1
|
Pudjihartono M, Perry JK, Print C, O'Sullivan JM, Schierding W. Interpretation of the role of germline and somatic non-coding mutations in cancer: expression and chromatin conformation informed analysis. Clin Epigenetics 2022; 14:120. [PMID: 36171609 PMCID: PMC9520844 DOI: 10.1186/s13148-022-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There has been extensive scrutiny of cancer driving mutations within the exome (especially amino acid altering mutations) as these are more likely to have a clear impact on protein functions, and thus on cell biology. However, this has come at the neglect of systematic identification of regulatory (non-coding) variants, which have recently been identified as putative somatic drivers and key germline risk factors for cancer development. Comprehensive understanding of non-coding mutations requires understanding their role in the disruption of regulatory elements, which then disrupt key biological functions such as gene expression. MAIN BODY We describe how advancements in sequencing technologies have led to the identification of a large number of non-coding mutations with uncharacterized biological significance. We summarize the strategies that have been developed to interpret and prioritize the biological mechanisms impacted by non-coding mutations, focusing on recent annotation of cancer non-coding variants utilizing chromatin states, eQTLs, and chromatin conformation data. CONCLUSION We believe that a better understanding of how to apply different regulatory data types into the study of non-coding mutations will enhance the discovery of novel mechanisms driving cancer.
Collapse
Affiliation(s)
| | - Jo K Perry
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Cris Print
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Zhang Z, Shang J, Dai Z, Yao Y, Shi Y, Zhong D, Liang Y, Lai C, Yang Q, Feng T, Huang X. Transmembrane Protein 170B is a Prognostic Biomarker and Associated With Immune Infiltrates in Pancreatic Adenocarcinoma. Front Genet 2022; 13:848391. [PMID: 35601487 PMCID: PMC9117611 DOI: 10.3389/fgene.2022.848391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is among the most common types of cancer with a poor prognosis. Transmembrane protein 170B (TMEM170B) has been reported to suppress breast cancer proliferation, metastasis, and tumorigenesis and is related to prognosis. However, its role in PAAD and the underlying molecular mechanisms are yet to be investigated.Patients and methods: We performed a comprehensive analysis of RNA sequencing data obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases to determine TMEM170B expression. Immunostaining and real-time polymerase chain reaction (RT-PCR) were done to determine TMEM170B expression in human pancreatic cancer cell lines and tissue specimens. Furthermore, the correlation of TMEM170B with clinicopathological features and PAAD prognosis was investigated, and the mechanisms were explored through enrichment analysis and immune cell infiltration analysis.Results: TCGA and GEO dataset analysis revealed that TMEM170B expression in PAAD tissue samples was significantly lower than that in non-tumorous tissues, which was further confirmed by immunohistochemistry and RT-PCR. Low TMEM170B expression was associated with poor differentiation (p = 0.014). Multivariate analysis identified that TMEM170B is an independent indicator for overall survival [hazard ratio (HR) = 0.116, 95% confidence interval (CI) = 0.014–0.995; p = 0.049] and disease-free survival (HR = 0.19, 95% CI = 0.04–0.910; p = 0.038) in patients with PAAD. Additionally, TMEM170B was involved in immune-related gene sets, including those related to chemokine signaling pathways and innate and adaptive immunity. High TMEM170B expression was linked to antitumor immune microenvironment with a high infiltration of B cells, T cells, dendritic cells, monocytes, M1 macrophages, neutrophil, and natural killer cells and a low infiltration of Tregs and myeloid-derived suppressor cells (all p < 0.05).Plain Language Summary: There is an urgent need to identify clinical prognostic biomarkers and targeted drugs for pancreatic cancer treatment. In this study, the expression status and prognostic value of transmembrane protein 170B (TMEM170B) in pancreatic adenocarcinoma were elucidated. Furthermore, TMEM170B, as a tumor suppressor gene, induced antitumor immune effects, including increased tumor infiltration of immune effector cells and reduced levels of inhibitory immune molecules and regulatory cells. Therefore, TMEM170B could be regarded as a novel target in preventing the progression of pancreatic cancer.Conclusion: The findings suggest that low TMEM170B expression is remarkably correlated with poor PAAD prognosis, which might provide a therapeutic target for PAAD.
