rats are more susceptible than male developmental rats. Its possible molecular mechanism is that TBBPA-DHEE may inhibit the secretion of neurotransmitters and affect signal pathways related to neurodevelopment and signal transduction.
Collapse
Affiliation(s)
- Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Chang Song
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Jiali Zuo
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Chaoqiong Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Xin Geng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Wang SK, Lee ZH, Aref P, Chu KY. A novel ODAPH mutation causing amelogenesis imperfecta and its expression in human dental tissues. J Dent Sci 2024; 19:524-531. [PMID: 38303846 PMCID: PMC10829723 DOI: 10.1016/j.jds.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/18/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Amelogenesis imperfecta (AI), an assemblage of genetic diseases with dental enamel malformations, is generally grouped into hypoplastic, hypomaturation, and hypocalcified types. This study aimed to identify the genetic etiology for a consanguineous Iranian family with autosomal recessive hypocalcified AI. Materials and methods Dental defects were characterized, and whole exome analysis conducted to search for disease-causing mutations. Minigene assay and RT-PCR were performed to evaluate molecular consequences of the identified mutation and expression of the causative gene in human dental tissues. Results The defective enamel of erupted teeth showed extensive post-eruptive failure and discoloration. Partial enamel hypoplasia and indistinct dentino-enamel junction were evident on unerupted teeth, resembling hypocalcified AI. A novel homozygous ODAPH (previously designated C4orf26) mutation of single-nucleotide deletion (NG_032974.1:g.5103del, NM_178497.5:c.67+1del) was identified to be disease-causing. The mutation would cause a frameshift to different ODAPH transcript variant (TV) products: p.(Ala23Hisfs∗29) for TV1 and p.(Gly23Aspfs∗140) for TV2. Both dental pulps of developing and exfoliating primary teeth expressed ODAPH TV2. Conclusion Loss-of-function ODAPH mutations can cause AI type IIIB (the hypocalcified, autosomal recessive type), rather than type IIA4 (the hypomaturation, pigmented autosomal recessive type). This study supports a hypothesis that the product of ODAPH TV2 is the single dominant ODAPH protein isoform critical for dental enamel formation and may also play an unappreciated role in development and homeostasis of dentin-pulp complex. Due to genetic heterogeneity and a nonideal genotype-phenotype correlation of AI, it is essential to perform genetic testing for patients with inherited enamel defects to make a definitive diagnosis.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Zhe-Hao Lee
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
| | - Parissa Aref
- Department of Pediatric Dentistry, Islamic Azad University Dental Branch of Tehran, Tehran, Iran
| | - Kuan-Yu Chu
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Dong J, Ruan W, Duan X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis 2023; 29:2334-2365. [PMID: 37154292 DOI: 10.1111/odi.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Bloch-Zupan A, Rey T, Jimenez-Armijo A, Kawczynski M, Kharouf N, Dure-Molla MDL, Noirrit E, Hernandez M, Joseph-Beaudin C, Lopez S, Tardieu C, Thivichon-Prince B, Dostalova T, Macek M, Alloussi ME, Qebibo L, Morkmued S, Pungchanchaikul P, Orellana BU, Manière MC, Gérard B, Bugueno IM, Laugel-Haushalter V. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification. Front Physiol 2023; 14:1130175. [PMID: 37228816 PMCID: PMC10205041 DOI: 10.3389/fphys.2023.1130175] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.
Collapse
Affiliation(s)
- Agnes Bloch-Zupan
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut d’études avancées (USIAS), Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Tristan Rey
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Alexandra Jimenez-Armijo
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Marzena Kawczynski
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Naji Kharouf
- Université de Strasbourg, Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Strasbourg, France
| | | | - Muriel de La Dure-Molla
- Rothschild Hospital, Public Assistance-Paris Hospitals (AP-HP), Reference Center for Rare Oral and Den-tal Diseases (O-Rares), Paris, France
| | - Emmanuelle Noirrit
- Centre Hospitalier Universitaire (CHU) Rangueil, Toulouse, Competence Center for Rare Oral and Den-tal Diseases, Toulouse, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Competence Center for Rare Oral and Dental Diseases, Nancy, France
| | - Clara Joseph-Beaudin
- Centre Hospitalier Universitaire de Nice, Competence Center for Rare Oral and Dental Diseases, Nice, France
| | - Serena Lopez
- Centre Hospitalier Universitaire de Nantes, Competence Center for Rare Oral and Dental Diseases, Nantes, France
| | - Corinne Tardieu
- APHM, Hôpitaux Universitaires de Marseille, Hôpital Timone, Competence Center for Rare Oral and Dental Diseases, Marseille, France
| | - Béatrice Thivichon-Prince
- Centre Hospitalier Universitaire de Lyon, Competence Center for Rare Oral and Dental Diseases, Lyon, France
| | | | - Tatjana Dostalova
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Milan Macek
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | | | - Mustapha El Alloussi
- Faculty of Dentistry, International University of Rabat, CReSS Centre de recherche en Sciences de la Santé, Rabat, Morocco
| | - Leila Qebibo
- Unité de génétique médicale et d’oncogénétique, CHU Hassan II, Fes, Morocco
| | | | | | - Blanca Urzúa Orellana
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Bénédicte Gérard
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| |
Collapse
|
7
|
Sriwattanapong K, Theerapanon T, Boonprakong L, Srijunbarl A, Porntaveetus T, Shotelersuk V. Novel ITGB6 variants cause hypoplastic-hypomineralized amelogenesis imperfecta and taurodontism: characterization of tooth phenotype and review of literature. BDJ Open 2023; 9:15. [PMID: 37041139 PMCID: PMC10090198 DOI: 10.1038/s41405-023-00142-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
OBJECTIVES To characterize phenotype and genotype of amelogenesis imperfecta (AI) in a Thai patient, and review of literature. MATERIALS AND METHODS Variants were identified using trio-exome and Sanger sequencing. The ITGB6 protein level in patient's gingival cells was measured. The patient's deciduous first molar was investigated for surface roughness, mineral density, microhardness, mineral composition, and ultrastructure. RESULTS The patient exhibited hypoplastic-hypomineralized AI, taurodontism, and periodontal inflammation. Exome sequencing identified the novel compound heterozygous ITGB6 mutation, a nonsense c.625 G > T, p.(Gly209*) inherited from mother and a splicing c.1661-3 C > G from father, indicating AI type IH. The ITGB6 level in patient cells was significantly reduced, compared with controls. Analyses of a patient's tooth showed a significant increase in roughness while mineral density of enamel and microhardness of enamel and dentin were significantly reduced. In dentin, carbon was significantly decreased while calcium, phosphorus, and oxygen levels were significantly increased. Severely collapsed enamel rods and a gap in dentinoenamel junction were observed. Of six affected families and eight ITGB6 variants that have been reported, our patient was the only one with taurodontism. CONCLUSION We report the hypoplasia/hypomineralization/taurodontism AI patient with disturbed tooth characteristics associated with the novel ITGB6 variants and reduced ITGB6 expression, expanding genotype, phenotype, and understanding of autosomal recessive AI.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lawan Boonprakong
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anucharte Srijunbarl
- Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
8
|
Bai RQ, He WB, Peng Q, Shen SH, Yu QQ, Du J, Tan YQ, Wang YH, Liu BJ. A novel FAM83H variant causes familial amelogenesis imperfecta with incomplete penetrance. Mol Genet Genomic Med 2022; 10:e1902. [PMID: 35212465 PMCID: PMC9000937 DOI: 10.1002/mgg3.1902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Background Amelogenesis imperfecta (AI) is known to be a monogenic genetic disease caused by a variety of genes demonstrating a wide spectrum of penetrance. FAM83H is reported to be involved in AI: however, whether FAM83H causes AI with incomplete penetrance is unclear. Methods Whole‐exome sequencing was performed on two patients with AI, and putative disease‐related variants were validated by Sanger sequencing. Bioinformatic and in vitro functional analyses were performed to functionally characterize the identified disease‐causing variants. Results We identified a novel heterozygous nonsense variant of FAM83H (NM_198488: c.1975G > T, p.Glu659Ter); in vitro functional analysis showed that this mutant produced mislocalized proteins and was deleterious. Surprisingly, the clinical manifestations of each of the six individuals carrying this variant were different, with one carrier appearing to be completely asymptomatic for AI. Conclusion Our findings expand the variant spectrum for FAM83H and the phenotypic spectrum for FAM83H‐associated AI and suggest that FAM83H‐mediated AI exhibits incomplete penetrance.
