1
|
Tamada K, Fukumoto K, Toya T, Nakai N, Awasthi JR, Tanaka S, Okabe S, Spitz F, Saitow F, Suzuki H, Takumi T. Genetic dissection identifies Necdin as a driver gene in a mouse model of paternal 15q duplications. Nat Commun 2021; 12:4056. [PMID: 34210967 PMCID: PMC8249516 DOI: 10.1038/s41467-021-24359-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Maternally inherited duplication of chromosome 15q11-q13 (Dup15q) is a pathogenic copy number variation (CNV) associated with autism spectrum disorder (ASD). Recently, paternally derived duplication has also been shown to contribute to the development of ASD. The molecular mechanism underlying paternal Dup15q remains unclear. Here, we conduct genetic and overexpression-based screening and identify Necdin (Ndn) as a driver gene for paternal Dup15q resulting in the development of ASD-like phenotypes in mice. An excess amount of Ndn results in enhanced spine formation and density as well as hyperexcitability of cortical pyramidal neurons. We generate 15q dupΔNdn mice with a normalized copy number of Ndn by excising its one copy from Dup15q mice using a CRISPR-Cas9 system. 15q dupΔNdn mice do not show ASD-like phenotypes and show dendritic spine dynamics and cortical excitatory-inhibitory balance similar to wild type animals. Our study provides an insight into the role of Ndn in paternal 15q duplication and a mouse model of paternal Dup15q syndrome.
Collapse
Affiliation(s)
- Kota Tamada
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan
| | - Keita Fukumoto
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Tsuyoshi Toya
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.26091.3c0000 0004 1936 9959Graduate School of Pharmaceutical Sciences, Keio University, Minato, Tokyo, Japan
| | - Nobuhiro Nakai
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan
| | - Janak R. Awasthi
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.263023.60000 0001 0703 3735Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Shinji Tanaka
- grid.26999.3d0000 0001 2151 536XDepartment of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shigeo Okabe
- grid.26999.3d0000 0001 2151 536XDepartment of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - François Spitz
- grid.170205.10000 0004 1936 7822Department of Human Genetics, University of Chicago, Chicago, IL USA
| | - Fumihito Saitow
- grid.410821.e0000 0001 2173 8328Department of Pharmacology, Garduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Hidenori Suzuki
- grid.410821.e0000 0001 2173 8328Department of Pharmacology, Garduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Toru Takumi
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan ,grid.263023.60000 0001 0703 3735Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| |
Collapse
|
2
|
Nomura Y, Nomura J, Kamiguchi H, Nishikawa T, Takumi T. Transcriptome analysis of human neural cells derived from isogenic embryonic stem cells with 16p11.2 deletion. Neurosci Res 2021; 171:114-123. [PMID: 33785412 DOI: 10.1016/j.neures.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
16p11.2 deletion is one of the most influential copy number variations (CNVs) associated with autism spectrum disorder (ASD). Previous studies have investigated the pathophysiology of 16p11.2 deletion both in vitro and in vivo, and have identified features such as NMDAR dysfunction, excitation-inhibition imbalance, transcriptional dysregulation, and impaired cortical development. However, little is known about the transcriptional profiles of human neural cells. Here, we constructed an isogenic human embryonic stem (hES) cell model with 16p11.2 deletion using a CRISPR/Cas9 system and performed transcriptome analyses of hES-derived 2-dimensional neural cells. We identified several characteristics which may correlate with the neuropathology of 16p11.2 deletion: predisposition to differentiate into neural lineages, enhanced neurogenesis, and dysregulation of G protein-coupled receptor signaling and RAF/MAPK pathway. We also found upregulation of fragile X mental retardation protein (FMRP) target genes including GRM5, which is implicated as a common trait between 16p11.2 deletion and fragile X syndrome. Extending our knowledge into other ASD models would help us to understand the molecular pathology of this disorder.
