1
|
René CA, Parks RJ. Extracellular vesicles efficiently deliver survival motor neuron protein to cells in culture. Sci Rep 2025; 15:5674. [PMID: 39955442 PMCID: PMC11830090 DOI: 10.1038/s41598-025-90083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Spinal Muscular Atrophy (SMA) is a genetic neuromuscular disorder caused by homozygous mutation or deletion of the survival motor neuron 1 (SMN1) gene, leading to a low quantity of SMN protein in cells. This depletion of SMN protein preferentially leads to death of motor neurons and, consequently, muscle atrophy, in addition to defects in many other peripheral tissues. SMN protein is naturally loaded into extracellular vesicles (EVs), which are sub-micron-sized, membrane-bound particles released from all cell types. The innate ability of EVs to deliver cargo to recipient cells has caused these vesicles to gain interest as therapeutic delivery vehicles. In this study, we show that adenovirus-mediated overexpression of SMN protein in HepG2 cells leads to the release of EVs loaded with high levels of SMN protein into conditioned medium. Application of this medium to recipient cells in tissue culture led to uptake of the SMN protein, which subsequently transited to the nucleus and co-localized with Gemin2 protein, forming nuclear gem-like structures similar to the native SMN protein. Overall, this work demonstrates that SMN protein can be delivered to cells through EVs, which holds promise as a potential therapy for patients with SMA.
Collapse
Affiliation(s)
- Charlotte A René
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1Y 4E9, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1Y 4E9, Canada.
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
2
|
Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in spinal muscular atrophy. Proc Natl Acad Sci U S A 2021; 118:2007785118. [PMID: 33931501 DOI: 10.1073/pnas.2007785118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.
Collapse
|
3
|
Doyle JJ, Vrancx C, Maios C, Labarre A, Patten SA, Parker JA. Modulating the endoplasmic reticulum stress response attenuates neurodegeneration in a Caenorhabditis elegans model of spinal muscular atrophy. Dis Model Mech 2020; 13:dmm.041350. [PMID: 33106327 PMCID: PMC7774902 DOI: 10.1242/dmm.041350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease resulting in muscle atrophy and neurodegeneration, and is the leading genetic cause of infant death. SMA arises when there are homozygous deletion mutations in the human SMN1 gene, leading to a decrease in corresponding SMN1 protein. Although SMN1 is expressed across multiple tissue types, much of the previous research into SMA focused on the neuronal aspect of the disease, overlooking many of the potential non-neuronal aspects of the disease. Therefore, we sought to address this gap in knowledge by modeling SMA in the nematode Caenorhabditis elegans. We mutated a previously uncharacterized allele, which resulted in the onset of mild SMA-like phenotypes, allowing us to monitor the onset of phenotypes at different stages. We observed that these mutant animals recapitulated many key features of the human disease, and most importantly, we observed that muscle dysfunction preceded neurodegeneration. Furthermore, we tested the therapeutic efficacy of targeting endoplasmic reticulum (ER) stress in non-neuronal cells and found it to be more effective than targeting ER stress in neuronal cells. We also found that the most potent therapeutic potential came from a combination of ER- and neuromuscular junction-targeted drugs. Together, our results suggest an important non-neuronal component of SMA pathology and highlight new considerations for therapeutic intervention. Summary: A new non-larval-lethal C. elegans model of spinal muscular atrophy shows mild phenotypes, such as muscle cell and neuronal degeneration, and is therefore useful for testing potential drug treatments.