Collapse
Affiliation(s)
- Rui-Qi Bai
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Wen-Bin He
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, People's Republic of China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Hunan International Scientific and Technological Cooperation base of Development and carcinogenesis, Changsha, China
| | - Qian Peng
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Su-Hui Shen
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Qian-Qian Yu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Juan Du
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, People's Republic of China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Hunan International Scientific and Technological Cooperation base of Development and carcinogenesis, Changsha, China
| | - Yue-Qiu Tan
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, People's Republic of China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Hunan International Scientific and Technological Cooperation base of Development and carcinogenesis, Changsha, China
| | - Yue-Hong Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin-Jie Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
9
|
Kim Y, Lee Y, Kasimoglu Y, Seymen F, Simmer J, Hu JC, Cho ES, Kim JW. Recessive Mutations in ACP4 Cause Amelogenesis Imperfecta. J Dent Res 2022; 101:37-45. [PMID: 34036831 PMCID: PMC8721729 DOI: 10.1177/00220345211015119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Amelogenesis imperfecta (AI) is an innate disorder that affects the formation and mineralization of the tooth enamel. When diagnosed with AI, one's teeth can be hypoplastic (thin enamel), hypomature (normal enamel thickness but discolored and softer than normal enamel), hypocalcified (normal enamel thickness but extremely weak), or mixed conditions of the above. Numerous studies have revealed the genes that are involved in causing AI. Recently, ACP4 (acid phosphatase 4) was newly found as a gene causing hypoplastic AI, and it was suggested that mutant forms of ACP4 might affect access to the catalytic core or the ability to form a homodimer. In this study, a Korean and a Turkish family with hypoplastic AI were recruited, and their exome sequences were analyzed. Biallelic mutations were revealed in ACP4: paternal (NM_033068: c.419C>T, p.(Pro140Leu)) and maternal (c.262C>A, p.(Arg88Ser)) mutations in family 1 and a paternal (c.713C>T, p.(Ser238Leu)) mutation and de novo (c.350A>G, p.(Gln117Arg)) mutation in the maternal allele in family 2. Mutations were analyzed by cloning, mutagenesis, immunofluorescence, immunoprecipitation, and acid phosphatase activity test. Comparison between the wild-type and mutant ACP4s showed a decreased amount of protein expression from the mutant forms, a decreased ability to form a homodimer, and a decreased acid phosphatase activity level. We believe that these findings will not only expand the mutational spectrum of ACP4 but also increase our understanding of the mechanism of ACP4 function during normal and pathologic amelogenesis.
Collapse
Affiliation(s)
- Y.J. Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y. Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y. Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - F. Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.C.-C. Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - E.-S. Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - J.-W. Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea,Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea,J.W. Kim, Department of Molecular Genetics, Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
10
|
Qin W, Wan QQ, Ma YX, Wang CY, Wan MC, Ma S, Wang YR, Wang WR, Gu JT, Tay FR, Niu LN. Manifestation and Mechanisms of Abnormal Mineralization in Teeth. ACS Biomater Sci Eng 2021; 9:1733-1756. [PMID: 34436861 DOI: 10.1021/acsbiomaterials.1c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tooth biomineralization is a dynamic and complicated process influenced by local and systemic factors. Abnormal mineralization in teeth occurs when factors related to physiologic mineralization are altered during tooth formation and after tooth maturation, resulting in microscopic and macroscopic manifestations. The present Review provides timely information on the mechanisms and structural alterations of different forms of pathological tooth mineralization. A comprehensive study of these alterations benefits diagnosis and biomimetic treatment of abnormal mineralization in patients.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Qian-Qian Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yi-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Wan-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
11
|
Meecham A, Marshall JF. The ITGB6 gene: its role in experimental and clinical biology. Gene 2020; 763S:100023. [PMID: 34493369 PMCID: PMC7285966 DOI: 10.1016/j.gene.2019.100023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Integrin αvβ6 is a membrane-spanning heterodimeric glycoprotein involved in wound healing and the pathogenesis of diseases including fibrosis and cancer. Therefore, it is of great clinical interest for us to understand the molecular mechanisms of its biology. As the limiting binding partner in the heterodimer, the β6 subunit controls αvβ6 expression and availability. Here we describe our understanding of the ITGB6 gene encoding the β6 subunit, including its structure, transcriptional and post-transcriptional regulation, the biological effects observed in ITGB6 deficient mice and clinical cases of ITGB6 mutations.
Collapse
Affiliation(s)
- Amelia Meecham
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
12
|
Charlier E, Deroyer C, Neuville S, Plener Z, Malaise O, Ciregia F, Gillet P, Reuter G, Salvé M, Withofs N, Hustinx R, de Seny D, Malaise MG. Toward diagnostic relevance of the α Vβ 5, α Vβ 3, and α Vβ 6 integrins in OA: expression within human cartilage and spinal osteophytes. Bone Res 2020; 8:35. [PMID: 33083095 PMCID: PMC7527564 DOI: 10.1038/s41413-020-00110-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/06/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
We previously reported 18FPRGD2 uptake by the coxofemoral lining, intervertebral discs and facet joint osteophytes in OA using PET/SCAN imaging. However, the molecular mechanism by which the PRGD2 tracer interacts with joint tissues and osteophytes in OA remains unclear. As PRGD2 ligands are expected to belong to the RGD-specific integrin family, the purpose of this study was (i) to determine which integrin complexes display the highest affinity for PRGD2-based ligands, (ii) to analyze integrin expression in relevant tissues, and (iii) to test integrin regulation in chondrocytes using OA-related stimuli to increase the levels of fibrosis and ossification markers. To this end, the affinity of PRGD2-based ligands for five heterodimeric integrins was measured by competition with 125I-echistatin. In situ analyses were performed in human normal vs. OA cartilage and spinal osteophytes. Osteophytes were characterized by (immuno-)histological staining. Integrin subunit expression was tested in chondrocytes undergoing dedifferentiation, osteogenic differentiation, and inflammatory stimulation. The integrins αVβ5, αVβ3, and αVβ6 presented the highest affinity for PRGD2-based ligands. In situ, the expression of these integrins was significantly increased in OA compared to normal cartilage. Within osteophytes, the mean integrin expression score was significantly higher in blood vessels, fibrous areas, and cells from the bone lining than in osteocytes and cartilaginous zones. In vitro, the levels of integrin subunits were significantly increased during chondrocyte dedifferentiation (except for β6), fibrosis, and osteogenic differentiation as well as under inflammatory stimuli. In conclusion, anatomical zones (such as OA cartilage, intervertebral discs, and facet joint osteophytes) previously reported to show PRGD2 ligand uptake in vivo expressed increased levels of αVβ5, αVβ3, and β6 integrins, whose subunits are modulated in vitro by OA-associated conditions that increase fibrosis, inflammation, and osteogenic differentiation. These results suggest that the increased levels of integrins in OA compared to normal tissues favor PRGD2 uptake and might explain the molecular mechanism of OA imaging using the PRGD2-based ligand PET/CT.
