1
|
Arancibia-Opazo S, Contreras-Riquelme JS, Sánchez M, Cisternas-Olmedo M, Vidal RL, Martin AJM, Sáez MA. Transcriptional and Histone Acetylation Changes Associated with CRE Elements Expose Key Factors Governing the Regulatory Circuit in the Early Stage of Huntington's Disease Models. Int J Mol Sci 2023; 24:10848. [PMID: 37446028 DOI: 10.3390/ijms241310848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Huntington's disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease.
Collapse
Affiliation(s)
- Sandra Arancibia-Opazo
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago 8580745, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Universidad San Sebastián, Santiago 8580704, Chile
| | - J Sebastián Contreras-Riquelme
- Plant Genome Regulation Lab, Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Mario Sánchez
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Marisol Cisternas-Olmedo
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380455, Chile
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile
| | - René L Vidal
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380455, Chile
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Universidad San Sebastián, Santiago 8580704, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 7500000, Chile
| | - Mauricio A Sáez
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Centro de Oncología de Precisión, Facultad de Medicina Universidad Mayor, Santiago 7560908, Chile
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile
| |
Collapse
|
2
|
Joachimiak P, Ciesiołka A, Kozłowska E, Świtoński PM, Figura G, Ciołak A, Adamek G, Surdyka M, Kalinowska-Pośka Ż, Figiel M, Caron NS, Hayden MR, Fiszer A. Allele-specific quantitation of ATXN3 and HTT transcripts in polyQ disease models. BMC Biol 2023; 21:17. [PMID: 36726088 PMCID: PMC9893648 DOI: 10.1186/s12915-023-01515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The majority of genes in the human genome is present in two copies but the expression levels of both alleles is not equal. Allelic imbalance is an aspect of gene expression relevant not only in the context of genetic variation, but also to understand the pathophysiology of genes implicated in genetic disorders, in particular, dominant genetic diseases where patients possess one normal and one mutant allele. Polyglutamine (polyQ) diseases are caused by the expansion of CAG trinucleotide tracts within specific genes. Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD) patients harbor one normal and one mutant allele that differ in the length of CAG tracts. However, assessing the expression level of individual alleles is challenging due to the presence of abundant CAG repeats in the human transcriptome, which make difficult the design of allele-specific methods, as well as of therapeutic strategies to selectively engage CAG sequences in mutant transcripts. RESULTS To precisely quantify expression in an allele-specific manner, we used SNP variants that are linked to either normal or CAG expanded alleles of the ataxin-3 (ATXN3) and huntingtin (HTT) genes in selected patient-derived cell lines. We applied a SNP-based quantitative droplet digital PCR (ddPCR) protocol for precise determination of the levels of transcripts in cellular and mouse models. For HD, we showed that the process of cell differentiation can affect the ratio between endogenous alleles of HTT mRNA. Additionally, we reported changes in the absolute number of the ATXN3 and HTT transcripts per cell during neuronal differentiation. We also implemented our assay to reliably monitor, in an allele-specific manner, the silencing efficiency of mRNA-targeting therapeutic approaches for HD. Finally, using the humanized Hu128/21 HD mouse model, we showed that the ratio of normal and mutant HTT transgene expression in brain slightly changes with the age of mice. CONCLUSIONS Using allele-specific ddPCR assays, we observed differences in allele expression levels in the context of SCA3 and HD. Our allele-selective approach is a reliable and quantitative method to analyze low abundant transcripts and is performed with high accuracy and reproducibility. Therefore, the use of this approach can significantly improve understanding of allele-related mechanisms, e.g., related with mRNA processing that may be affected in polyQ diseases.