Collapse
Affiliation(s)
- James J Doyle
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Metabolic Disorders and Complications, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Celine Vrancx
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Neuroscience, University of Montreal, Montreal, Quebec H2X 0A9, Canada
| | - Claudia Maios
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Neuroscience, University of Montreal, Montreal, Quebec H2X 0A9, Canada
| | - Audrey Labarre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Neuroscience, University of Montreal, Montreal, Quebec H2X 0A9, Canada
| | | | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Neuroscience, University of Montreal, Montreal, Quebec H2X 0A9, Canada
| |
Collapse
|
4
|
Rademacher S, Detering NT, Schüning T, Lindner R, Santonicola P, Wefel IM, Dehus J, Walter LM, Brinkmann H, Niewienda A, Janek K, Varela MA, Bowerman M, Di Schiavi E, Claus P. A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells 2020; 9:cells9112405. [PMID: 33153033 PMCID: PMC7692393 DOI: 10.3390/cells9112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Nora T. Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Robert Lindner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Pamela Santonicola
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Inga-Maria Wefel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Janina Dehus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Lisa M. Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Agathe Niewienda
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Katharina Janek
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Miguel A. Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
5
|
Poeta L, Padula A, Attianese B, Valentino M, Verrillo L, Filosa S, Shoubridge C, Barra A, Schwartz CE, Christensen J, van Bokhoven H, Helin K, Lioi MB, Collombat P, Gecz J, Altucci L, Di Schiavi E, Miano MG. Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders. Hum Mol Genet 2020; 28:4089-4102. [PMID: 31691806 DOI: 10.1093/hmg/ddz254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Agnese Padula
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Mariaelena Valentino
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefania Filosa
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy.,Istituto Neurologico Mediterraneo (Neuromed), Pozzilli, Isernia, Italy
| | - Cheryl Shoubridge
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Adriano Barra
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | | | - Jesper Christensen
- University of Copenhagen, Biotech Research and Innovation Centre (BRIC), Copenhagen, Denmark.,University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), Copenhagen, Denmark
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Behaviour and Cognition, Radboudumc, Nijmegen, The Netherlands
| | - Kristian Helin
- University of Copenhagen, Biotech Research and Innovation Centre (BRIC), Copenhagen, Denmark.,University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), Copenhagen, Denmark
| | | | | | - Jozef Gecz
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Lucia Altucci
- University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| |
Collapse
|
6
|
Da Silva JD, Oliveira S, Pereira-Sousa J, Teixeira-Castro A, Costa MD, Maciel P. Loss of egli-1, the Caenorhabditis elegans Orthologue of a Downstream Target of SMN, Leads to Abnormalities in Sensorimotor Integration. Mol Neurobiol 2019; 57:1553-1569. [PMID: 31797327 DOI: 10.1007/s12035-019-01833-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
The connectome of Caenorhabditis elegans has been extensively studied and fully mapped, allowing researchers to more confidently conclude on the impact of any change in neuronal circuits based on behavioral data. One of the more complex sensorimotor circuits in nematodes is the one that regulates the integration of feeding status with the subsequent behavioral responses that allow animals to adapt to environmental conditions. Here, we have characterized a Caenorhabditis elegans knockout model of the egli-1 gene (previously known as tag-175). This is an orthologue of the stasimon/tmem41b gene, a downstream target of SMN, the depleted protein in spinal muscular atrophy (SMA), which partially recapitulates the SMA phenotype in fly and zebrafish models when mutated. Surprisingly, egli-1 mutants reveal no deficits in motor function. Instead, they show functional impairment of a specific neuronal circuit, leading to defects in the integration of sensorial information related to food abundance, with consequences at the level of locomotion adaptation, egg laying, and the response to aversive chemical stimuli. This work has demonstrated for the first time the relevance of egli-1 in the nervous system, as well as revealed a function for this gene, which had remained elusive so far.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphanie Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
7
|
Mazzarella N, Giangrieco I, Visone S, Santonicola P, Achenbach J, Zampi G, Tamburrini M, Di Schiavi E, Ciardiello MA. Green kiwifruit extracts protect motor neurons from death in a spinal muscular atrophy model in Caenorhabditis elegans. Food Sci Nutr 2019; 7:2327-2335. [PMID: 31367361 PMCID: PMC6657744 DOI: 10.1002/fsn3.1078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/17/2022] Open
Abstract
Kiwifruit is considered a functional food and a good source of nutraceuticals. Among the possible beneficial effects of kiwifruit species, a neuroprotective activity exerted in rats with learning and memory impairment induced by exposure to different chemicals was reported. We sought to investigate the neuroprotective activities of kiwifruit toward spinal muscular atrophy (SMA). To this purpose, we have used a recently developed Caenorhabditis elegans SMA model, displaying an age-dependent degeneration of motor neurons detected as locomotory defects, disappearance of fluorescent markers, and apoptotic death of targeted neurons. Although an anti-nematode activity is reported for kiwifruit, it has been verified that neither green (Actinidia deliciosa, cultivar Hayward) nor gold (Actinidia chinensis, cultivar Hort 16A) kiwifruit extracts cause detectable effects on wild-type C. elegans growth and life cycle. Conversely, green kiwifruit extracts have a clear effect on the C. elegans SMA model by partially rescuing the degeneration and death of motor neurons and the locomotion impairment. The gold species does not show the same effect. The components responsible for the neuroprotection are macromolecules with a molecular weight higher than 3 kDa, present in the green and not in the yellow kiwifruit. In conclusion, this is the first study reporting a protective activity of green kiwifruit toward motor neurons. In addition, we demonstrate that C. elegans is an animal model suitable to study the biological activities contained in kiwifruit. Therefore, this model can be exploited for future investigations aimed at identifying kiwifruit molecules with potential applications in the field of human health.