Collapse
Affiliation(s)
- Edith Charlier
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Céline Deroyer
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Sophie Neuville
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Zelda Plener
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Olivier Malaise
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Federica Ciregia
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | | | - Gilles Reuter
- Department of Neurosurgery, CHULiège, Liège, Belgium
| | - Mallory Salvé
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Michel G. Malaise
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| |
Collapse
|
13
|
Brown C, Rinaldi CE, Ripple WJ, Van Valkenburgh B. Skeletal and Dental Development Preserve Evidence of Energetic Stress in the Moose of Isle Royale. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Smith C, Poulter J, Brookes S, Murillo G, Silva S, Brown C, Patel A, Hussain H, Kirkham J, Inglehearn C, Mighell A. Phenotype and Variant Spectrum in the LAMB3 Form of Amelogenesis Imperfecta. J Dent Res 2019; 98:698-704. [PMID: 30905256 PMCID: PMC6535922 DOI: 10.1177/0022034519835205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of inherited disorders characterized by abnormal formation of dental enamel, either in isolation or as part of a syndrome. Heterozygous variants in laminin subunit beta 3 ( LAMB3) cause AI with dominant inheritance in the absence of other cosegregating clinical features. In contrast, biallelic loss-of-function variants in LAMB3 cause recessive junctional epidermolysis bullosa, characterized by life-threatening skin fragility. We identified 2 families segregating autosomal dominant AI with variable degrees of a distinctive hypoplastic phenotype due to pathogenic variants in LAMB3. Whole exome sequencing revealed a nonsense variant (c.3340G>T, p.E1114*) within the final exon in family 1, while Sanger sequencing in family 2 revealed a variant (c.3383-1G>A) in the canonical splice acceptor site of the final exon. Analysis of cDNA from family 2 revealed retention of the final intron leading to a premature termination codon. Two unerupted third molar teeth from individual IV:5 in family 2 were subject to computerized tomography and scanning electron microscopy. LAMB3 molar teeth have a multitude of cusps versus matched controls. LAMB3 enamel was well mineralized but pitted. The architecture of the initially secreted enamel was abnormal, with cervical enamel appearing much less severely affected than coronal enamel. This study further defines the variations in phenotype-genotype correlation for AI due to variants in LAMB3, underlines the clustering of nonsense and frameshift variants causing AI in the absence of junctional epidermolysis bullosa, and highlights the shared AI phenotype arising from variants in genes coding for hemidesmosome proteins.
Collapse
Affiliation(s)
- C.E.L. Smith
- Division of Molecular Medicine, Leeds
Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Oral Biology, School of
Dentistry, St James’s University Hospital, University of Leeds, Leeds, UK
| | - J.A. Poulter
- Division of Molecular Medicine, Leeds
Institute of Medical Research, University of Leeds, Leeds, UK
| | - S.J. Brookes
- Department of Oral Biology, School of
Dentistry, St James’s University Hospital, University of Leeds, Leeds, UK
| | - G. Murillo
- School of Dentistry, Universidad de
Costa Rica, Ciudad Universitaria Rodrigo Facio, San Pedro Montes De Oca, Costa
Rica
| | - S. Silva
- Cellular and Molecular Biology Centre,
Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Pedro Montes de
Oca, Costa Rica
| | - C.J. Brown
- Birmingham Dental Hospital and School of
Dentistry, Edgbaston, Birmingham, UK
| | - A. Patel
- Birmingham Dental Hospital and School of
Dentistry, Edgbaston, Birmingham, UK
| | - H. Hussain
- School of Medicine, University of Leeds,
Leeds, UK
| | - J. Kirkham
- Department of Oral Biology, School of
Dentistry, St James’s University Hospital, University of Leeds, Leeds, UK
| | - C.F. Inglehearn
- Division of Molecular Medicine, Leeds
Institute of Medical Research, University of Leeds, Leeds, UK
| | - A.J. Mighell
- School of Dentistry, University of
Leeds, Leeds, UK
| |
Collapse
|
15
|
Abstract
This chapter describes methods related to the diagnosis of genetic dental diseases. Based on the present knowledge, clinical phenotyping and next-generation sequencing techniques are discussed. Methods necessary for Sanger sequencing, multiplex ligation-dependent probe amplification, and epigenetic modification methods are detailed. In addition, protocols for cell culture establishment and characterization from patients with inherited dental anomalies are described.
Collapse
|
16
|
Amelogenic transcriptome profiling in ameloblast-like cells derived from adult gingival epithelial cells. Sci Rep 2019; 9:3736. [PMID: 30842534 PMCID: PMC6403286 DOI: 10.1038/s41598-019-40091-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Dental enamel is the highly mineralized tissue covering the tooth surface and is formed by ameloblasts. Ameloblasts have been known to be impossible to detect in adult tooth because they are shed by apoptosis during enamel maturation and tooth eruption. Owing to these, little was known about appropriate cell surface markers to isolate ameloblast-like cells in tissues. To overcome these problems, epithelial cells were selectively cultivated from the gingival tissues and used as a stem cell source for ameloblastic differentiation. When gingival epithelial cells were treated with a specified concentration of BMP2, BMP4, and TGFβ-1, the expression of ameloblast-specific markers was increased, and both the MAPK and Smad signaling pathways were activated. Gingival epithelial cells differentiated into ameloblast-like cells through epithelial-mesenchymal transition. By RNA-Seq analysis, we reported 20 ameloblast-specific genes associated with cell surface, cell adhesion, and extracellular matrix function. These cell surface markers might be useful for the detection and isolation of ameloblast-like cells from dental tissues.
Collapse
|
17
|
Kim YJ, Seymen F, Kang J, Koruyucu M, Tuloglu N, Bayrak S, Tuna EB, Lee ZH, Shin TJ, Hyun HK, Kim YJ, Lee SH, Hu J, Simmer J, Kim JW. Candidate gene sequencing reveals mutations causing hypoplastic amelogenesis imperfecta. Clin Oral Investig 2019; 23:1481-1487. [PMID: 30120606 PMCID: PMC6378126 DOI: 10.1007/s00784-018-2577-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/14/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Amelogenesis imperfecta (AI) is a rare hereditary disorder affecting the quality and quantity of the tooth enamel. The purpose of this study was to identify the genetic etiology of hypoplastic AI families based on the candidate gene approach. MATERIALS AND METHODS We recruited three Turkish families with hypoplastic AI and performed a candidate gene screening based on the characteristic clinical feature to find the pathogenic genetic etiology. RESULTS The candidate gene sequencing of the LAMB3 gene for family 1 revealed a heterozygous nonsense mutation in the last exon [c.3431C > A, p.(Ser1144*)]. FAM20A gene sequencing for families 2 and 3 identified a homozygous deletion [c.34_35delCT, p.(Leu12Alafs*67)] and a homozygous deletion-insertion (c.1109 + 3_1109 + 7delinsTGGTC) mutation, respectively. CONCLUSION The candidate gene approach can be successfully used to identify the genetic etiology of the AI in some cases with characteristic clinical features. CLINICAL RELEVANCE Identification of the genetic etiology of the AI will help both the family members and dentist understand the nature of the disorder. Characteristic clinical feature can suggest possible genetic causes.