Collapse
Affiliation(s)
- Paweł Joachimiak
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiołka
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Emilia Kozłowska
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paweł M. Świtoński
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Grzegorz Figura
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agata Ciołak
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Grażyna Adamek
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Magdalena Surdyka
- grid.413454.30000 0001 1958 0162Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Żaneta Kalinowska-Pośka
- grid.413454.30000 0001 1958 0162Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Figiel
- grid.413454.30000 0001 1958 0162Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Nicholas S. Caron
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Michael R. Hayden
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Agnieszka Fiszer
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
3
|
Shin JW, Shin A, Park SS, Lee JM. Haplotype-specific insertion-deletion variations for allele-specific targeting in Huntington's disease. Mol Ther Methods Clin Dev 2022; 25:84-95. [PMID: 35356757 PMCID: PMC8933729 DOI: 10.1016/j.omtm.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in huntingtin (HTT). Given an important role for HTT in development and significant neurodegeneration at the time of clinical manifestation in HD, early treatment of allele-specific drugs represents a promising strategy. The feasibility of an allele-specific antisense oligonucleotide (ASO) targeting single-nucleotide polymorphisms (SNPs) has been demonstrated in models of HD. Here, we constructed a map of haplotype-specific insertion-deletion variations (indels) to develop alternative mutant-HTT-specific strategies. We mapped indels annotated in the 1000 Genomes Project data on common HTT haplotypes, revealing candidate indels for mutant-specific HTT targeting. Subsequent sequencing of an HD family confirmed candidate sites and revealed additional allele-specific indels. Interestingly, the most common normal HTT haplotype carries indels of big allele length differences at many sites, further uncovering promising haplotype-specific targets. When patient-derived cells carrying the most common HTT diplotype were treated with ASOs targeting the mutant alleles of candidate indels (rs772629195 or rs72239206), complete mutant specificity was observed. In summary, our map of haplotype-specific indels permits the identification of allele-specific targets in HD subjects, potentially contributing to the development of safe HTT-lowering therapeutics that are suitable for early treatment in HD.
Collapse
Affiliation(s)
- Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Aram Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seri S Park
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Jung R, Lee Y, Barker D, Correia K, Shin B, Loupe J, Collins RL, Lucente D, Ruliera J, Gillis T, Mysore JS, Rodan L, Picker J, Lee JM, Howland D, Lee R, Kwak S, MacDonald ME, Gusella JF, Seong IS. Mutations causing Lopes-Maciel-Rodan syndrome are huntingtin hypomorphs. Hum Mol Genet 2021; 30:135-148. [PMID: 33432339 DOI: 10.1093/hmg/ddaa283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease pathogenesis involves a genetic gain-of-function toxicity mechanism triggered by the expanded HTT CAG repeat. Current therapeutic efforts aim to suppress expression of total or mutant huntingtin, though the relationship of huntingtin's normal activities to the gain-of-function mechanism and what the effects of huntingtin-lowering might be are unclear. Here, we have re-investigated a rare family segregating two presumed HTT loss-of-function (LoF) variants associated with the developmental disorder, Lopes-Maciel-Rodan syndrome (LOMARS), using whole-genome sequencing of DNA from cell lines, in conjunction with analysis of mRNA and protein expression. Our findings correct the muddled annotation of these HTT variants, reaffirm they are the genetic cause of the LOMARS phenotype and demonstrate that each variant is a huntingtin hypomorphic mutation. The NM_002111.8: c.4469+1G>A splice donor variant results in aberrant (exon 34) splicing and severely reduced mRNA, whereas, surprisingly, the NM_002111.8: c.8157T>A NP_002102.4: Phe2719Leu missense variant results in abnormally rapid turnover of the Leu2719 huntingtin protein. Thus, although rare and subject to an as yet unknown LoF intolerance at the population level, bona fide HTT LoF variants can be transmitted by normal individuals leading to severe consequences in compound heterozygotes due to huntingtin deficiency.
Collapse
Affiliation(s)
- Roy Jung
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Yejin Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas Barker
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Baehyun Shin
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Jacob Loupe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ryan L Collins
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA.,Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Jayla Ruliera
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA 02115, USA
| | - Jonathan Picker
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Child and Adolescent Psychiatry, Boston Children's Hospital, Harvard Medical School, MA 02115, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - David Howland
- CHDI Management/CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Ramee Lee
- CHDI Management/CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Seung Kwak
- CHDI Management/CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ihn Sik Seong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Grover S, Engelhart CA, Pérez-Herrán E, Li W, Abrahams KA, Papavinasasundaram K, Bean JM, Sassetti CM, Mendoza-Losana A, Besra GS, Jackson M, Schnappinger D. Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in Mycobacterium tuberculosis. ACS Infect Dis 2021; 7:141-152. [PMID: 33319550 PMCID: PMC7802072 DOI: 10.1021/acsinfecdis.0c00675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
MmpL3,
an essential mycolate transporter in the inner membrane
of Mycobacterium tuberculosis (Mtb), has been identified as a target of multiple, chemically diverse
antitubercular drugs. However, several of these molecules seem to
have secondary targets and inhibit bacterial growth by more than one
mechanism. Here, we describe a cell-based assay that utilizes two-way
regulation of MmpL3 expression to readily identify MmpL3-specific
inhibitors. We successfully used this assay to identify a novel guanidine-based
MmpL3 inhibitor from a library of 220 compounds that inhibit growth
of Mtb by largely unknown mechanisms. We furthermore
identified inhibitors of cytochrome bc1-aa3 oxidase as one class of off-target hits in whole-cell screens for
MmpL3 inhibitors and report a novel sulfanylacetamide as a potential
QcrB inhibitor.