Collapse
Affiliation(s)
- Zilong Zhang
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Shang
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zonglin Dai
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutong Yao
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Deyuan Zhong
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxin Liang
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyou Lai
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qinyan Yang
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tianhang Feng
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolun Huang
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Xiaolun Huang,
| |
Collapse
|
3
|
Jermusyk A, Zhong J, Connelly KE, Gordon N, Perera S, Abdolalizadeh E, Zhang T, O'Brien A, Hoskins JW, Collins I, Eiser D, Yuan C, Risch HA, Jacobs EJ, Li D, Du M, Stolzenberg-Solomon RZ, Klein AP, Smith JP, Wolpin BM, Chanock SJ, Shi J, Petersen GM, Westlake CJ, Amundadottir LT. A 584 bp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. Am J Hum Genet 2021; 108:1852-1865. [PMID: 34559995 PMCID: PMC8546220 DOI: 10.1016/j.ajhg.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWASs) have discovered 20 risk loci in the human genome where germline variants associate with risk of pancreatic ductal adenocarcinoma (PDAC) in populations of European ancestry. Here, we fine-mapped one such locus on chr16q23.1 (rs72802365, p = 2.51 × 10-17, OR = 1.36, 95% CI = 1.31-1.40) and identified colocalization (PP = 0.87) with aberrant exon 5-7 CTRB2 splicing in pancreatic tissues (pGTEx = 1.40 × 10-69, βGTEx = 1.99; pLTG = 1.02 × 10-30, βLTG = 1.99). Imputation of a 584 bp structural variant overlapping exon 6 of CTRB2 into the GWAS datasets resulted in a highly significant association with pancreatic cancer risk (p = 2.83 × 10-16, OR = 1.36, 95% CI = 1.31-1.42), indicating that it may underlie this signal. Exon skipping attributable to the deletion (risk) allele introduces a premature stop codon in exon 7 of CTRB2, yielding a truncated chymotrypsinogen B2 protein that lacks chymotrypsin activity, is poorly secreted, and accumulates intracellularly in the endoplasmic reticulum (ER). We propose that intracellular accumulation of a nonfunctional chymotrypsinogen B2 protein leads to ER stress and pancreatic inflammation, which may explain the increased pancreatic cancer risk in carriers of CTRB2 exon 6 deletion alleles.
Collapse
Affiliation(s)
- Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Katelyn E Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naomi Gordon
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sumeth Perera
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Ehssan Abdolalizadeh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Aidan O'Brien
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daina Eiser
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520, USA
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA 30303, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA
| | | | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, DC 20057, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gloria M Petersen
- Department of Quantitative Health Sciences, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Aoki MN, Stein A, de Oliveira JC, Chammas R, Uno M, Munhoz FBDA, Marin AM, Canzian F. Susceptibility loci for pancreatic cancer in the Brazilian population. BMC Med Genomics 2021; 14:111. [PMID: 33879152 PMCID: PMC8056496 DOI: 10.1186/s12920-021-00956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PA) is a very aggressive cancer and has one of the poorest prognoses. Usually, the diagnosis is late and resistant to conventional treatment. Environmental and genetic factors contribute to the etiology, such as tobacco and alcohol consumption, chronic pancreatitis, diabetes and obesity. Somatic mutation in pancreatic cancer cells are known and SNP profile by GWAS could access novel genetic risk factors for this disease in different population context. Here we describe a SNP panel for Brazilian pancreatic cancer, together with clinical and epidemiological data. METHODS 78 pancreatic adenocarcinoma and 256 non-pancreatic cancer subjects had 25 SNPs genotyped by real-time PCR. Unconditional logistic regression methods were used to assess the main effects on PA risk, using allelic, co-dominant and dominant inheritance models. RESULTS 9 SNPs were nominally associated with pancreatic adenocarcinoma risk, with 5 of the minor alleles conferring protective effect while 4 related as risk factor. In epidemiological and clinical data, tobacco smoking, diabetes and pancreatitis history were significantly related to pancreatic adenocarcinoma risk. Polygenic risk scores computed using the SNPs in the study showed strong associations with PA risk. CONCLUSION We could assess for the first time some SNPs related with PA in Brazilian populations, a result that could be used for genetic screening in risk population such as familial pancreatic cancer, smokers, alcohol users and diabetes patients.
Collapse
Affiliation(s)
- Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil.