Collapse
Affiliation(s)
- Youn Jung Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Jenny Kang
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Nuray Tuloglu
- Department of Pedodontics, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sule Bayrak
- Department of Pedodontics, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Elif Bahar Tuna
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Zang Hee Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Teo Jeon Shin
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Hong-Keun Hyun
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Young-Jae Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Sang-Hoon Lee
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Jan Hu
- Department of Biologic and Materials Sciences, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - James Simmer
- Department of Biologic and Materials Sciences, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea.
| |
Collapse
|
18
|
Lu T, Li M, Xu X, Xiong J, Huang C, Zhang X, Hu A, Peng L, Cai D, Zhang L, Wu B, Xiong F. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int J Oral Sci 2018; 10:26. [PMID: 30174330 PMCID: PMC6119682 DOI: 10.1038/s41368-018-0027-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Tooth development is a complex process that involves precise and time-dependent orchestration of multiple genetic, molecular, and cellular interactions. Ameloblastin (AMBN, also named “amelin” or “sheathlin”) is the second most abundant enamel matrix protein known to have a key role in amelogenesis. Amelogenesis imperfecta (AI [MIM: 104500]) refers to a genetically and phenotypically heterogeneous group of conditions characterized by inherited developmental enamel defects. The hereditary dentin disorders comprise a variety of autosomal-dominant genetic symptoms characterized by abnormal dentin structure affecting either the primary or both the primary and secondary teeth. The vital role of Ambn in amelogenesis has been confirmed experimentally using mouse models. Only two cases have been reported of mutations of AMBN associated with non-syndromic human AI. However, no AMBN missense mutations have been reported to be associated with both human AI and dentin disorders. We recruited one kindred with autosomal-dominant amelogenesis imperfecta (ADAI) and dentinogenesis imperfecta/dysplasia characterized by generalized severe enamel and dentin defects. Whole exome sequencing of the proband identified a novel heterozygous C-T point mutation at nucleotide position 1069 of the AMBN gene, causing a Pro to Ser mutation at the conserved amino acid position 357 of the protein. Exfoliated third molar teeth from the affected family members were found to have enamel and dentin of lower mineral density than control teeth, with thinner and easily fractured enamel, short and thick roots, and pulp obliteration. This study demonstrates, for the first time, that an AMBN missense mutation causes non-syndromic human AI and dentin disorders. A mutation on a gene involved in healthy tooth development may cause both enamel and dentin disorders. The ameloblastin enamel protein, and its associated gene, AMBN, play vital roles in enamel formation and tooth remodelling. Mutations on AMBN can cause amelogenesis imperfecta (AI), a genetic and hereditory condition resulting in enamel defects and severe tooth decay. Now, Fu Xiong and Bu-Ling Wu at Southern Medical University in Guangzhou, China, and co-workers have identified an AMBN mutation found in both enamel and dentin defect disorders. The researchers analyzed extracted teeth from a Chinese patient with both AI and a severe dentin disorder, along with teeth from affected and non-affected members of the same family, and compared the results with a control group. They identified a rare mutation on AMBN common to all affected individuals.
Collapse
Affiliation(s)
- Ting Lu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiyi Li
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China
| | - Jun Xiong
- Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuelian Zhang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Aiqin Hu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Peng
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Decheng Cai
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Koruyucu M, Kang J, Kim Y, Seymen F, Kasimoglu Y, Lee Z, Shin T, Hyun H, Kim Y, Lee S, Hu J, Simmer J, Kim J. Hypoplastic AI with Highly Variable Expressivity Caused by ENAM Mutations. J Dent Res 2018; 97:1064-1069. [PMID: 29554435 PMCID: PMC6055254 DOI: 10.1177/0022034518763152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tooth enamel, the hardest tissue in the human body, is formed after a complex series of interactions between dental epithelial tissue and the underlying ectomesenchyme. Nonsyndromic amelogenesis imperfecta (AI) is a rare genetic disorder affecting tooth enamel without other nonoral symptoms. In this study, we identified 2 novel ENAM mutations in 2 families with hypoplastic AI by whole exome sequencing. Family 1 had a heterozygous splicing donor site mutation in intron 4, NM_031889; c.123+2T>G. Affected individuals had hypoplastic enamel with or without the characteristic horizontal hypoplastic grooves in some teeth. Family 2 had a nonsense mutation in the last exon, c.1842C>G, p.(Tyr614*), that was predicted to truncate the protein by 500 amino acids. Participating individuals had at least 1 mutant allele, while the proband had a homozygous mutation. Most interestingly, the clinical phenotype of the individuals harboring the heterozygous mutation varied from a lack of penetrance to a mild hypoplastic enamel defect. We believe that these findings will broaden our understanding of the clinical phenotype of AI caused by ENAM mutations.
Collapse
Affiliation(s)
- M. Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - J. Kang
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y.J. Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - F. Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Y. Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Z.H. Lee
- Department of Cell and Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - T.J. Shin
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - H.K. Hyun
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y.J. Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - S.H. Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - J.C.C. Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.W. Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Koivisto L, Bi J, Häkkinen L, Larjava H. Integrin αvβ6: Structure, function and role in health and disease. Int J Biochem Cell Biol 2018; 99:186-196. [PMID: 29678785 DOI: 10.1016/j.biocel.2018.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Integrins are cell surface receptors that traditionally mediate cell-to-extracellular matrix and cell-to-cell adhesion. They can, however, also bind a large repertoire of other molecules. Integrin αvβ6 is exclusively expressed in epithelial cells where it can, for example, serve as a fibronectin receptor. However, its hallmark function is to activate transforming growth factor-β1 (TGF-β1) to modulate innate immune surveillance in lungs and skin and along the gastrointestinal tract, and to maintain epithelial stem cell quiescence. The loss of αvβ6 integrin function in mice and humans leads to an altered immune response in lungs and skin, amelogenesis imperfecta, periodontal disease and, in some cases, alopecia. Elevated αvβ6 integrin expression and aberrant TGF-β1 activation and function are associated with organ fibrosis and cancer. Therefore, αvβ6 integrin serves as an attractive target for cancer imaging and for fibrosis and cancer therapy.