Collapse
Affiliation(s)
- Yoshiko Nomura
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences (Medicine), Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan
| | - Jun Nomura
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | | | - Toru Nishikawa
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences (Medicine), Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan; Department of Pharmacology, School of Medicine, Pharmacological Research Center, Showa University, Shinagawa, Tokyo, 142-8555, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences (Medicine), Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.
| |
Collapse
|
3
|
Costilla R, Kemper KE, Byrne EM, Porto-Neto LR, Carvalheiro R, Purfield DC, Doyle JL, Berry DP, Moore SS, Wray NR, Hayes BJ. Genetic control of temperament traits across species: association of autism spectrum disorder risk genes with cattle temperament. Genet Sel Evol 2020; 52:51. [PMID: 32842956 PMCID: PMC7448488 DOI: 10.1186/s12711-020-00569-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/07/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Temperament traits are of high importance across species. In humans, temperament or personality traits correlate with psychological traits and psychiatric disorders. In cattle, they impact animal welfare, product quality and human safety, and are therefore of direct commercial importance. We hypothesized that genetic factors that contribute to variation in temperament among individuals within a species will be shared between humans and cattle. Using imputed whole-genome sequence data from 9223 beef cattle from three cohorts, a series of genome-wide association studies was undertaken on cattle flight time, a temperament phenotype measured as the time taken for an animal to cover a short-fixed distance after release from an enclosure. We also investigated the association of cattle temperament with polymorphisms in bovine orthologs of risk genes for neuroticism, schizophrenia, autism spectrum disorders (ASD), and developmental delay disorders in humans. RESULTS Variants with the strongest associations were located in the bovine orthologous region that is involved in several behavioural and cognitive disorders in humans. These variants were also partially validated in independent cattle cohorts. Genes in these regions (BARHL2, NDN, SNRPN, MAGEL2, ABCA12, KIFAP3, TOPAZ1, FZD3, UBE3A, and GABRA5) were enriched for the GO term neuron migration and were differentially expressed in brain and pituitary tissues in humans. Moreover, variants within 100 kb of ASD susceptibility genes were associated with cattle temperament and explained 6.5% of the total additive genetic variance in the largest cattle cohort. The ASD genes with the most significant associations were GABRB3 and CUL3. Using the same 100 kb window, a weak association was found with polymorphisms in schizophrenia risk genes and no association with polymorphisms in neuroticism and developmental delay disorders risk genes. CONCLUSIONS Our analysis showed that genes identified in a meta-analysis of cattle temperament contribute to neuron development functions and are differentially expressed in human brain tissues. Furthermore, some ASD susceptibility genes are associated with cattle temperament. These findings provide evidence that genetic control of temperament might be shared between humans and cattle and highlight the potential for future analyses to leverage results between species.
Collapse
Affiliation(s)
- Roy Costilla
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Kathryn E. Kemper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Enda M. Byrne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Brisbane, Australia
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, Sao Paulo State University, Sao Paolo, Brazil
| | | | - Jennifer L. Doyle
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Donagh P. Berry
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ben J. Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Furumai R, Tamada K, Liu X, Takumi T. UBE3A regulates the transcription of IRF, an antiviral immunity. Hum Mol Genet 2020; 28:1947-1958. [PMID: 30690483 DOI: 10.1093/hmg/ddz019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
UBE3A is a gene responsible for the pathogenesis of Angelman syndrome (AS), a neurodevelopmental disorder characterized by symptoms such as intellectual disability, delayed development and severe speech impairment. UBE3A encodes an E3 ubiquitin ligase, for which several targets have been identified, including synaptic molecules. Although proteolysis mainly occurs in the cytoplasm, UBE3A is localized to the cytoplasm and the nucleus. In fact, UBE3A is also known as a transcriptional regulator of the family of nuclear receptors. However, the function of UBE3A in the nucleus remains unclear. Therefore, we examined the involvement of UBE3A in transcription in the nuclei of neurons. Genome-wide transcriptome analysis revealed an enrichment of genes downstream of interferon regulatory factor (IRF) in a UBE3A-deficient AS mouse model. In vitro biochemical analyses further demonstrated that UBE3A interacted with IRF and, more importantly, that UBE3A enhanced IRF-dependent transcription. These results suggest a function for UBE3A as a transcriptional regulator of the immune system in the brain. These findings also provide informative molecular insights into the function of UBE3A in the brain and in AS pathogenesis.