Collapse
Affiliation(s)
| | | | - Serena Visone
- Institute of Biosciences and BioResourcesCNRNaplesItaly
| | | | | | | | | | | | | |
Collapse
|
8
|
de Carlos Cáceres I, Porto DA, Gallotta I, Santonicola P, Rodríguez-Cordero J, Di Schiavi E, Lu H. Automated screening of C. elegans neurodegeneration mutants enabled by microfluidics and image analysis algorithms. Integr Biol (Camb) 2019; 10:539-548. [PMID: 30116818 DOI: 10.1039/c8ib00091c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinal muscular atrophy (SMA) is a degenerative disorder that selectively deteriorates motor neurons due to a deficiency of survival motor neuron protein (SMN). The illness is the leading genetic cause of death in infants and is difficult to study in complex biological systems such as humans. A simpler model system, such as the nematode C. elegans, can be used to study potential mechanisms underlying this disease; C. elegans expresses the smn-1 gene, a homologue of SMN; powerful genetic tools in C. elegans research can be used to discover novel genes whose effect on SMN remains unknown or uncharacterized. Currently, conventional screening methods are time-consuming and laborious, as well as being subjective and mostly qualitative. To address these issues, we engineer an automated system capable of performing genetic suppressor screens on C. elegans using microfluidics in combination with custom image analysis software. We demonstrate the utility of this system by isolating 21 alleles that significantly suppress motor neuron degeneration at a screening rate of approximately 300 worms per hour. Many of these mutants also have improved motor function. These isolated alleles can potentially be further studied to understand mechanisms of protection against neurodegeneration. Our system is easily adaptable, providing a means to saturate screens not only implicated in the smn-1 pathway, but also for genes involved in other neurodegenerative phenotypes.
Collapse
Affiliation(s)
- Ivan de Carlos Cáceres
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Qian X, Du Y, Jiang G, Lin F, Yao L. Survival Motor Neuron (SMN) Protein Insufficiency Exacerbates Renal Ischemia/Reperfusion Injury. Front Physiol 2019; 10:559. [PMID: 31139093 PMCID: PMC6527877 DOI: 10.3389/fphys.2019.00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
The survival of motor neuron (SMN) protein is ubiquitously involved in spliceosome assembly and ribonucleoprotein biogenesis. SMN protein is expressed in kidney and can affect cell death processes. However, the role of SMN in acute kidney injury (AKI) is largely unknown. In the current study, we found that the expression of SMN in the kidney was significantly reduced in both clinical ischemic AKI and a mouse model of renal ischemia-reperfusion injury (IRI). We then used SMN heterozygous knockout (SMN+/-) mice and found that the declines in renal function, tubular injury, and tubular cell apoptosis after experimental IRI were significantly more severe in SMN+/- mice than those in their wild-type littermates. Concomitantly, the canonical transcription factor nuclear factor-κb (NFκb) signaling was enhanced in ischemic SMN+/- mice. In vitro, cobalt dichloride (CoCl2) treatment reduced SMN expression in proximal tubular epithelial cells. In addition, CoCl2-induced apoptosis and activation of NFκb signaling pathway were enhanced by transient transfection of a small-interfering RNA (siRNA) against SMN while attenuated by transient transfection of a full-length SMN plasmid. Taken together, this study for the first time supported the protective role of SMN in ischemic AKI.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Centre for Rare Disease, Shanghai, China
| | - Yichao Du
- Sichuan Provincial Academician (Expert) Workstation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Centre for Rare Disease, Shanghai, China
| | - Lei Yao
- Sichuan Provincial Academician (Expert) Workstation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Gao X, Xu J, Chen H, Xue D, Pan W, Zhou C, Ma YC, Ma L. Defective Expression of Mitochondrial, Vacuolar H +-ATPase and Histone Genes in a C. elegans Model of SMA. Front Genet 2019; 10:410. [PMID: 31130987 PMCID: PMC6509145 DOI: 10.3389/fgene.2019.00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe motor neuron degenerative disease caused by loss-of-function mutations in the survival motor neuron gene SMN1. It is widely posited that defective gene expression underlies SMA. However, the identities of these affected genes remain to be elucidated. By analyzing the transcriptome of a Caenorhabditis elegans SMA model at the pre-symptomatic stage, we found that the expression of numerous nuclear encoded mitochondrial genes and vacuolar H+-ATPase genes was significantly down-regulated, while that of histone genes was significantly up-regulated. We previously showed that the uaf-1 gene, encoding key splicing factor U2AF large subunit, could affect the behavior and lifespan of smn-1 mutants. Here, we found that smn-1 and uaf-1 interact to affect the recognition of 3′ and 5′ splice sites in a gene-specific manner. Altogether, our results suggest a functional interaction between smn-1 and uaf-1 in affecting RNA splicing and a potential effect of smn-1 on the expression of mitochondrial and histone genes.