Collapse
Affiliation(s)
- Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
21
|
Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol 2017; 8:435. [PMID: 28694781 PMCID: PMC5483479 DOI: 10.3389/fphys.2017.00435] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Agne Antanaviciute
- Section of Genetics, School of Medicine, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Jennifer Kirkham
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Steven J Brookes
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Oral Medicine, School of Dentistry, University of LeedsLeeds, United Kingdom
| |
Collapse
|
22
|
Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice. Front Physiol 2017; 8:307. [PMID: 28559854 PMCID: PMC5432648 DOI: 10.3389/fphys.2017.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7), which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA.,Department of Orthodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Jing Guo
- Department of Endodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Wenting Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical CenterCincinnati, OH, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
23
|
Kim YJ, Kang J, Seymen F, Koruyucu M, Gencay K, Shin TJ, Hyun HK, Lee ZH, Hu JCC, Simmer JP, Kim JW. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta. Front Physiol 2017; 8:229. [PMID: 28473773 PMCID: PMC5397402 DOI: 10.3389/fphys.2017.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/31/2017] [Indexed: 11/25/2022] Open
Abstract
Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19) and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln) was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180* and c.389C>T, p.Thr130Ile) were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.
Collapse
Affiliation(s)
- Youn Jung Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National UniversitySeoul, Korea
| | - Jenny Kang
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National UniversitySeoul, Korea
| | - Figen Seymen
- Faculty of Dentistry, Department of Pedodontics, Istanbul UniversityIstanbul, Turkey
| | - Mine Koruyucu
- Faculty of Dentistry, Department of Pedodontics, Istanbul UniversityIstanbul, Turkey
| | - Koray Gencay
- Faculty of Dentistry, Department of Pedodontics, Istanbul UniversityIstanbul, Turkey
| | - Teo Jeon Shin
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National UniversitySeoul, Korea
| | - Hong-Keun Hyun
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National UniversitySeoul, Korea
| | - Zang Hee Lee
- Department of Cell and Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National UniversitySeoul, Korea
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of DentistryAnn Arbor, MI, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of DentistryAnn Arbor, MI, USA
| | - Jung-Wook Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National UniversitySeoul, Korea.,Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National UniversitySeoul, Korea
| |
Collapse
|
24
|
Duverger O, Ohara T, Bible PW, Zah A, Morasso MI. DLX3-Dependent Regulation of Ion Transporters and Carbonic Anhydrases is Crucial for Enamel Mineralization. J Bone Miner Res 2017; 32:641-653. [PMID: 27760456 PMCID: PMC11025043 DOI: 10.1002/jbmr.3022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Abstract
Patients with tricho-dento-osseous (TDO) syndrome, an ectodermal dysplasia caused by mutations in the homeodomain transcription factor DLX3, exhibit enamel hypoplasia and hypomineralization. Here we used a conditional knockout mouse model to investigate the developmental and molecular consequences of Dlx3 deletion in the dental epithelium in vivo. Dlx3 deletion in the dental epithelium resulted in the formation of chalky hypomineralized enamel in all teeth. Interestingly, transcriptomic analysis revealed that major enamel matrix proteins and proteases known to be involved in enamel secretion and maturation were not affected significantly by Dlx3 deletion in the enamel organ. In contrast, expression of several ion transporters and carbonic anhydrases known to play an important role in enamel pH regulation during maturation was significantly affected in enamel organs lacking DLX3. Most of these affected genes showed binding of DLX3 to their proximal promoter as evidenced by chromatin immunoprecipitation sequencing (ChIP-seq) analysis on rat enamel organ. These molecular findings were consistent with altered pH staining evidenced by disruption of characteristic pH oscillations in the enamel. Taken together, these results show that DLX3 is indispensable for the regulation of ion transporters and carbonic anhydrases during the maturation stage of amelogenesis, exerting a crucial regulatory function on pH oscillations during enamel mineralization. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Takahiro Ohara
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Paul W Bible
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Angela Zah
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
25
|
Prasad MK, Laouina S, El Alloussi M, Dollfus H, Bloch-Zupan A. Amelogenesis Imperfecta: 1 Family, 2 Phenotypes, and 2 Mutated Genes. J Dent Res 2016; 95:1457-1463. [PMID: 27558265 DOI: 10.1177/0022034516663200] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous group of diseases characterized by enamel defects. The authors have identified a large consanguineous Moroccan family segregating different clinical subtypes of hypoplastic and hypomineralized AI in different individuals within the family. Using targeted next-generation sequencing, the authors identified a novel heterozygous nonsense mutation in COL17A1 (c.1873C>T, p.R625*) segregating with hypoplastic AI and a novel homozygous 8-bp deletion in C4orf26 (c.39_46del, p.Cys14Glyfs*18) segregating with hypomineralized-hypoplastic AI in this family. This study highlights the phenotypic and genotypic heterogeneity of AI that can exist even within a single consanguineous family. Furthermore, the identification of novel mutations in COL17A1 and C4orf26 and their correlation with distinct AI phenotypes can contribute to a better understanding of the pathophysiology of AI and the contribution of these genes to amelogenesis.
Collapse
Affiliation(s)
- M K Prasad
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - S Laouina
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Mohammed V University, Rabat, Morocco
| | - M El Alloussi
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Mohammed V University, Rabat, Morocco
| | - H Dollfus
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique, Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - A Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire and Cellulaire, CNRS UMR7104, INSERM U964, Centre Européen de Recherche en Biologie et en Médecine, Université de Strasbourg, Illkirch, France
| |
Collapse
|
26
|
Gostyńska KB, Yan Yuen W, Pasmooij AMG, Stellingsma C, Pas HH, Lemmink H, Jonkman MF. Carriers with functional null mutations in LAMA3 have localized enamel abnormalities due to haploinsufficiency. Eur J Hum Genet 2016; 25:94-99. [PMID: 27827380 DOI: 10.1038/ejhg.2016.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 11/09/2022] Open
Abstract
The hereditary blistering disease junctional epidermolysis bullosa (JEB) is always accompanied by structural enamel abnormalities of primary and secondary dentition, characterized as amelogenesis imperfecta. Autosomal recessive mutations in LAMA3, LAMB3 and LAMC2 encoding the heterotrimer laminin 332 (LM-332) are among the genes causing JEB. While examining pedigrees of JEB patients with LAMA3 mutations, we observed that heterozygous carriers of functional null mutations displayed subtle enamel pitting in the absence of skin fragility or other JEB symptoms. Here, we report two new LAMA3 functional null mutations: nonsense c.2377C>T p.(Arg793Ter) and splice-site c.4684+1G>A mutation in heterozygous carriers exhibiting enamel pitting. Both parents had offspring affected with JEB and displayed subtle enamel pitting of secondary dentition without any sign of skin blistering. The reported enamel abnormality in LAMA3 mutation carriers could be attributed to a half dose effect of the laminin α3 chain (haploinsufficiency).