Collapse
Affiliation(s)
- Ryohei Furumai
- RIKEN Brain Science Institute, Wako, Saitama, Japan.,Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, Japan.,Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Xiaoxi Liu
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan.,Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| |
Collapse
|
5
|
Septyaningtrias DE, Lin CW, Ouchida R, Nakai N, Suda W, Hattori M, Morita H, Honda K, Tamada K, Takumi T. Altered microbiota composition reflects enhanced communication in 15q11-13 CNV mice. Neurosci Res 2019; 161:59-67. [PMID: 31863791 DOI: 10.1016/j.neures.2019.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a complex and heterogeneous neurodevelopmental disorder. In addition to the core symptoms of ASD, many patients with ASD also show comorbid gut dysbiosis, which may lead to various gastrointestinal (GI) problems. Intriguingly, there is evidence that gut microbiota communicate with the central nervous system to modulate behavioral output through the gut-brain axis. To investigate how the microbiota composition is changed in ASD and to identify which microbes are involved in autistic behaviors, we performed a 16S rRNA gene-based metagenomics analysis in an ASD mouse model. Here, we focused on a model with human 15q11-13 duplication (15q dup), the most frequent chromosomal aberration or copy number variation found in ASD. Species diversity of the microbiome was significantly decreased in 15q dup mice. A combination of antibiotics treatment and behavioral analysis showed that neomycin improved social communication in 15q dup mice. Furthermore, comparison of the microbiota composition of mice treated with different antibiotics enabled us to identify beneficial operational taxonomic units (OTUs) for ultrasonic vocalization.
Collapse
Affiliation(s)
- Dian Eurike Septyaningtrias
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami, Hiroshima, 734-8553, Japan
| | - Chia-Wen Lin
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Rika Ouchida
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, 230-0045, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, 230-0045, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Kita, Okayama, 700-8530, Japan
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, 230-0045, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami, Hiroshima, 734-8553, Japan; RIKEN Center for Science and Technology Hub, Medical Sciences Innovation Hub Program (MIH), Japan; Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Chuo, Kobe, 650-0017, Japan.
| |
Collapse
|
6
|
Lewis MW, Vargas-Franco D, Morse DA, Resnick JL. A mouse model of Angelman syndrome imprinting defects. Hum Mol Genet 2019; 28:220-229. [PMID: 30260400 DOI: 10.1093/hmg/ddy345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023] Open
Abstract
Angelman syndrome, Prader-Will syndrome and Dup15q syndrome map to a cluster of imprinted genes located at 15q11-q13. Imprinting at this domain is regulated by an imprinting control region consisting of two distinct elements, the Angelman syndrome imprinting center (AS-IC) and the Prader-Willi syndrome imprinting center (PWS-IC). Individuals inheriting deletions of the AS-IC exhibit reduced expression of the maternally expressed UBE3A gene and biallelic expression of paternal-only genes. We have previously demonstrated that AS-IC activity partly consists of providing transcription across the PWS-IC in oocytes, and that these transcripts are necessary for maternal imprinting of Snrpn. Here we report a novel mouse mutation that truncates transcripts prior to transiting the PWS-IC and results in a domain-wide imprinting defect. These results confirm a transcription-based model for imprint setting at this domain. The imprinting defect can be preempted by removal of the transcriptional block in oocytes, but not by its removal in early embryos. Imprinting defect mice exhibit several traits often found in individuals with Angelman syndrome imprinting defects.