Collapse
Affiliation(s)
- Shipra Grover
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Curtis A. Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Esther Pérez-Herrán
- TB Research Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine A. Abrahams
- Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - James M. Bean
- Sloan Kettering Institute, New York, New York 10065, United States
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Alfonso Mendoza-Losana
- TB Research Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
6
|
Jung T, Shin B, Tamo G, Kim H, Vijayvargia R, Leitner A, Marcaida MJ, Astorga-Wells J, Jung R, Aebersold R, Peraro MD, Hebert H, Seong IS, Song JJ. The Polyglutamine Expansion at the N-Terminal of Huntingtin Protein Modulates the Dynamic Configuration and Phosphorylation of the C-Terminal HEAT Domain. Structure 2020; 28:1035-1050.e8. [PMID: 32668197 PMCID: PMC11059206 DOI: 10.1016/j.str.2020.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 11/15/2022]
Abstract
The polyQ expansion in huntingtin protein (HTT) is the prime cause of Huntington's disease (HD). The recent cryoelectron microscopy (cryo-EM) structure of HTT-HAP40 complex provided the structural information on its HEAT-repeat domains. Here, we present analyses of the impact of polyQ length on the structure and function of HTT via an integrative structural and biochemical approach. The cryo-EM analysis of normal (Q23) and disease (Q78) type HTTs shows that the structures of apo HTTs significantly differ from the structure of HTT in a HAP40 complex and that the polyQ expansion induces global structural changes in the relative movements among the HTT domains. In addition, we show that the polyQ expansion alters the phosphorylation pattern across HTT and that Ser2116 phosphorylation in turn affects the global structure and function of HTT. These results provide a molecular basis for the effect of the polyQ segment on HTT structure and activity, which may be important for HTT pathology.
Collapse
Affiliation(s)
- Taeyang Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Baehyun Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Giorgio Tamo
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hyeongju Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea
| | - Ravi Vijayvargia
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Maria J Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Juan Astorga-Wells
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, 171 65 Solna, Sweden; HDxperts AB, 183 48 Täby, Sweden
| | - Roy Jung
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.
| | - Ihn Sik Seong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea.
| |
Collapse
|
7
|
Bogomazova AN, Eremeev AV, Pozmogova GE, Lagarkova MA. The Role of Mutant RNA in the Pathogenesis of Huntington’s Disease and Other Polyglutamine Diseases. Mol Biol 2019. [DOI: 10.1134/s0026893319060037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Assessing average somatic CAG repeat instability at the protein level. Sci Rep 2019; 9:19152. [PMID: 31844074 PMCID: PMC6915696 DOI: 10.1038/s41598-019-55202-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Sandwich ELISA-based methods use Abs that target the expanded polyglutamine (polyQ) tract to quantify mutant huntingtin (mHTT). Using Meso Scale Discovery (MSD) assay, the mHTT signal detected with MW1 Ab correlated with polyQ length and doubled with a difference of only 7 glutamine residues between equivalent amounts of purified mHTTexon1 proteins. Similar polyQ length-dependent effects on MSD signals were confirmed using endogenous full length mHTT from brains of Huntington’s disease (HD) knock-in (KI) mice. We used this avidity bias to devise a method to assess average CAG repeat instability at the protein level in a mixed population of HTT proteins present in tissues. Signal detected for average polyQ length quantification at the protein level by our method exhibited a strong correlation with average CAG repeat length at the genomic DNA level determined by PCR method in striatal tissue homogenates from HdhQ140 KI mice and in human HD postmortem cortex. This work establishes that CAG repeat instability in mutant HTT is reflected at the protein level.