Collapse
Affiliation(s)
- Katarzyna B Gostyńska
- Departments of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands.
| | - Wing Yan Yuen
- Departments of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| | | | - Cornelius Stellingsma
- Oral and Maxillofacial Surgery and Maxillofacial Prosthetics Genetics, Groningen, The Netherlands
| | - Hendri H Pas
- Departments of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| | - Henny Lemmink
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel F Jonkman
- Departments of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| |
Collapse
|
27
|
Seymen F, Kim YJ, Lee YJ, Kang J, Kim TH, Choi H, Koruyucu M, Kasimoglu Y, Tuna EB, Gencay K, Shin TJ, Hyun HK, Kim YJ, Lee SH, Lee ZH, Zhang H, Hu JCC, Simmer JP, Cho ES, Kim JW. Recessive Mutations in ACPT, Encoding Testicular Acid Phosphatase, Cause Hypoplastic Amelogenesis Imperfecta. Am J Hum Genet 2016; 99:1199-1205. [PMID: 27843125 PMCID: PMC5097978 DOI: 10.1016/j.ajhg.2016.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders affecting tooth enamel. The affected enamel can be hypoplastic and/or hypomineralized. In this study, we identified ACPT (testicular acid phosphatase) biallelic mutations causing non-syndromic, generalized hypoplastic autosomal-recessive amelogenesis imperfecta (AI) in individuals from six apparently unrelated Turkish families. Families 1, 4, and 5 were affected by the homozygous ACPT mutation c.713C>T (p.Ser238Leu), family 2 by the homozygous ACPT mutation c.331C>T (p.Arg111Cys), family 3 by the homozygous ACPT mutation c.226C>T (p.Arg76Cys), and family 6 by the compound heterozygous ACPT mutations c.382G>C (p.Ala128Pro) and 397G>A (p.Glu133Lys). Analysis of the ACPT crystal structure suggests that these mutations damaged the activity of ACPT by altering the sizes and charges of key amino acid side chains, limiting accessibility of the catalytic core, and interfering with homodimerization. Immunohistochemical analysis confirmed localization of ACPT in secretory-stage ameloblasts. The study results provide evidence for the crucial function of ACPT during amelogenesis.
Collapse
|
28
|
Parry DA, Smith CE, El-Sayed W, Poulter JA, Shore RC, Logan CV, Mogi C, Sato K, Okajima F, Harada A, Zhang H, Koruyucu M, Seymen F, Hu JCC, Simmer JP, Ahmed M, Jafri H, Johnson CA, Inglehearn CF, Mighell AJ. Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta. Am J Hum Genet 2016; 99:984-990. [PMID: 27693231 PMCID: PMC5065684 DOI: 10.1016/j.ajhg.2016.08.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the pH of the developing enamel matrix. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with amelogenesis imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion, and a missense variant) were predicted to result in loss of function. GPR68 encodes a proton-sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localization of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation.
Collapse
|
29
|
Dursun E, Savard E, Vargas C, Loison-Robert L, Cherifi H, Bdeoui F, Landru MM. Management of Amelogenesis Imperfecta: A 15-Year Case History of Two Siblings. Oper Dent 2016; 41:567-577. [PMID: 27589272 DOI: 10.2341/15-372-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Amelogenesis imperfecta (AI) is a heterogenous genetic disorder that interferes with normal enamel formation in the absence of systemic disorders. The patients' main concerns are caries susceptibility, poor esthetics, and generalized sensitivity. There is a broad clinical spectrum, from discolorations to consequent enamel alterations. This case report describes the 15-year case study and the full-mouth rehabilitation of two siblings affected by a hypocalcified AI. Clinical Considerations: In these two patients, conservative care with stainless steel crowns and direct composite restorations was undertaken to restore function and esthetics and to reduce sensitivities in primary and mixed dentitions. The difficulties in monitoring resulted in severe infectious complications (dental abscess with cutaneous fistula), important dental defects, and loss of spaces with subsequent malocclusion. In the young adult dentition, they were treated by extractions, root canal therapies, and new restorations: stainless steel crowns for permanent molars, direct composite restorations (with strip crowns) for incisors and maxillary canines (to improve the crown morphology as well as to mask the discolorations and the malpositions), and adjusted composite crown molds using a thermoforming procedure for premolars and the mandibular canines. The main difficulties were rapid tooth surface loss, bonding to atypical enamel, developing dentition, long-term follow-up. CONCLUSION Restoring function and esthetics in AI-affected patients is a challenge from primary to adult dentition. Early corrections are essential to avoid dental damage and for psychological benefits. This clinical report highlights the adhesive rehabilitation for anterior and premolar areas and the difficulty of patient follow-up.
Collapse
|
30
|
Kim YJ, Shin TJ, Hyun HK, Lee SH, Lee ZH, Kim JW. A novel de novo mutation in LAMB3 causes localized hypoplastic enamel in the molar region. Eur J Oral Sci 2016; 124:403-5. [PMID: 27220909 DOI: 10.1111/eos.12280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
Abstract
Amelogenesis imperfecta (AI) is a collection of diseases characterized by hereditary enamel defects and is heterogeneous in genetic etiology and clinical phenotype. In this study, we recruited a nuclear AI family with a proband having unique irregular hypoplastic pits and grooves in all surfaces of the deciduous molar teeth but not in the deciduous anterior teeth. Based on the candidate gene approach, we screened the laminin subunit beta 3 (LAMB3) gene and identified a novel de novo mutation in the proband. The mutation was a frameshift mutation caused by a heterozygous 7-bp deletion in the last exon (c.3452_3458delAGAAGCG, p.Glu1151Valfs*57). This study not only expands the mutational spectrum of the LAMB3 gene causing isolated AI but also broadens the understanding of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Young-Jae Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Teo J Shin
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hong-Keun Hyun
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Sang-Hoon Lee
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Zang H Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Smith CEL, Murillo G, Brookes SJ, Poulter JA, Silva S, Kirkham J, Inglehearn CF, Mighell AJ. Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta. Hum Mol Genet 2016; 25:3578-3587. [PMID: 27412008 PMCID: PMC5179951 DOI: 10.1093/hmg/ddw203] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective dental enamel formation. Amelotin (AMTN) is a secreted protein thought to act as a promoter of matrix mineralization in the final stage of enamel development, and is strongly expressed, almost exclusively, in maturation stage ameloblasts. Amtn overexpression and Amtn knockout mouse models have defective enamel with no other associated phenotypes, highlighting AMTN as an excellent candidate gene for human AI. However, no AMTN mutations have yet been associated with human AI. Using whole exome sequencing, we identified an 8,678 bp heterozygous genomic deletion encompassing exons 3-6 of AMTN in a Costa Rican family segregating dominant hypomineralised AI. The deletion corresponds to an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 residues. Exfoliated primary teeth from an affected family member had enamel that was of a lower mineral density compared to control enamel and exhibited structural defects at least some of which appeared to be associated with organic material as evidenced using elemental analysis. This study demonstrates for the first time that AMTN mutations cause non-syndromic human AI and explores the human phenotype, comparing it with that of mice with disrupted Amtn function.
Collapse
Affiliation(s)
- Claire E L Smith
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK.,Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Gina Murillo
- University of Costa Rica, School of Dentistry, San Pedro, Costa Rica
| | - Steven J Brookes
- Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - James A Poulter
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Sandra Silva
- University of Costa Rica, Molecular Biology Cellular Centre (CBCM), San Pedro, Costa Rica and
| | - Jennifer Kirkham
- Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Chris F Inglehearn
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Alan J Mighell
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK, .,School of Dentistry, University of Leeds, Leeds LS2 9LU, UK
| |
Collapse
|
32
|
Prasad MK, Geoffroy V, Vicaire S, Jost B, Dumas M, Le Gras S, Switala M, Gasse B, Laugel-Haushalter V, Paschaki M, Leheup B, Droz D, Dalstein A, Loing A, Grollemund B, Muller-Bolla M, Lopez-Cazaux S, Minoux M, Jung S, Obry F, Vogt V, Davideau JL, Davit-Beal T, Kaiser AS, Moog U, Richard B, Morrier JJ, Duprez JP, Odent S, Bailleul-Forestier I, Rousset MM, Merametdijan L, Toutain A, Joseph C, Giuliano F, Dahlet JC, Courval A, El Alloussi M, Laouina S, Soskin S, Guffon N, Dieux A, Doray B, Feierabend S, Ginglinger E, Fournier B, de la Dure Molla M, Alembik Y, Tardieu C, Clauss F, Berdal A, Stoetzel C, Manière MC, Dollfus H, Bloch-Zupan A. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet 2016; 53:98-110. [PMID: 26502894 PMCID: PMC4752661 DOI: 10.1136/jmedgenet-2015-103302] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/08/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS NCT01746121 and NCT02397824.