Collapse
Affiliation(s)
- Michael W Lewis
- Department of Molecular Genetics and Microbiology College of Medicine University of Florida, Gainsvile, FL, USA
| | - Dorianmarie Vargas-Franco
- Department of Molecular Genetics and Microbiology College of Medicine University of Florida, Gainsvile, FL, USA
| | - Deborah A Morse
- Department of Molecular Genetics and Microbiology College of Medicine University of Florida, Gainsvile, FL, USA
| | - James L Resnick
- Department of Molecular Genetics and Microbiology College of Medicine University of Florida, Gainsvile, FL, USA
| |
Collapse
|
7
|
Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF. Behavioral neuroscience of autism. Neurosci Biobehav Rev 2019; 110:60-76. [PMID: 31059731 DOI: 10.1016/j.neubiorev.2019.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Several genetic causes of ASD have been identified and this has enabled researchers to construct mouse models. Mouse behavioral tests reveal impaired social interaction and communication, as well as increased repetitive behavior and behavioral inflexibility in these mice, which correspond to core behavioral deficits observed in individuals with ASD. However, the connection between these behavioral abnormalities and the underlying dysregulation in neuronal circuits and synaptic function is poorly understood. Moreover, different components of the ASD phenotype may be linked to dysfunction in different brain regions, making it even more challenging to chart the pathophysiological mechanisms involved in ASD. Here we summarize the research on mouse models of ASD and their contribution to understanding pathophysiological mechanisms. Specifically, we emphasize abnormal serotonin production and regulation, as well as the disruption in circadian rhythms and sleep that are observed in a subset of ASD, and propose that spatiotemporal disturbances in brainstem development may be a primary cause of ASD that propagates towards the cerebral cortex.
Collapse
Affiliation(s)
- Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | - Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Patrick F Bolton
- Institute of Psychiatry, King's College London, London, SE5 8AF, UK
| |
Collapse
|
8
|
Wang H, Chai Z, Hu D, Ji Q, Xin J, Zhang C, Zhong J. A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genomics 2019; 20:61. [PMID: 30658572 PMCID: PMC6339343 DOI: 10.1186/s12864-019-5451-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/11/2019] [Indexed: 12/01/2022] Open
Abstract
Background Genomic structural variation represents a source for genetic and phenotypic variation, which may be subject to selection during the environmental adaptation and population differentiation. Here, we described a genome-wide analysis of copy number variations (CNVs) in 16 populations of yak based on genome resequencing data and CNV-based cluster analyses of these populations. Results In total, we identified 51,461 CNV events and defined 3174 copy number variation regions (CNVRs) that covered 163.8 Mb (6.2%) of yak genome with more “loss” events than both “gain” and “both” events, and we confirmed 31 CNVRs in 36 selected yaks using quantitative PCR. Of the total 163.8 Mb CNVR coverage, a 10.8 Mb region of high-confidence CNVRs directly overlapped with the 52.9 Mb of segmental duplications, and we confirmed their uneven distributions across chromosomes. Furthermore, functional annotation indicated that the CNVR-harbored genes have a considerable variety of molecular functions, including immune response, glucose metabolism, and sensory perception. Notably, some of the identified CNVR-harbored genes associated with adaptation to hypoxia (e.g., DCC, MRPS28, GSTCD, MOGAT2, DEXI, CIITA, and SMYD1). Additionally, cluster analysis, based on either individuals or populations, showed that the CNV clustering was divided into two origins, indicating that some yak CNVs are likely to arisen independently in different populations and contribute to population difference. Conclusions Collectively, the results of the present study advanced our understanding of CNV as an important type of genomic structural variation in yak, and provide a useful genomic resource to facilitate further research on yak evolution and breeding. Electronic supplementary material The online version of this article (10.1186/s12864-019-5451-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610000, People's Republic of China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610000, People's Republic of China
| | - Dan Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610000, People's Republic of China
| | - Qiumei Ji
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - Jinwei Xin
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - Chengfu Zhang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
9
|
Takumi T, Tamada K. CNV biology in neurodevelopmental disorders. Curr Opin Neurobiol 2018; 48:183-192. [PMID: 29331932 DOI: 10.1016/j.conb.2017.12.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 12/29/2022]
Abstract