Collapse
Affiliation(s)
- Xiaoyang Gao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jing Xu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hao Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Dingwu Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Wenju Pan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Chuanman Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yongchao C Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
11
|
Rizzo F, Nizzardo M, Vashisht S, Molteni E, Melzi V, Taiana M, Salani S, Santonicola P, Di Schiavi E, Bucchia M, Bordoni A, Faravelli I, Bresolin N, Comi GP, Pozzoli U, Corti S. Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and motif analysis of human motor neurons. Brain 2019; 142:276-294. [PMID: 30649277 PMCID: PMC6351774 DOI: 10.1093/brain/awy330] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy is a motor neuron disorder caused by mutations in SMN1. The reasons for the selective vulnerability of motor neurons linked to SMN (encoded by SMN1) reduction remain unclear. Therefore, we performed deep RNA sequencing on human spinal muscular atrophy motor neurons to detect specific altered gene splicing/expression and to identify the presence of a common sequence motif in these genes. Many deregulated genes, such as the neurexin and synaptotagmin families, are implicated in critical motor neuron functions. Motif-enrichment analyses of differentially expressed/spliced genes, including neurexin2 (NRXN2), revealed a common motif, motif 7, which is a target of SYNCRIP. Interestingly, SYNCRIP interacts only with full-length SMN, binding and modulating several motor neuron transcripts, including SMN itself. SYNCRIP overexpression rescued spinal muscular atrophy motor neurons, due to the subsequent increase in SMN and their downstream target NRXN2 through a positive loop mechanism and ameliorated SMN-loss-related pathological phenotypes in Caenorhabditis elegans and mouse models. SMN/SYNCRIP complex through motif 7 may account for selective motor neuron degeneration and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Shikha Vashisht
- Scientific Institute IRCCS E. MEDEA, Computational Biology, Bosisio Parini, Lecco, Italy
| | - Erika Molteni
- Scientific Institute IRCCS E. MEDEA, Computational Biology, Bosisio Parini, Lecco, Italy
| | - Valentina Melzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Sabrina Salani
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elia Di Schiavi
- Institute of Bioscience and BioResources, IBBR, CNR, Naples, Italy
| | - Monica Bucchia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Andreina Bordoni
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Computational Biology, Bosisio Parini, Lecco, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Lanzo A, Safratowich BD, Kudumala SR, Gallotta I, Zampi G, Di Schiavi E, Carvelli L. Silencing of Syntaxin 1A in the Dopaminergic Neurons Decreases the Activity of the Dopamine Transporter and Prevents Amphetamine-Induced Behaviors in C. elegans. Front Physiol 2018; 9:576. [PMID: 29872404 PMCID: PMC5972276 DOI: 10.3389/fphys.2018.00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 11/15/2022] Open
Abstract
The dopamine transporter (DAT) is a cell membrane protein whose main function is to reuptake the dopamine (DA) released in the synaptic cleft back into the dopaminergic neurons. Previous studies suggested that the activity of DAT is regulated by allosteric proteins such as Syntaxin-1A and is altered by drugs of abuse such as amphetamine (Amph). Because Caenorhabditis elegans expresses both DAT (DAT-1) and Syntaxin-1A (UNC-64), we used this model system to investigate the functional and behavioral effects caused by lack of expression of unc-64 in cultured dopaminergic neurons and in living animals. Using an inheritable RNA silencing technique, we were able to knockdown unc-64 specifically in the dopaminergic neurons. This cell-specific knockdown approach avoids the pleiotropic phenotypes caused by knockout mutations of unc-64 and ensures the transmission of dopaminergic specific unc-64 silencing to the progeny. We found that, similarly to dat-1 knockouts and dat-1 silenced lines, animals with reduced unc-64 expression in the dopaminergic neurons did not respond to Amph treatment when tested for locomotor behaviors. Our in vitro data demonstrated that in neuronal cultures derived from animals silenced for unc-64, the DA uptake was reduced by 30% when compared to controls, and this reduction was similar to that measured in neurons isolated from animals silenced for dat-1 (40%). Moreover, reduced expression of unc-64 in the dopaminergic neurons significantly reduced the DA release elicited by Amph. Because in C. elegans DAT-1 is the only protein capable to reuptake DA, these data show that reduced expression of unc-64 in the dopaminergic neurons decreases the capability of DAT in re-accumulating synaptic DA. Moreover, these results demonstrate that decreased expression of unc-64 in the dopaminergic neurons abrogates the locomotor behavior induced by Amph. Taken together these data suggest that Syntaxin-1A plays an important role in both functional and behavioral effects caused by Amph.
Collapse
Affiliation(s)
- Ambra Lanzo
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | - Bryan D Safratowich
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Sirisha R Kudumala
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Ivan Gallotta
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Giuseppina Zampi
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy.,Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Lucia Carvelli
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|