Collapse
Affiliation(s)
- Megana K Prasad
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
| | - Serge Vicaire
- Plateforme de Biopuces et Séquençage, Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Bernard Jost
- Plateforme de Biopuces et Séquençage, Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Michael Dumas
- Plateforme de Biopuces et Séquençage, Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Stéphanie Le Gras
- Plateforme de Biopuces et Séquençage, Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Marzena Switala
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Barbara Gasse
- Evolution et Développement du Squelette-EDS, UMR7138-SAE, Université Pierre et Marie Curie, Paris, France
| | - Virginie Laugel-Haushalter
- Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964 Université de Strasbourg, Illkirch, France
| | - Marie Paschaki
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964 Université de Strasbourg, Illkirch, France
| | - Bruno Leheup
- Faculté de Médecine, CHU de Nancy, Université de Lorraine, Vandoeuvre-Les-Nancy, France
| | | | | | - Adeline Loing
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Bruno Grollemund
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Michèle Muller-Bolla
- Départment d'Odontologie Pédiatrique, UFR d'Odontologie, Université de Nice Sophia-Antipolis, CHU de Nice, Nice, France
- URB2i—EA 4462, Paris Descartes, Paris, France
| | - Séréna Lopez-Cazaux
- Faculté de Chirurgie Dentaire, Département d'Odontologie Pédiatrique, CHU Hotel Dieu, Service d'odontologie conservatrice et pédiatrique, Nantes, France
| | - Maryline Minoux
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Sophie Jung
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Frédéric Obry
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Vincent Vogt
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Davideau
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Tiphaine Davit-Beal
- Evolution et Développement du Squelette-EDS, UMR7138-SAE, Université Pierre et Marie Curie, Paris, France
- Faculté de Chirurgie Dentaire, Département d'Odontologie Pédiatrique, Université Paris Descartes, Montrouge, France
| | | | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Béatrice Richard
- Service de Consultations et Traitements Dentaires, Hospices Civils de Lyon, Faculté d'Odontologie, Université Claude Bernard Lyon1, Lyon, France
| | - Jean-Jacques Morrier
- Service de Consultations et Traitements Dentaires, Hospices Civils de Lyon, Faculté d'Odontologie, Université Claude Bernard Lyon1, Lyon, France
| | - Jean-Pierre Duprez
- Service de Consultations et Traitements Dentaires, Hospices Civils de Lyon, Faculté d'Odontologie, Université Claude Bernard Lyon1, Lyon, France
| | - Sylvie Odent
- Service de Génétique Clinique, CHU de Rennes, Rennes, France
| | - Isabelle Bailleul-Forestier
- Faculté de Chirurgie Dentaire, CHU de Toulouse, Odontologie Pédiatrique, Université Paul Sabatier, Toulouse, France
| | - Monique Marie Rousset
- Unité Fonctionnelle d'Odontologie pédiatrique, Service d'odontologie, CHRU de Lille, Lille, France
| | - Laure Merametdijan
- Faculté de Chirurgie Dentaire, Service d'Odontologie Conservatrice et Endodontie, CHU Nantes, Université de Nantes, France
| | | | - Clara Joseph
- Départment d'Odontologie Pédiatrique, Université de Nice Sophia-Antipolis, CHU Nice, Nice, France
| | | | - Jean-Christophe Dahlet
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Aymeric Courval
- Pôle de Médecine et de Chirurgie Bucco-dentaire, Hôpital Civil, HUS, Strasbourg, France
| | - Mustapha El Alloussi
- Faculty of Dental Medicine, Department of Pediatric Dentistry, University Mohammed V Rabat, Morocco
| | - Samir Laouina
- Faculty of Dental Medicine, Department of Pediatric Dentistry, University Mohammed V Rabat, Morocco
| | - Sylvie Soskin
- Pédiatrie 1, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Anne Dieux
- Service de génétique clinique Guy Fontaine, Centre Hospitalier Régionale Universitaire (CHRU) de Lille, Lille, France
| | - Bérénice Doray
- Service de Génétique Médicale, CHU de Strasbourg, Strasbourg, France
| | - Stephanie Feierabend
- Klinik für Zahnerhaltungskunde und Parodontologie, Universitats Klinikum, Freiburg, Germany
| | | | - Benjamin Fournier
- Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild, Pôle d'Odontologie, Paris, France
| | - Muriel de la Dure Molla
- Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild, Pôle d'Odontologie, Paris, France
| | - Yves Alembik
- Service de Génétique Médicale, CHU de Strasbourg, Strasbourg, France
| | - Corinne Tardieu
- Aix-Marseille Université, UMR 7268 ADES/EFS/CNRS, APHM, Hôpital Timone, Service Odontologie, Marseille, France
| | - François Clauss
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Ariane Berdal
- Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild, Pôle d'Odontologie, Paris, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
| | - Marie Cécile Manière
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, INSERMU1112, Institut de génétique médicale d'Alsace, FMTS, Université de Strasbourg, Strasbourg, France
- Service de Génétique Médicale, Centre de Référence pour les Affections Rares en Génétique Ophtalmologique, HUS, Strasbourg, France
| | - Agnès Bloch-Zupan
- Centre de Référence des Manifestations Odontologiques des Maladies Rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire and Cellulaire-Centre Européen de Recherche en Biologie et en Médecine, CNRS UMR7104, INSERM U964 Université de Strasbourg, Illkirch, France
| |
Collapse
|
33
|
Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability. Eur J Hum Genet 2015; 24:1223-7. [PMID: 26695873 DOI: 10.1038/ejhg.2015.260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022] Open
Abstract
Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the β-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia.
Collapse
|
34
|
Genetic variants in the ITGB6 gene is associated with the risk of radiation pneumonitis in lung cancer patients treated with thoracic radiation therapy. Tumour Biol 2015; 37:3469-77. [DOI: 10.1007/s13277-015-4171-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/27/2015] [Indexed: 01/20/2023] Open
|
35
|
Novel missense mutation of the FAM83H gene causes retention of amelogenin and a mild clinical phenotype of hypocalcified enamel. Arch Oral Biol 2015; 60:1356-67. [DOI: 10.1016/j.archoralbio.2015.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
|
36
|
Seymen F, Park JC, Lee KE, Lee HK, Lee DS, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim YJ, Kim JW. Novel MMP20 and KLK4 Mutations in Amelogenesis Imperfecta. J Dent Res 2015; 94:1063-9. [PMID: 26124219 DOI: 10.1177/0022034515590569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In order to achieve highly mineralized tooth enamel, enamel proteinases serve the important function of removing the remaining organic matrix in the mineralization and maturation of the enamel matrix. Mutations in the kallikrein 4 (KLK4), enamelysin (MMP20), and WDR72 genes have been identified as causing hypomaturation enamel defects in an autosomal-recessive hereditary pattern. In this report, 2 consanguineous families with a hypomaturation-type enamel defect were recruited, and mutational analysis was performed to determine the molecular genetic etiology of the disease. Whole exome sequencing and autozygosity mapping identified novel homozygous mutations in the KLK4 (c.620_621delCT, p.Ser207Trpfs*38) and MMP20 (c.1054G>A, p.Glu352Lys) genes. Further analysis on the effect of the mutations on the translation, secretion, and function of KLK4 and MMP20 revealed that mutant KLK4 was degraded intracellularly and became inactive while mutant MMP20 was expressed at a normal level but secreted only minimally with proteolytic function.