Copy number variants (CNVs), characterized in recent years by cutting-edge technology, add complexity to our knowledge of the human genome. CNVs contribute not only to human diversity but also to different kinds of diseases including neurodevelopmental delay, autism spectrum disorder and neuropsychiatric diseases. Interestingly, many pathogenic CNVs are shared among these diseases. Studies suggest that pathophysiology of disease may not be simply attributed to a single driver gene within a CNV but also that multifactorial effects may be important. Gene expression and the resulting phenotypes may also be affected by epigenetic alteration and chromosomal structural changes. Combined with human genetics and systems biology, integrative research by multi-dimensional approaches using animal and cell models of CNVs are expected to further understanding of pathophysiological mechanisms of neurodevelopmental disorders and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Nomura J, Kannan G, Takumi T. Rodent models of genetic and chromosomal variations in psychiatric disorders. Psychiatry Clin Neurosci 2017; 71:508-517. [PMID: 28317218 DOI: 10.1111/pcn.12524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Elucidating the molecular basis of complex human psychiatric disorders is challenging due to the multitude of factors that underpin these disorders. Genetic and chromosomal changes are two factors that have been suggested to be involved in psychiatric disorders. Indeed, numerous risk loci have been identified in autism spectrum disorders, schizophrenia, and related psychiatric disorders. Here, we introduce genetic animal models that disturb excitatory-inhibitory balance in the brain and animal models mirroring human chromosomal abnormalities, both of which may be implicated in autism spectrum disorder pathophysiology. In addition, we discuss recent unique translational research using rodent models, such as Cntnap2 knockout mouse, Mecp2 mutant mouse, Pick1 knockout mouse, and neonatal ventral hippocampal lesion rat. By using these models, several types of drugs are administered during the developmental period to see the effect on psychotic symptoms and neural activities in adults. The accumulating evidence from recent animal studies provides an informative intervention strategy as a translational research.
Collapse
Affiliation(s)
- Jun Nomura
- RIKEN Brain Science Institute, Saitama, Japan
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, USA
| | - Toru Takumi
- RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
11
|
Liu X, Tamada K, Kishimoto R, Okubo H, Ise S, Ohta H, Ruf S, Nakatani J, Kohno N, Spitz F, Takumi T. Transcriptome profiling of white adipose tissue in a mouse model for 15q duplication syndrome. GENOMICS DATA 2015; 5:394-6. [PMID: 26484295 PMCID: PMC4583688 DOI: 10.1016/j.gdata.2015.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
Abstract
Obesity is not only associated with unhealthy lifestyles, but also linked to genetic predisposition. Previously, we generated an autism mouse model (patDp/+) that carries a 6.3 Mb paternal duplication homologous to the human 15q11–q13 locus. Chromosomal abnormalities in this region are known to cause autism spectrum disorder, Prader–Willi syndrome, and Angelman syndrome in humans. We found that, in addition to autistic-like behaviors, patDp/+ mice display late-onset obesity and hypersensitivity to a high-fat diet. These phenotypes are likely to be the results of genetic perturbations since the energy expenditures and food intakes of patDp/+ mice do not significantly differ from those of wild-type mice. Intriguingly, we found that an enlargement of adipose cells precedes the onset of obesity in patDp/+ mice. To understand the underlying molecular networks responsible for this pre-obese phenotype, we performed transcriptome profiling of white adipose tissue from patDp/+ and wild-type mice using microarray. We identified 230 genes as differentially expressed genes. Sfrp5 — a gene whose expression is positively correlated with adipocyte size, was found to be up-regulated, and Fndc5, a potent inducer of brown adipogenesis was identified to be the top down-regulated gene. Subsequent pathway analysis highlighted a set of 35 molecules involved in energy production, lipid metabolism, and small molecule biochemistry as the top candidate biological network responsible for the pre-obese phenotype of patDp/+. The microarray data were deposited in NCBI Gene Expression Omnibus database with accession number GSE58191. Ultimately, our dataset provides novel insights into the molecular mechanism of obesity and demonstrated that patDp/+ is a valuable mouse model for obesity research.
Collapse
Affiliation(s)
- Xiaoxi Liu
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan ; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - Rui Kishimoto
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan ; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - Hiroko Okubo
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Satoko Ise
- Banyu Tsukuba Research Institute, Tsukuba, Ibaraki 300-2611, Japan
| | - Hisashi Ohta
- Banyu Tsukuba Research Institute, Tsukuba, Ibaraki 300-2611, Japan
| | - Sandra Ruf
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jin Nakatani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan
| | - Nobuoki Kohno
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan ; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan ; JST, CREST, Japan
| |
Collapse
|