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Roger Chammas
- Departamento de Radiologia E Oncologia, Centro de Investigação Translacional Em Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
| | - Miyuki Uno
- Departamento de Radiologia E Oncologia, Centro de Investigação Translacional Em Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
| | - Francielle Boçon de Araújo Munhoz
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | - Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Yuan P, Ling L, Gao X, Sun T, Miao J, Yuan X, Liu J, Wang Z, Liu B. Identification of RNA-binding protein SNRPA1 for prognosis in prostate cancer. Aging (Albany NY) 2021; 13:2895-2911. [PMID: 33460399 PMCID: PMC7880319 DOI: 10.18632/aging.202387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the deadliest cancers in men. RNA-binding proteins play a critical role in human cancers; however, whether they have a significant effect on the prognosis of prostate cancer has yet to be elucidated. In the present study, we performed a comprehensive analysis of RNA sequencing and clinical data from the Cancer Genome Atlas dataset and obtained differentially expressed RNA-binding proteins between prostate cancer and benign tissues. We constructed a protein-protein interaction network and Cox regression analyses were conducted to identify prognostic hub RNA-binding proteins. SNRPA1 was associated with the highest risk of poor prognosis and was therefore selected for further analysis. SNRPA1 expression was positively correlated with Gleason score and pathological TNM stage in prostate cancer patients. Furthermore, the expression profile of SNRPA1 was validated using the Oncomine, Human Protein Atlas, and Cancer Cell Line Encyclopedia databases. Meanwhile, the prognostic profile of SNRPA1 was successfully verified in GSE70769. Additionally, the results of molecular experiments revealed the proliferative role of SNRPA1 in prostate cancer cells. In summary, our findings evidenced a relationship between RNA-binding proteins and prostate cancer and indicated the prognostic significance of SNRPA1 in prostate cancer.
Collapse
Affiliation(s)
- Penghui Yuan
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Le Ling
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xintao Gao
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Taotao Sun
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jihong Liu
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhihua Wang
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
6
|
Adebamowo SN, Adeyemo AA, Rotimi CN, Olaniyan O, Offiong R, Adebamowo CA. Genome-wide association study of prevalent and persistent cervical high-risk human papillomavirus (HPV) infection. BMC MEDICAL GENETICS 2020; 21:231. [PMID: 33225922 PMCID: PMC7682060 DOI: 10.1186/s12881-020-01156-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/25/2020] [Indexed: 01/20/2023]
Abstract
Background Genetic factors may influence the susceptibility to high-risk (hr) human papillomavirus (HPV) infection and persistence. We conducted the first genome-wide association study (GWAS) to identify variants associated with cervical hrHPV infection and persistence. Methods Participants were 517 Nigerian women evaluated at baseline and 6 months follow-up visits for HPV. HPV was characterized using SPF10/LiPA25. hrHPV infection was positive if at least one carcinogenic HPV genotype was detected in a sample provided at the baseline visit and persistent if at least one carcinogenic HPV genotype was detected in each of the samples provided at the baseline and follow-up visits. Genotyping was done using the Illumina Multi-Ethnic Genotyping Array (MEGA) and imputation was done using the African Genome Resources Haplotype Reference Panel. Association analysis was done for hrHPV infection (125 cases/392 controls) and for persistent hrHPV infection (51 cases/355 controls) under additive genetic models adjusted for age, HIV status and the first principal component (PC) of the genotypes. Results The mean (±SD) age of the study participants was 38 (±8) years, 48% were HIV negative, 24% were hrHPV positive and 10% had persistent hrHPV infections. No single variant reached genome-wide significance (p < 5 X 10− 8). The top three variants associated with hrHPV infections were intronic variants clustered in KLF12 (all OR: 7.06, p = 1.43 × 10− 6). The top variants associated with cervical hrHPV persistence were in DAP (OR: 6.86, p = 7.15 × 10− 8), NR5A2 (OR: 3.65, p = 2.03 × 10− 7) and MIR365–2 (OR: 7.71, p = 2.63 × 10− 7) gene regions. Conclusions This exploratory GWAS yielded suggestive candidate risk loci for cervical hrHPV infection and persistence. The identified loci have biological annotation and functional data supporting their role in hrHPV infection and persistence. Given our limited sample size, larger discovery and replication studies are warranted to further characterize the reported associations. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01156-1.