Collapse
Affiliation(s)
- F Seymen
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - J-C Park
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - K-E Lee
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-K Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - D-S Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - M Koruyucu
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - K Gencay
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - M Bayram
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - E B Tuna
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - Z H Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Y-J Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - J-W Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Cherkaoui Jaouad I, El Alloussi M, Chafai El Alaoui S, Laarabi FZ, Lyahyai J, Sefiani A. Further evidence for causal FAM20A mutations and first case of amelogenesis imperfecta and gingival hyperplasia syndrome in Morocco: a case report. BMC Oral Health 2015; 15:14. [PMID: 25636655 PMCID: PMC4327795 DOI: 10.1186/1472-6831-15-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Amelogenesis imperfecta represents a group of developmental conditions, clinically and genetically heterogeneous, that affect the structure and clinical appearance of enamel. Amelogenesis imperfecta occurred as an isolated trait or as part of a genetic syndrome. Recently, disease-causing mutations in the FAM20A gene were identified, in families with an autosomal recessive syndrome associating amelogenesis imperfecta and gingival fibromatosis. Case presentation We report, the first description of a Moroccan patient with amelogenesis imperfecta and gingival fibromatosis, in whom we performed Sanger sequencing of the entire coding sequence of FAM20A and identified a homozygous mutation in the FAM20A gene (c.34_35delCT), already reported in a family with this syndrome. Conclusion Our finding confirms that the mutations of FAM20A gene are causative for amelogenesis imperfecta and gingival fibromatosis and underlines the recurrent character of the c.34_35delCT in two different ethnic groups.
Collapse
Affiliation(s)
- Imane Cherkaoui Jaouad
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco.
| | - Mustapha El Alloussi
- Service d'odontologie pédiatrique, Faculté de médecine dentaire, Université Mohammed V, Rabat, Morocco.
| | - Siham Chafai El Alaoui
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco.
| | - Fatima Zahra Laarabi
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco.
| | - Jaber Lyahyai
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco.
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco.
| |
Collapse
|
38
|
Seymen F, Lee KE, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim JW. Novel ITGB6 mutation in autosomal recessive amelogenesis imperfecta. Oral Dis 2015; 21:456-61. [PMID: 25431241 PMCID: PMC4440386 DOI: 10.1111/odi.12303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 11/30/2022]
Abstract
Objective Hereditary defects in tooth enamel formation, amelogenesis imperfecta (AI), can be non-syndromic or syndromic phenotype. Integrins are signaling proteins that mediate cell–cell and cell–extracellular matrix communication, and their involvement in tooth development is well known. The purposes of this study were to identify genetic cause of an AI family and molecular pathogenesis underlying defective enamel formation. Materials and Methods We recruited a Turkish family with isolated AI and performed mutational analyses to clarify the underlying molecular genetic etiology. Results Autozygosity mapping and exome sequencing identified a novel homozygous ITGB6 transversion mutation in exon 4 (c.517G>C, p.Gly173Arg). The glycine at this position in the middle of the βI-domain is conserved among a wide range of vertebrate orthologs and human paralogs. Clinically, the enamel was generally thin and pitted with pigmentation. Thicker enamel was noted at the cervical area of the molars. Conclusions In this study, we identified a novel homozygous ITGB6 mutation causing isolated AI, and this advances the understanding of normal and pathologic enamel development.
Collapse
Affiliation(s)
- F Seymen
- Department of Pedodontics, Faculty of Dentistry Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hypomaturation amelogenesis imperfecta caused by a novel SLC24A4 mutation. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 119:e77-81. [PMID: 25442250 DOI: 10.1016/j.oooo.2014.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023]
Abstract
In this case report of autosomal recessive pigmented hypomaturation amelogenesis imperfecta (AI), we identify a novel homozygous missense mutation (g.165151 T>G; c.1317 T>G; p.Leu436 Arg) in SLC24A4, a gene encoding a potassium-dependent sodium-calcium exchanger that is critical for hardening dental enamel during tooth development.
Collapse
|
40
|
Seymen F, Lee KE, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim JW. ENAM mutations with incomplete penetrance. J Dent Res 2014; 93:988-92. [PMID: 25143514 DOI: 10.1177/0022034514548222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a genetic disease affecting tooth enamel formation. AI can be an isolated entity or a phenotype of syndromes. To date, more than 10 genes have been associated with various forms of AI. We have identified 2 unrelated Turkish families with hypoplastic AI and performed mutational analysis. Whole-exome sequencing identified 2 novel heterozygous nonsense mutations in the ENAM gene (c.454G>T p.Glu152* in family 1, c.358C>T p.Gln120* in family 2) in the probands. Affected individuals were heterozygous for the mutation in each family. Segregation analysis within each family revealed individuals with incomplete penetrance or extremely mild enamel phenotype, in spite of having the same mutation with the other affected individuals. We believe that these findings will broaden our understanding of the clinical phenotype of AI caused by ENAM mutations.
Collapse
Affiliation(s)
- F Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - K-E Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - M Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - K Gencay
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - M Bayram
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - E B Tuna
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Z H Lee
- Department of Cell and Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - J-W Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
Cho ES, Kim KJ, Lee KE, Lee EJ, Yun CY, Lee MJ, Shin TJ, Hyun HK, Kim YJ, Lee SH, Jung HS, Lee ZH, Kim JW. Alteration of conserved alternative splicing in AMELX causes enamel defects. J Dent Res 2014; 93:980-7. [PMID: 25117480 DOI: 10.1177/0022034514547272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tooth enamel is the most highly mineralized tissue in vertebrates. Enamel crystal formation and elongation should be well controlled to achieve an exceptional hardness and a compact microstructure. Enamel matrix calcification occurs with several matrix proteins, such as amelogenin, enamelin, and ameloblastin. Among them, amelogenin is the most abundant enamel matrix protein, and multiple isoforms resulting from extensive but well-conserved alternative splicing and postsecretional processing have been identified. In this report, we recruited a family with a unique enamel defect and identified a silent mutation in exon 4 of the AMELX gene. We show that the mutation caused the inclusion of exon 4, which is almost always skipped, in the mRNA transcript. We further show, by generating and characterizing a transgenic animal model, that the alteration of the ratio and quantity of the developmentally conserved alternative splicing repertoire of AMELX caused defects in enamel matrix mineralization.
Collapse
Affiliation(s)
- E S Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - K-J Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - K-E Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - E-J Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - C Y Yun
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - M-J Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Korea
| | - T J Shin
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-K Hyun
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Y-J Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - S-H Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-S Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Korea
| | - Z H Lee
- Department of Cell and Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - J-W Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
Lee HS, Kim SH, Kim SO, Lee JH, Choi HJ, Jung HS, Song JS. A new type of dental anomaly: molar-incisor malformation (MIM). Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 118:101-109.e3. [DOI: 10.1016/j.oooo.2014.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
|