Collapse
|
9
|
Zhang B, Whiteaker JR, Hoofnagle AN, Baird GS, Rodland KD, Paulovich AG. Clinical potential of mass spectrometry-based proteogenomics. Nat Rev Clin Oncol 2019; 16:256-268. [PMID: 30487530 PMCID: PMC6448780 DOI: 10.1038/s41571-018-0135-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer genomics research aims to advance personalized oncology by finding and targeting specific genetic alterations associated with cancers. In genome-driven oncology, treatments are selected for individual patients on the basis of the findings of tumour genome sequencing. This personalized approach has prolonged the survival of subsets of patients with cancer. However, many patients do not respond to the predicted therapies based on the genomic profiles of their tumours. Furthermore, studies pairing genomic and proteomic analyses of samples from the same tumours have shown that the proteome contains novel information that cannot be discerned through genomic analysis alone. This observation has led to the concept of proteogenomics, in which both types of data are leveraged for a more complete view of tumour biology that might enable patients to be more successfully matched to effective treatments than they would using genomics alone. In this Perspective, we discuss the added value of proteogenomics over the current genome-driven approach to the clinical characterization of cancers and summarize current efforts to incorporate targeted proteomic measurements based on selected/multiple reaction monitoring (SRM/MRM) mass spectrometry into the clinical laboratory to facilitate clinical proteogenomics.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Molecular and Human Genetics, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Geoffrey S Baird
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Cell, Development and Cancer Biology, Oregon Health & Sciences University, Portland, OR, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
10
|
Combined loss of LAP1B and LAP1C results in an early onset multisystemic nuclear envelopathy. Nat Commun 2019; 10:605. [PMID: 30723199 PMCID: PMC6363790 DOI: 10.1038/s41467-019-08493-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 01/10/2019] [Indexed: 01/23/2023] Open
Abstract
Nuclear envelopathies comprise a heterogeneous group of diseases caused by mutations in genes encoding nuclear envelope proteins. Mutations affecting lamina-associated polypeptide 1 (LAP1) result in two discrete phenotypes of muscular dystrophy and progressive dystonia with cerebellar atrophy. We report 7 patients presenting at birth with severe progressive neurological impairment, bilateral cataract, growth retardation and early lethality. All the patients are homozygous for a nonsense mutation in the TOR1AIP1 gene resulting in the loss of both protein isoforms LAP1B and LAP1C. Patient-derived fibroblasts exhibit changes in nuclear envelope morphology and large nuclear-spanning channels containing trapped cytoplasmic organelles. Decreased and inefficient cellular motility is also observed in these fibroblasts. Our study describes the complete absence of both major human LAP1 isoforms, underscoring their crucial role in early development and organogenesis. LAP1-associated defects may thus comprise a broad clinical spectrum depending on the availability of both isoforms in the nuclear envelope throughout life.
Collapse
|
11
|
Rittershaus ESC, Baek SH, Krieger IV, Nelson SJ, Cheng YS, Nambi S, Baker RE, Leszyk JD, Shaffer SA, Sacchettini JC, Sassetti CM. A Lysine Acetyltransferase Contributes to the Metabolic Adaptation to Hypoxia in Mycobacterium tuberculosis. Cell Chem Biol 2018; 25:1495-1505.e3. [PMID: 30318462 PMCID: PMC6309504 DOI: 10.1016/j.chembiol.2018.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 05/14/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023]
Abstract
Upon inhibition of respiration, which occurs in hypoxic or nitric oxide-containing host microenvironments, Mycobacterium tuberculosis (Mtb) adopts a non-replicating "quiescent" state and becomes relatively unresponsive to antibiotic treatment. We used comprehensive mutant fitness analysis to identify regulatory and metabolic pathways that are essential for the survival of quiescent Mtb. This genetic study identified a protein acetyltransferase (Mt-Pat/Rv0998) that promoted survival and altered the flux of carbon from oxidative to reductive tricarboxylic acid (TCA) reactions. Reductive TCA requires malate dehydrogenase (MDH) and maintains the redox state of the NAD+/NADH pool. Genetic or chemical inhibition of MDH resulted in rapid cell death in both hypoxic cultures and in murine lung. These phenotypic data, in conjunction with significant structural differences between human and mycobacterial MDH enzymes that could be exploited for drug development, suggest a new strategy for eradicating quiescent bacteria.
Collapse
Affiliation(s)
- Emily S. C. Rittershaus
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Seung-Hun Baek
- Department of Microbiology, Yonsei University College of Medicine, Seoul Korea
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Yu-Shan Cheng
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - John D. Leszyk
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA. 01650 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA. 01650 USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| |
Collapse
|
12
|
Merienne N, Vachey G, de Longprez L, Meunier C, Zimmer V, Perriard G, Canales M, Mathias A, Herrgott L, Beltraminelli T, Maulet A, Dequesne T, Pythoud C, Rey M, Pellerin L, Brouillet E, Perrier AL, du Pasquier R, Déglon N. The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Rep 2017; 20:2980-2991. [DOI: 10.1016/j.celrep.2017.08.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022] Open
|