Collapse
Affiliation(s)
- Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood Street, Howard Hall, Room 119, Baltimore, MD, 21201, USA. .,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olayinka Olaniyan
- Department of Obstetrics and Gynecology, National Hospital Abuja, Abuja, Nigeria
| | - Richard Offiong
- Department of Obstetrics and Gynecology, University of Abuja Teaching Hospital, Abuja, Nigeria
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood Street, Howard Hall, Room 119, Baltimore, MD, 21201, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Human Virology Nigeria, Abuja, Nigeria
| | | |
Collapse
|
7
|
Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, Zhang M, Song L, Chung CC, Zhang T, Xiao W, Albanes D, Andreotti G, Arslan AA, Babic A, Bamlet WR, Beane-Freeman L, Berndt S, Borgida A, Bracci PM, Brais L, Brennan P, Bueno-de-Mesquita B, Buring J, Canzian F, Childs EJ, Cotterchio M, Du M, Duell EJ, Fuchs C, Gallinger S, Gaziano JM, Giles GG, Giovannucci E, Goggins M, Goodman GE, Goodman PJ, Haiman C, Hartge P, Hasan M, Helzlsouer KJ, Holly EA, Klein EA, Kogevinas M, Kurtz RJ, LeMarchand L, Malats N, Männistö S, Milne R, Neale RE, Ng K, Obazee O, Oberg AL, Orlow I, Patel AV, Peters U, Porta M, Rothman N, Scelo G, Sesso HD, Severi G, Sieri S, Silverman D, Sund M, Tjønneland A, Thornquist MD, Tobias GS, Trichopoulou A, Van Den Eeden SK, Visvanathan K, Wactawski-Wende J, Wentzensen N, White E, Yu H, Yuan C, Zeleniuch-Jacquotte A, Hoover R, Brown K, Kooperberg C, Risch HA, Jacobs EJ, Li D, Yu K, Shu XO, Chanock SJ, Wolpin BM, Stolzenberg-Solomon RZ, Chatterjee N, Klein AP, Smith JP, Kraft P, Shi J, Petersen GM, Zheng W, Amundadottir LT. A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. J Natl Cancer Inst 2020; 112:1003-1012. [PMID: 31917448 PMCID: PMC7566474 DOI: 10.1093/jnci/djz246] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. METHODS To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples). RESULTS We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction. CONCLUSIONS By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.
Collapse
Affiliation(s)
- Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lang Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- US Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenming Xiao
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
- Division of Molecular Genetics and Pathology, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, CA, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Erica J Childs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michelle Cotterchio
- Cancer Care Ontario, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology, Barcelona, Spain
| | | | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - J Michael Gaziano
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Edward Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manal Hasan
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy J Helzlsouer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- Hospital del Mar Institute of Medical Research, Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Robert J Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Roger Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Rachel E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Miquel Porta
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- Hospital del Mar Institute of Medical Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer, Lyon, France
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gianluca Severi
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, Villejuif, France
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Hellenic Health Foundation, Athens, Greece
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Geoffrey S Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Shan YS, Chen LT, Wu JS, Chang YF, Lee CT, Wu CH, Chiang NJ, Huang HE, Yen CJ, Chao YJ, Tsai HJ, Chen CY, Kang JW, Kuo CF, Tsai CR, Weng YL, Yang HC, Liu HC, Chang JS. Validation of genome-wide association study-identified single nucleotide polymorphisms in a case-control study of pancreatic cancer from Taiwan. J Biomed Sci 2020; 27:69. [PMID: 32456644 PMCID: PMC7251895 DOI: 10.1186/s12929-020-00664-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Due to differences in genetic background, it is unclear whether the genetic loci identified by the previous genome-wide association studies (GWAS) of pancreatic cancer also play significant roles in the development of pancreatic cancer among the Taiwanese population. Methods This study aimed to validate the 25 pancreatic cancer GWAS-identified single nucleotide polymorphisms (SNPs) in a case-control study (278 cases and 658 controls) of pancreatic cancer conducted in Taiwan. Statistical analyses were conducted to determine the associations between the GWAS-identified SNPs and pancreatic cancer risk. Gene-environment interaction analysis was conducted to evaluate the interactions between SNPs and environmental factors on pancreatic cancer risk. Results Among the 25 GWAS-identified SNPs, 7 (rs2816938 (~ 11 kb upstream of NR5A2), rs10094872 (~ 28 kb upstream of MYC), rs9581943 (200 bp upstream of PDX1) and 4 chromosome 13q22.1 SNPs: rs4885093, rs9573163, rs9543325, rs9573166) showed a statistically significant association with pancreatic cancer risk in the current study. Additional analyses showed two significant gene-environment interactions (between poor oral hygiene and NR5A2 rs2816938 and between obesity and PDX1 rs9581943) on the risk of pancreatic cancer. Conclusions The current study confirmed the associations between 7 of the 25 GWAS-identified SNPs and pancreatic risk among the Taiwanese population. Furthermore, pancreatic cancer was jointly influenced by lifestyle and medical factors, genetic polymorphisms, and gene-environment interaction. Additional GWAS is needed to determine the genetic polymorphisms that are more relevant to the pancreatic cancer cases occurring in Taiwan.
Collapse
Affiliation(s)
- Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Ziyou 1st Road, Sanmin District, Kaohsiung, 80756, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Jin-Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Yin-Fan Chang
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chih-Ting Lee
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Nai-Jung Chiang
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Hsin-En Huang
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chia-Jui Yen
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Ying-Jui Chao
- Department of Surgery, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chiung-Yu Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Jui-Wen Kang
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chin-Fu Kuo
- Preventive Medicine Center, Taichung Tzu Chi Hospital, 88 Section 1, Fengxing Road, Tanzi District, Taichung, 427, Taiwan
| | - Chia-Rung Tsai
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan
| | - Ya-Ling Weng
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan
| | - Han-Chien Yang
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan
| | - Hui-Chin Liu
- Department of Nursing, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Jeffrey S Chang
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan.
| |
Collapse
|
9
|
Emerging epigenomic landscapes of pancreatic cancer in the era of precision medicine. Nat Commun 2019; 10:3875. [PMID: 31462645 PMCID: PMC6713756 DOI: 10.1038/s41467-019-11812-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic studies have advanced our understanding of pancreatic cancer at a mechanistic and translational level. Genetic concepts and tools are increasingly starting to be applied to clinical practice, in particular for precision medicine efforts. However, epigenomics is rapidly emerging as a promising conceptual and methodological paradigm for advancing the knowledge of this disease. More importantly, recent studies have uncovered potentially actionable pathways, which support the prediction that future trials for pancreatic cancer will involve the vigorous testing of epigenomic therapeutics. Thus, epigenomics promises to generate a significant amount of new knowledge of both biological and medical importance. In pancreatic cancer, the epigenomic landscape can strongly impact the disease phenotype. Here, the authors discuss recent advances in our understanding of pancreatic cancer epigenomics, and how this knowledge can integrate with precision medicine approaches in this lethal disease.
Collapse
|
10
|
Ren A, Sun S, Li S, Chen T, Shu Y, Du M, Zhu L. Genetic variants in SLC22A3 contribute to the susceptibility to colorectal cancer. Int J Cancer 2019; 145:154-163. [PMID: 30561001 PMCID: PMC6590332 DOI: 10.1002/ijc.32079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Previous a genome-wide association study (GWAS) of colorectal cancer in Japanese population has identified a risk region at the chromosome 6q26-q27 associated with colorectal cancer risk. However, the causal gene at this locus remained unclear. In our study, we enrolled a total of 14 candidate functional single nucleotide polymorphisms (SNPs) at 6q26-q27 (318 kb), and then genotyped them by TaqMan method in a Chinese population including 1,147 colorectal cancer cases and 1,203 controls. Among that, 5 SNPs were identified statistical association with colorectal cancer risk by logistic regression analysis. Of which, SNP rs420038 G > A in SLC22A3 was related to decreased risk of colorectal cancer (adjusted odds ratio (OR) = 0.79, 95% confidence interval (CI) = 0.67-0.94, p = 0.007), and also associated with lower expression of SLC22A3 (p = 0.040) using expression quantitative trait loci (eQTL) analysis. Moreover, by the luciferase assays, we found that compared to the G allele of rs420038, the A allele could suppress the activity of the promoter in SLC22A3. Furthermore, the expression of SLC22A3 was significantly higher in colorectal cancer tissues than that in paired normal tissues (p < 0.001). Meanwhile, the phenotypes of proliferation, migration, invasion, cell cycle and apoptosis of colorectal cancer cell were significantly affected by SLC22A3 in vitro. Our results revealed a novel susceptible locus, rs420038 in SLC22A3, which may be involved in colorectal cancer development and progression.
Collapse
Affiliation(s)
- Anjing Ren
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shanwen Sun
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Tao Chen
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yongqian Shu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
- Department of Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Lingjun Zhu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of OncologyThe Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjingChina
- Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentNanjing Medical UniversityNanjingChina
| |
Collapse
|
11
|
Jia R, Chai P, Zhang H, Fan X. Novel insights into chromosomal conformations in cancer. Mol Cancer 2017; 16:173. [PMID: 29149895 PMCID: PMC5693495 DOI: 10.1186/s12943-017-0741-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Exploring gene function is critical for understanding the complexity of life. DNA sequences and the three-dimensional organization of chromatin (chromosomal interactions) are considered enigmatic factors underlying gene function, and interactions between two distant fragments can regulate transactivation activity via mediator proteins. Thus, a series of chromosome conformation capture techniques have been developed, including chromosome conformation capture (3C), circular chromosome conformation capture (4C), chromosome conformation capture carbon copy (5C), and high-resolution chromosome conformation capture (Hi-C). The application of these techniques has expanded to various fields, but cancer remains one of the major topics. Interactions mediated by proteins or long noncoding RNAs (lncRNAs) are typically found using 4C-sequencing and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET). Currently, Hi-C is used to identify chromatin loops between cancer risk-associated single-nucleotide polymorphisms (SNPs) found by genome-wide association studies (GWAS) and their target genes. Chromosomal conformations are responsible for altered gene regulation through several typical mechanisms and contribute to the biological behavior and malignancy of different tumors, particularly prostate cancer, breast cancer and hematologic neoplasms. Moreover, different subtypes may exhibit different 3D-chromosomal conformations. Thus, C-tech can be used to help diagnose cancer subtypes and alleviate cancer progression by destroying specific chromosomal conformations. Here, we review the fundamentals and improvements in chromosome conformation capture techniques and their clinical applications in cancer to provide insight for future research.
Collapse
Affiliation(s)
- Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Chiappetta C, Mancini M, Lessi F, Aretini P, De Gregorio V, Puggioni C, Carletti R, Petrozza V, Civita P, Franceschi S, Naccarato AG, Rocca CD, Mazzanti CM, Di Cristofano C. Whole-exome analysis in osteosarcoma to identify a personalized therapy. Oncotarget 2017; 8:80416-80428. [PMID: 29113313 PMCID: PMC5655208 DOI: 10.18632/oncotarget.19010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common pediatric primary non-hematopoietic bone tumor. Survival of these young patients is related to the response to chemotherapy and development of metastases. Despite many advances in cancer research, chemotherapy regimens for osteosarcoma are still based on non-selective cytotoxic drugs. It is essential to investigate new specific molecular therapies for osteosarcoma to increase the survival rate of these patients. We performed exomic sequence analyses of 8 diagnostic biopsies of patients with conventional high grade osteosarcoma to advance our understanding of their genetic underpinnings and to correlate the genetic alteration with the clinical and pathological features of each patient to identify a personalized therapy. We identified 18,275 somatic variations in 8,247 genes and we found three mutated genes in 7/8 (87%) samples (KIF1B, NEB and KMT2C). KMT2C showed the highest number of variations; it is an important component of a histone H3 lysine 4 methyltransferase complex and it is one of the histone modifiers previously implicated in carcinogenesis, never studied in osteosarcoma. Moreover, we found a group of 15 genes that showed variations only in patients that did not respond to therapy and developed metastasis and some of these genes are involved in carcinogenesis and tumor progression in other tumors. These data could offer the opportunity to get a key molecular target to identify possible new strategies for early diagnosis and new therapeutic approaches for osteosarcoma and to provide a tailored treatment for each patient based on their genetic profile.
Collapse
Affiliation(s)
- Caterina Chiappetta
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | - Massimiliano Mancini
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | | | | | | | - Chiara Puggioni
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | - Raffaella Carletti
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | - Vincenzo Petrozza
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | | | | | | | - Carlo Della Rocca
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | | | - Claudio Di Cristofano
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
13
|
Zinder JC, Lima CD. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 2017; 31:88-100. [PMID: 28202538 PMCID: PMC5322736 DOI: 10.1101/gad.294769.116] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Zinder and Lima highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes. The eukaryotic RNA exosome is an essential and conserved protein complex that can degrade or process RNA substrates in the 3′-to-5′ direction. Since its discovery nearly two decades ago, studies have focused on determining how the exosome, along with associated cofactors, achieves the demanding task of targeting particular RNAs for degradation and/or processing in both the nucleus and cytoplasm. In this review, we highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes.
Collapse
Affiliation(s)
- John C Zinder
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA.,Howard Hughes Medical Institute, New York, New York, 10065 USA
| |
Collapse
|